Electroweak physics and the discovery of the W / Z bosons

Facts:

-electromagnetic interactions:
interaction between charged particles mediated by a neutral electromagnetic vector field. Make the theory relativistic and quantized.
The quantized field is the photon with spin 1 and null mass (infinite range):

The mediator (the photon) is neutral and the effect of the electromagnetic potential (Coulomb) is described by the propagator:

6 leptonis+ 6 quarks spin $1 / 2$, masses from : 0.5 MeV to $175 \mathrm{GeV} / \mathrm{c}^{2}$ (+ neutrino masses: eV ?)

For weak interactions, fermions are organized in doublets (weak isospin 1/2)

$$
\begin{gathered}
\text { Leptons : } \boldsymbol{e}^{-}, \boldsymbol{\mu}^{-}, \tau_{\mathrm{m}=0.51,106,1777 \mathrm{MeV}}^{-} \\
v_{e}, \quad v_{\mu}, \quad v_{\tau} \mathrm{m} \sim \mathrm{eV} ? ? ? ? ?
\end{gathered}
$$

Quarks: U, C, t U, C, $\quad t_{\mathrm{m} \sim 1}, 1500,175000 \mathrm{MeV}$

Towards an electroweak unification

There is a general principle in particle quantum field theory: the local gauge invariance:
-for the electrodymamics this imply the invariance of the lagrangian if the particle wave function are multiplied by a local phase: $e^{\theta(x)}$. This corresponds to a symmetry invariance of the group $\mathrm{U}(1)$
-For the weak interactions the wave function is a doublet ex (v, e) and the invariance is for rotations in the space of the weak isotopic spin (same algebra of the ordinary spin) : the corresponding group is $\operatorname{SU}(2)$.

For an unified electroweak theory the lagrangian should be invariant for both

$$
\underline{\mathrm{U}(1) \mathrm{x} \mathrm{SU}(2)}
$$

Electric charge conservation (Ypercharge)

The GWS unification model

$\mathrm{SU}(2) \mathrm{xU}(1)$ is broken : the neutral state $\left(\mathbf{B}, \mathbf{W}^{3}\right)$ mix to give the physical states

$$
\begin{array}{ll}
A_{\mu}=B_{\mu} \cos \theta_{W}+W_{\mu}^{3} \sin \theta_{W} & \mathrm{~A}_{\mu} \text { e } \mathrm{Z}_{\mu} \text { are the physical observable states }, \\
Z_{\mu}=-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W} & \underline{\sin \theta_{\mathrm{W}}} \underline{\text { is a free parameter }}
\end{array}
$$

Minimal model

$$
\begin{aligned}
g_{W}=\frac{e}{\sin \theta_{W}}, g_{Z}= & \frac{e}{\sin \theta_{W} \cos \theta_{W}}, \frac{g_{W}^{2}}{8 M_{W}^{2}}=\frac{G_{F}}{\sqrt{2}}, M_{Z}=\frac{M_{W}}{\cos \theta_{W}} \\
& \text { Parameterp } \rho=\frac{\left(\frac{g_{z}^{2}}{M_{z}^{2}}\right)}{M_{z}} /\left(\frac{g_{w}^{2}}{M_{W}^{2}}\right)^{=1}
\end{aligned}
$$

Particles mediating the interactions

$$
W^{ \pm}, Z, \gamma(+\mathrm{H} \text { (Higgs)) }
$$

The model parameters are 3 , ex: $\alpha, \mathrm{G}_{\mathrm{F}}, \sin ^{2} \theta_{W}$
Theory is determined

$$
\begin{aligned}
& \alpha=\frac{e^{2}}{4 \pi \hbar c}=\frac{1}{137.03599976(50)}\left(\mathrm{a}^{2}=m_{e}^{2}\right) 0.0068 \mathrm{ppm} \text { (atomic physics) } \\
& \mathrm{G}_{\mathrm{F}}=1.16639(1) \times 10^{-5} \mathrm{GeV}^{-2} \text { (muon decay) } 9 \mathrm{ppm} \\
& \sin ^{2} \theta_{\mathrm{W}}=0.23118 \pm 0.0006 \text { (charged neutral current ratio in } v \text { interactio ns) }
\end{aligned}
$$

