# Top Quark Physics (part 1)

S. Tokár, Comenius Univ., Bratislava HASCO Summer School, Goettingen 2012



25-Jul-12

### Topics in This Talk

- > Motivation for top physics
- Top production cross section
- Top quark mass (constraint on Higgs mass)
- Single top production (top partial width, V<sub>tb</sub>, spin effects...)
- Forward-backward/charge asymmetry in tt-bar
- > Top spin effects (Top-antitop spin correlations)
- > FCNC in tt-bar production

# Top quark -heaviest SM elem. particle

Top quark: discovered at Fermilab (CDF + D0) in 1995
 Completed the 3<sup>rd</sup> generation of SM fermions

| leptons                      | Q  | T <sub>3</sub> | quarks | Q    | T <sub>3</sub> |
|------------------------------|----|----------------|--------|------|----------------|
| $\nu_e$ $\nu_\mu$ $\nu_\tau$ | 0  | 1/2            | u c(t) | 2/3  | 1/2            |
| <b>ε</b> μτ                  | -1 | -1/2           | dsb    | -1/3 | -1/2           |

SM fundamental fermions,  $Q \equiv$  electric charge, T $3 \equiv 3^{rd}$  comp. of weak isospin

Top quark mass (m<sub>top</sub>): 173.5 ±0.6± 0.8 GeV (35×m<sub>b</sub>)
 Main object of study at Fermilab

✓ final sample  $10fb^{-1} \Rightarrow 70\ 000\ t\overline{t}$ -pair produced

□ A very important object of study for LHC -

✓ Top factory:  $\approx$  1.5 M,  $\approx$ 10M tt-bar per 10 fb<sup>-1</sup> for 7 and 14 TeV, resp.

# Top quark physics: Motivation

 $\Box$  Very high mass: near EWSB scale  $\eta$ Top Youkawa coupling  $\lambda_{t} = \sqrt{2m_{top}}/\eta \approx 1$ tt-bar production X-sections: test of QCD  $\rightarrow$  to is produced at very small distances 1/m<sub>t</sub>  $\Rightarrow$  $\alpha_s(m_{top}) \approx 0.1$ : pert. expansion converges rapidly Top decays before hadronization  $< 1/\Gamma_t < 1/\Lambda$  $m_t/\Lambda^2$ 1/m<sub>t</sub> < Production time < < Hadronization time < Spin decorrelation time Lifetime study of spin characteristics (test of V-A)  $\rightarrow$ **Cross sections sensitive to new physics**  $\rightarrow$  resonat production of  $^{\dagger\dagger}$ , decay:  $^{\phantom{\dagger}} \rightarrow$  Hb Important background for Higgs studies



 $\eta = 246 \text{ GeV}$  $\Lambda \approx 250 \text{ MeV}$ 

# **Top Quark Production**

LHC  $\int s = 7-14$  TeV vs Tevatron  $\int s = 1.96$  TeV Strong t  $\overline{t}$  