if we: know: $\alpha, \mathrm{G}_{\mathrm{F}}, \sin ^{2} \theta_{W}$

$$
M_{W}=\left[\frac{\pi \alpha}{\sqrt{2} G_{F}}\right]^{\frac{1}{2}} \frac{1}{\sin \theta_{W}} \approx 78 \mathrm{GeV}
$$

we can predict :

$$
M_{Z}=\frac{M_{W}}{\cos \theta_{W}} \approx 89 \mathrm{GeV}
$$

The search for W / Z bosons

Masses ~ 80-90 GeV.
1980: highest accelerator cms energy $\sqrt{ }$ s, at fixed target (SPS at CERN):

$$
\sqrt{s}=\sqrt{2 m_{N} E} \approx 30 G e V(E=450 \mathrm{GeV})
$$

But if you collide head-on: $\sqrt{s}=2 E \approx 900 \mathrm{GeV}$
Use SPS as proton-antiproton Collider (Rubbia- Van Der Meer)

50\%momentum carried by quarks and
50\% by gluons. Average momentum budget :
$\sqrt{\hat{\mathrm{S}}}=\sqrt{x_{1} s \cdot x_{2} s} \xrightarrow{\text { balanced momenta }} x \sqrt{s} \xrightarrow{x=1 / 6} \frac{900}{6}=150 \mathrm{GeV}$
Annihilate quark and antiquark to produce

W/Z

Fig. 2.9. Parton momentum distribution functions for the proton, $x f(x)$. (From Gen

W-measurement

Angular distribution

$$
\frac{d \sigma}{d \cos \theta} \propto(1-\lambda \cos \theta)^{2} \text { where } \lambda \text { is the helicity of the boson (}-1 \text { in case of } \mathrm{W}^{+} \text {) }
$$

Inclusive cross section for W production

$$
u \bar{d} \rightarrow W^{+}
$$

Rough order of magnitude of cross section: "G" :G has dimension GeV^{-2}

We need a cross section: cm^{2} a length can be expressed in GeV^{-1} :

$$
\sigma\left(u \bar{d} \rightarrow W^{+}\right) \approx(?) G \approx 10^{-5} \mathrm{GeV}^{2} \approx 10^{-33} \mathrm{~cm}^{2}=1 \mathrm{nb}
$$

Better calculation: take into account PDF's, available phase space,... :

$$
\begin{aligned}
& p \bar{p}, \sqrt{s}=630 \mathrm{GeV}, \sigma\left(\mathrm{~W}^{ \pm}\right) \approx 3 \mathrm{nb}(\mathrm{ud}) \\
& p \bar{p}, \sqrt{s}=2 \mathrm{TeV}, \sigma\left(\mathrm{~W}^{ \pm}\right) \approx 20 \mathrm{nb}(\mathrm{ud}) \\
& p p, \sqrt{s}=7 \mathrm{TeV}, \sigma\left(\mathrm{~W}^{+}\right) \approx 56 \mathrm{nb} \\
& p p, \sqrt{s}=7 \mathrm{TeV}, \sigma\left(\mathrm{~W}^{-}\right) \approx 40 \mathrm{nb} \\
& p p, \sqrt{s}=14 \mathrm{TeV}, \sigma\left(W^{ \pm}\right) \approx 150 \mathrm{nb}(u \bar{d}+\bar{d} u)
\end{aligned}
$$

$$
\text { Measure the leptonic decay: } \mathrm{W} \rightarrow \mathrm{e} v
$$ further 0.1 factor (leptonic BR)

Questions:

-How to realize a collider p-pbar

Fig. 12: The measured values of $\sigma_{W} \cdot \mathrm{BR}(W \rightarrow \ell v)$ for W^{+}, W^{-}and for their sum compared to the theoretical predictions based on NNLO QCD calculations (see text). Results are shown for the combined electron-muon results. The predictions are shown for both proton-proton $\left(W^{+}, W^{-}\right.$and their sum) and proton-antiproton colliders (W) as a function of \sqrt{s}. In addition, previous measurements at proton-antiproton and proton-proton colliders are shown. The data points at the various energies are staggered to improve readability. The CDF and D0 measurements are shown for both Tevatron collider energies, $\sqrt{s}=1.8 \mathrm{TeV}$ and $\sqrt{s}=1.96 \mathrm{TeV}$. All data points are displayed with their total uncertainty. The theoretical uncertainties are not shown.
Note that thedifference of crosssections $\mathrm{p} \overline{\mathrm{p}}$ and pp tend to vanish as energy increases
-For a collider the collision rate is :
$R=\sigma L, L \equiv$ luminosity : $\mathrm{cm}^{-2} \mathrm{~s}^{-1} ; \Rightarrow \sigma=10^{-33} \mathrm{~cm}^{2}$ and $R=1 \mathrm{~s}^{-1}$
$\Rightarrow L=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
L depends on the accelerator and is proportional to the numebr colliding particles how to have a sufficient number of antiprotons??

The colliding beams are structured in bunches of particles

$$
L=\frac{n_{a} n_{b}}{4 \pi \sigma_{x} \sigma_{y}} K \cdot f
$$

We introduce also an integrated luminosity:

$$
N=\sigma \int L d t \quad\left(\int L d t: \text { dimension } \mathrm{cm}^{-2}\right)
$$

Ex. $n_{a}=n_{b}=10^{10}$
$K=2$
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=1 \mathrm{~mm}$
$\mathrm{f}=43 \mathrm{KHz}$

The proposed PBAR-P collider

Scheme to trasform a fixed targed accelerator into a collider : C. Rubbia, D.Cline e P. Mac Intyre for the Main Ring of 450 GeV at Fermilab in 1974.

Fig. 5. General layout of the $\mathrm{p} \overline{\mathrm{p}}$ colliding scheme, from Ref. [9]. Protons ($100 \mathrm{GeV} / \mathrm{c}$) are periodically extracted in short bursts and produce $3.5 \mathrm{GeV} / \mathrm{c}$ antiprotons, which are accumulated and cooled in the small stacking ring. Then \bar{p} 's are reinjected in an RF bucket of the main ring and accelerated to top energy. They collide head on against a bunch filled with protons of equal energy and rotating in the opposite direction.

The PBAR-P COLLIDER OF THE CERN SpS

Need to build:
-an antiproton source
-a system to compact the antiprotons both in angle and momentum:
the stochastic cooling
Fig. 1. Overall layout of the pp project.
Linac $50 \mathrm{MeV} \rightarrow$ Booster $800 \mathrm{MeV} \rightarrow$ PS 26 GeV
\rightarrow Target $: \frac{\bar{p}}{p} \approx 10^{-6} \rightarrow$ magnetic lens \rightarrow
$\rightarrow A A+A C\left(\approx 10^{12} \bar{p} /\right.$ day $) \rightarrow$ SpS 315 GeV
Moel et al., Physics Reports 58, No. 2 (1980), p. 73.

Stochastic cooling (Maxwell's demon)

Two pick-up measure the transverse and longitudinal deviation of particles from the ideal orbit. A correction signal (kicker)is applied , in average after an appropriate delay on the orbit of the particles

FIG. 2. Cooling of the horizontal betatron oscillation of a si gle particle.

FIG. 7. Filter cooling.
D. Mohl, Stochastic Cooling for Beginners, CERN 84-15, 1984, p. 97 S.van der Meer, Stochastic Cooling and the Accumulation of Antiprotons, Rew. Mod. Physics, Vol 57,No.3, part1, July 1985.

Integrated luminosity at the SPS collider

Fig. 8. Integrated luminosity of the SPS Collider, from 1982 (first year of routine operation) to 1990 (last full operation). 1980 was the year of AA running-in, 1981 of Collider and detector tests. The luminosity integrated over 1982 and 1983 appears tiny, but sufficed to detect the W and Z and bring the Nobel prize 1984 to CERN. The break in 1986 was due to the repair of UA1 and the beginning of AC installation. AC running-in was completed in 1987, with only a short Collider run at the end of the year. From 1988 onwards, the effect of the AC and the improvements made to the SPS came to bear.

SPSC Collider story

Year	Collision Energy (GeV)	Peak luminosity $\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$	Integrated luminosity $\left(\mathrm{cm}^{-2}\right)$
1981	546	$\sim 10^{27}$	2.0×10^{32}
1982	546	5×10^{28}	$2.8 \times 10^{34} \quad$

1991: END OPERATIONS

Two detectors at the SpSC to measure W / Z

Measure the leptonic decays of

$$
W \rightarrow e v_{e}, \mu v_{\mu}, Z \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}
$$

UA1, calorimeters and central dipolar magnetic field + muon detection

UA2, calorimeters, no central magnetic field
Calorimeter with projective towers

e 122B, number 5,6

PHYSICS LETTER
17 Marc

The detector UA1

(in the figure the two halves of the dipolar magnet are open)

Electromagnetic calorimeters to measure electrons and spectrometer for muons

Calorimeter:Typical energy resolution (at that time) of an electromagnetic calorimeter: (UA2)

$$
\frac{\Delta E}{E}=\frac{0,15}{\sqrt{E(G e V)}}=1,5 \% \text { at } E=100 \operatorname{GeV}\left(A T L A S: \frac{\Delta E}{E}=\frac{0,10}{\sqrt{E(G e V)}}\right)
$$

Magnetic spectrometer

$$
\frac{\Delta p}{p}=\frac{\Delta E}{E}=10^{-3} E(\mathrm{GeV}) \text { at } E=100 \mathrm{GeV}, \frac{\Delta E}{E}=10 \%
$$

Measurements in UA1

Fig. 8 b . The schematic functions of each of the elementary solid-angle elements constituting the detector structure.

Neutrino transverse energy

CONSTRUCTION OF ENERGY VECTORS

Momentum balance is possible only for tranverse component: in fact a large fraction of the longitudinal momentum is lost (with large fluctuations) in the vacuum tube of the beams.

More complete (4π, hermetic) and accurate is the calorimeter coverage,better is the measurement of the missing transverse momentum.

Momentum conservation $\rightarrow \Sigma_{i} \vec{E}_{i}=0$
(ideal detector)

$$
\vec{E}_{t, v}=-\sum \vec{E}_{t, c e l l s(i)}
$$

$$
\sum\left|\vec{E}_{t, i}\right| \equiv H_{t}=^{\prime \prime} \text { event temperature" }
$$

First W's mesured in UA1

Missing transverse energy
Six events with a large electron \mathbf{p}_{T} electron balanced by large missing \mathbf{p}_{T} consistent with $\mathrm{W} \rightarrow$ en decays
(CERN seminar 20 January , 1983)

EVENT 2958.1279.

UA2: result presented at CERN on January 1983

Six events with an electron with $\mathrm{p}_{\mathrm{T}}>15 \mathrm{GeV}$

UA2 first and second generation

Fig. 1. The UA2 detector: Schematic cross section in the vertical plane containing the beam.

Scintillating fibres

Drift chamber vertex chamber

Particle segnature in UA2

Fig. 1 Particle Identification with the Central Detector

How can we measure W and Z ?

Easy for Z's: leptonic channels:

$$
\left.Z \rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-} \text {(B.R. } \sim 3.3 \%\right)
$$

\Rightarrow Both particles from the decay can be measured
\Rightarrow and the invariant mass can be calculated

Leptonic decay channels of W(B.R. 11\%) $W^{-} \rightarrow e^{-} \bar{v}_{e}, \mu^{-} \bar{\nu}_{\mu}, \tau^{-} \bar{v}_{\tau}$
Only the charged lepton is directely measured,, of the neutrino, is only measured the Trasverse momentum as missing momentum.

The annichilation process

$$
\hat{p}^{2} T=\frac{\hat{s} \cdot \sin ^{2} \hat{\theta}}{4}
$$

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \cos \theta}=K(1+\cos \hat{\theta})^{2}(\text { note }: \text { it is null at } \theta=\pi, \text { helicity })
$$

$$
\cos \hat{\theta}=\left(1-\frac{4 p_{T}^{2}}{\hat{s}}\right)^{1 / 2} \Rightarrow \frac{d \cos \hat{\theta}}{d \hat{p}_{T}^{2}}=-\frac{2}{\hat{s}}\left[1-\frac{4 \hat{p}_{T}^{2}}{\hat{s}}\right]^{-1 / 2}=\frac{-2}{\hat{s} \cos \hat{\theta}} \Rightarrow \frac{d \sigma}{d \hat{p}_{T}^{2}}=K \frac{\left(1+\cos ^{2} \hat{\theta}\right)}{\cos \hat{\theta}}
$$

Note: the linear term in $\cos \theta$ vanish: opposite contribute at θ and $(\pi-\theta)$ but the same p_{T}

$$
\begin{array}{ll}
\frac{d \sigma}{d \hat{p}_{T}^{2}}=K \frac{\left(1-2 \hat{p}_{T}^{2} / \hat{s}\right)}{\left(1-4 \hat{p}_{T}^{2} / \hat{s}\right)^{1 / 2}} \\
\text { diverges at } \hat{\theta}=\frac{\pi}{2} \text {, or } \hat{p}_{T}=\frac{\sqrt{\hat{s}}}{2} \sim M_{W} / 2
\end{array} \overbrace{\text { Iacobian peak }} \hat{p}_{T}
$$

The Iacobian peak

N.B. $\hat{p}_{T}=p_{T}^{\text {lab }}$ In the lab divergence "diluited" by the fact that $\frac{d \sigma}{d \hat{p}_{T}^{2}}$ must be convoluted with the resonance shape (BW) which depends on $\widehat{\boldsymbol{s}}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{~s}$, moreover $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{W}}$ is not null + experimental effects(resolution).

Iacobian peak
The position of the Iacobian peak provides also the W-mass

The tranverse mass

Define: $\quad m_{T}^{2}(e, v)=\left[\left|\vec{p}_{T}^{e}\right|+\left|\overrightarrow{\mid}_{T}^{v}\right|\right]^{2}-\left(\vec{p}_{T}^{e}+\vec{p}_{T}^{v}\right)^{2}=2 \mid \vec{p}_{T}^{e} \| \overrightarrow{\mid}_{T}^{v}\left(1-\cos \phi_{e v}\right)$

$$
0 \leq m_{T} \leq M_{W} ; \text { se } p_{T}^{W}=0, \vec{p}_{T}^{e}=-\vec{p}_{T}^{v} \Rightarrow m_{T}=2\left|\vec{p}_{T}^{e}\right|=2\left|\vec{p}_{T}^{v}\right|
$$

The m_{T} distribution is less sensitive than that in $\mathrm{p}_{\mathrm{Te}}, \mathrm{p}_{\mathrm{Tv}}$, to the trasverse motion of \mathbf{W} you have corrections $\propto \beta_{T W}^{2}$ not to $\beta_{T W}$

Similarly with the distribution in p_{Te}

$$
\frac{d \sigma}{d m_{T}^{2}}=\frac{\left|V_{q q}\right|^{2}}{4 \pi}\left[\frac{G M_{W}^{2}}{\sqrt{2}}\right]^{2} \frac{1}{\left(\hat{s}-M_{W}^{2}\right)+\left(\Gamma_{W} M_{W}\right)^{2}} \frac{2-m_{T}^{2} / \hat{s}}{\left(1-m_{T}^{2} / \hat{s}\right)^{1 / 2}}
$$

Iacobian peak at $\quad \hat{s}=M_{W}^{2} \sim m_{T}^{2}$

The UA1 Iacobian Peak

$$
M_{W}=80.9 \pm 1.5 \mathrm{GeV}
$$

$P D G: \mathrm{M}_{\mathrm{w}}=80.398 \pm 0.025 \mathrm{GeV}$,
$\Gamma_{W}=2.141 \pm 0.041 \mathrm{GeV}$

$\underline{\text { UA1 : observation of } Z \rightarrow e^{+} e^{-}}$

(May 1983)

Two localized deposits of energy in the electromagnetic calorimeter (electrons or photons)

Isolated charged tracks with $\mathbf{p}_{\mathrm{T}}>7 \mathrm{GeV}$ At least one should point to the electromagnetic cluster

Both tracks with $\mathbf{p}_{\mathrm{T}}>7 \mathrm{GeV}$ Point to an electromagnetic cluster

Uncorrected invariant mass cluster pair ($\mathrm{GeV} / \mathrm{c}^{2}$)

UA1 $\mathrm{Z} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$event

Event with all tracks and Electromagnetic deposits

Require tracks with $\mathbf{p}_{\mathbf{T}}>\mathbf{2} \mathbf{G e V}$

UA2: observation of $\mathbf{Z} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-}$

June 1983)

Two localized electromagnetic clusters with $p_{T}>25 \mathrm{GeV}$ (electrons or photons)

Require at least a charged track pointing to the elctromagnetic cluster

5m Track identified as an isolated electron pointing to both energy clusters

$$
m_{\mathrm{Z}}=91.9 \pm \underset{\text { (stat) }}{1.3 \pm} \underset{\text { (syst) }}{1.4 \mathrm{GeV}}
$$

The discovery of $W e Z$

The Nobel Prize in Physics 1984

"for their decisive contributions to the large project, which led to the discovery of the field particles 'iff and Z, communicators of weak interaction"

Carlo Rubbia
(1) $1 / 2$ orthe prite
lably
CERN
Getela, Syitrerland
b. 1934

Simon van der Meer
(1) 12 orthe prite
the Netherlands
cern
Genera, Syltrerand
b. 1925

"for their decisive contributions to the large project, which led to the discovery of the field particles W and Z , communicators of the weak interaction"

UA2 final results of the W mass $\left(13 \mathrm{pb}^{-1}\right)$

	$m_{W}(\mathrm{GeV})$	$\Gamma_{W}(\mathrm{GeV})$
m_{T}	80.84 ± 0.22	2.1 (fixed $)$
fit	80.83 ± 0.23	2.2 ± 0.4
p_{T}^{e}	80.86 ± 0.29	2.1 (fixed)
fit	80.79 ± 0.30	2.8 ± 0.6
p_{T}^{ν}	80.73 ± 0.32	2.1 (fixed)
fit	80.70 ± 0.34	2.3 ± 0.7

$$
m_{W} / m_{Z}=0.8813 \pm 0.0036(\text { stat }) \pm 0.0019(\text { syst })
$$

Re scaled with M_{Z} mesured at LEP (to divide out the energy scale error)

$$
M_{Z}=91.195 \pm 0.021 \mathrm{GeV}:
$$

$$
m_{W}=80.35 \pm 0.33 \text { (stat) } \pm 0.17 \text { (syst) } \mathrm{GeV}
$$

$$
\sin ^{2} \theta_{W} \equiv 1-m_{W}^{2} / m_{Z}^{2}
$$

$$
\sin ^{2} \theta_{W}=0.2234 \pm 0.0064 \pm 0.0033
$$

Figure 4: Fits for m_{W} to (a) the m_{T} spectrum, (b) the p_{T}^{e} spectrum and (c) the p_{T}^{ν} spectrum. The points show the data, while the curves show the fit results with the solid portions indicating the ranges over which the fits are performed.

UA2 final results Z mass (13 pb^{-1})

Fit max likelihood with relativistic BW convoluted with the resolution σ e and weighted with the partonic luminosity $e^{-\beta m}$

$$
\text { Input }: \mathrm{m}_{\mathrm{ee}}, \sigma \text {, output }: \mathrm{m}_{\mathrm{Z}}, \Gamma_{\mathrm{Z}}
$$

Probability density function:

	$m_{Z}(\mathrm{GeV})$	$\Gamma_{Z}(\mathrm{GeV})$
central	91.65 ± 0.34	2.5 (fixed)
sample	91.67 ± 0.37	3.2 ± 0.8
p_{T}-constrained	92.10 ± 0.48	2.5 (fixed)
sample	92.15 ± 0.52	$3.8 \pm 12($ sys $) \pm 0.92$ (scal

QCD background <1\%
$P D G: M_{Z}=91.1896 \pm 0.0021 \mathrm{GeV}$,
$\Gamma_{Z}=2.4952 \pm 0.0023 \mathrm{GeV}$
igure 1: Fits for m_{Z} to (a) the central sample and (b) the pt-constrained sample. 'he curves show the fits, while the histograms show the data.

W/Z at LHC

Why it is important to measure precisely M_{W}

In the Standard Model the relationship between fundamental contants

$$
\begin{gathered}
g_{W}^{2}=\frac{e^{2}}{\sin ^{2} \theta_{W}} ; g_{W}^{2} / 4 \pi=\frac{\alpha}{\sin ^{2} \theta_{W}} ; \\
\frac{G}{\sqrt{2}}=\frac{g_{W}^{2}}{8 M_{W}^{2}} ; M_{W}=\sqrt{\frac{\pi \alpha}{\sqrt{2} G \sin ^{2} \theta_{W}}} \\
g_{Z}^{2}=\frac{e^{2}}{\sin ^{2} \theta_{W} \cos ^{2} \theta_{W}} ; g_{Z}^{2} / 4 \pi=\frac{\alpha}{\sin ^{2} \theta_{W} \cos ^{2} \theta_{W}} ; \\
M_{W}=M_{Z} \cos \theta_{W}
\end{gathered}
$$

Only 3 parameter are independent, ex:

$$
\begin{aligned}
& \alpha,\left[\frac{\Delta \alpha}{\alpha}\right]=0.0007 \cdot 10^{-6}\left(\mathrm{a} \mathrm{Q}^{2}=0\right) \text { dai livelli atomici; } \\
& \left.\mathrm{G},\left[\frac{\Delta \mathrm{G}}{\mathrm{G}}\right]=9 \cdot 10^{-6} \text { (from the decay } \mu \rightarrow \mathrm{e} v v\right) ; \\
& \mathrm{M}_{\mathrm{W}},\left[\frac{\Delta M_{W}}{M_{W}}\right]=360 \cdot 10^{-6} ; \sin ^{2} \theta_{W},\left[\frac{\Delta \sin ^{2} \theta_{\mathrm{W}}}{\sin ^{2} \theta_{W}}\right]=650 \cdot 10^{-6}
\end{aligned}
$$

But relations at tree level are modified by radiative corrections:

$$
\begin{aligned}
& d a: M_{W}^{2}=\frac{\pi \alpha}{G \sin ^{2} \theta_{W} \sqrt{2}} \rightarrow \sin ^{2} \theta_{W} \cos ^{2} \theta_{W}=\left(1-\frac{M_{W}^{2}}{M_{Z}^{2}}\right) \frac{M_{W}^{2}}{M_{Z}^{2}}=\frac{\pi \alpha\left(M_{Z}\right)}{\sqrt{2} G M_{Z}^{2}(1-\Delta r)} \\
& \Delta r \sim \Delta \alpha+\frac{G}{8 \sqrt{2} \pi^{2}}\left(-3 \cot ^{2} \theta_{W} m_{t}^{2}+\frac{11}{3} M_{W}^{2} \ln \frac{M_{H}^{2}}{M_{W}^{2}}+\ldots \quad \Delta \alpha \cong 1-\frac{\alpha}{\alpha\left(M_{Z}^{2}\right)} \approx 0.06\right.
\end{aligned}
$$

Corrections to M_{W} come from loops with t-quark and Higgs and then they are sensitive to

Higgs mass from top and W masses (prior to the Higgs discovery)

A displacement of

 5 GeV of the top mass \Rightarrow 22 MeV displacement of M_{W} (positive)

A displacement of 100 To 1000 GeV of the Higgs mass \Rightarrow 130 MeV displacement of M_{W} (negative)

Figure 10.3: One-standard-deviation (39.35\%) region in M_{W} as a function of m_{t} for the direct and indirect data, and the 90% CL region $\left(\Delta \chi^{2}=4.605\right)$ allowed by all data. The SM prediction as a function of M_{H} is also indicated. The widths of the M_{H} bands reflect the theoretical uncertainty from $\alpha\left(M_{Z}\right)$.
M_{W} vs $\mathrm{M}_{\text {top }}$ provides predictions on the Higgs mass:
Low Higgs masses favoured.

The Higgs mechanism to provide mass to particles

see the Marumi Kado lecture

Based on the vacuum expectation value of a field (the Higgs) different than zero

With the Higgs discovery everything is understood?

Higgs field and energy of the vacuum

Minimum of V :

$$
\begin{aligned}
& V(\phi)=\mu^{2} \phi^{+} \phi+\lambda\left(\phi^{+} \phi\right)^{2} \\
& \frac{\partial V}{\partial\left(\phi^{+} \phi\right)}=0 \Rightarrow \mu^{2}+2 \lambda\left(\phi^{+} \phi\right)=0 \Rightarrow \\
& \Rightarrow \text { min imum if } \mu^{2}<0 \text { at } \phi^{+} \phi=-\frac{\mu^{2}}{2 \lambda}=\frac{v^{2}}{2}
\end{aligned}
$$

The value of the potential at minimum is then: $V_{0}=-\frac{\lambda v^{4}}{2}$ with

$$
v=\frac{\sqrt{2} M_{W}}{g_{W}} \sim 174 \mathrm{GeV} \Rightarrow \mathrm{~V}_{0} \sim 2 \cdot 10^{9} \lambda \mathrm{GeV}^{4}
$$

$$
\approx \frac{1 p}{m^{3}} \text { the total one (dark matter and energy) }
$$

Density of visible matter in the universe: $\quad \approx 100$ the visible one:

$$
1 \mathrm{GeV}^{-1}=0.2 \cdot 10^{-13} \mathrm{~cm} \Rightarrow 1 \mathrm{GeV}^{3}=1.3 \cdot 10^{41} \mathrm{~cm}^{-3}
$$

$$
\text { If } \lambda \sim 1 \text { energy of the Higgs field: }
$$

$$
\begin{aligned}
& \text { total energy density } \approx 10^{-4} \frac{\mathrm{GeV}}{\mathrm{~cm}^{3}} \\
& \lambda=2 m_{H}^{2} / v^{2}, \\
& m_{H}=125 \mathrm{GeV}, v=174 \mathrm{GeV}\left(\text { from }_{F}\right) \\
& \Rightarrow \lambda \approx 1
\end{aligned}
$$

$V_{0} \sim 2.6 \cdot 10^{50} \mathrm{GeV} / \mathrm{cm}^{3}$
Of course we can

54 orders of magnitude larger than that observed add a constant term to cancel V_{0} but this term is to be calibrated $1 / 100^{54}$!!!

From AA to Z

(seminar of C. Rubbia at CERN, 1983)
From Z/W to Higgs (2012)
From Higgs to ???

Still a lot of work (theory and experiments) to be done: your future job, good luck!

Back up slides

Range of elementary forces

We can parametrize the process saying that A emits X

$$
\begin{aligned}
& A\left(M_{A}, \overrightarrow{0}\right) \rightarrow A\left(E_{A}, \vec{p}\right)+X\left(E_{X},-\vec{p}\right) \\
& \text { with } E_{A}=\sqrt{M_{A}^{2}+p^{2}}, E_{X}=\sqrt{M_{X}^{2}+p^{2}}
\end{aligned}
$$

The final-initial energy $\Delta \mathrm{E}$ can be written as:

$$
\Delta E=E_{X}+E_{A}-M_{A}=\sqrt{M_{X}^{2}+p^{2}}+\sqrt{M_{A}^{2}+p^{2}}-M_{A}>M_{X}
$$

Therefore from the uncertainty principle the process can occur in a time τ :

$$
\tau \approx \frac{\hbar}{\Delta E} \leq \frac{\hbar}{M_{X}}
$$

The maximum propagation distance of the particje X, R, can be:

$$
R=c \cdot \tau \leq \frac{\hbar c}{M_{X}} \text { (range) }
$$

If $\mathrm{M}_{\mathrm{X}}=0$ the photon) $\mathrm{R} \longrightarrow \infty$, but also $\Delta \mathrm{E} \longrightarrow 0$ and $\tau \longrightarrow \infty$:
The virtuality time goes to infinity: the photon is real
In the case of the weak interactions $\mathrm{M}_{\mathrm{X}}=\mathrm{M}_{\mathrm{Z}}=90 \mathrm{GeV}$.:

$$
R \leq \frac{\hbar c}{M_{Z}}=\frac{0.197 \cdot G e V \cdot f m}{M_{Z}} \sim 2 \cdot 10^{-3} \mathrm{fm}
$$

If the momentum of the particle, p, of particle A (or B) e' is such as the De Broglie wave length $\lambda_{\mathrm{B}} \gg \mathrm{R}$, we can approximate as a "contact interaction" (Fermi theory):

Questions

-Why you don't need a proton cooling (LHC)?
-it is convenient to measure
$Z \rightarrow e^{+} e^{-}$,
measuring electrons with a spectromet er or a calorimete r?

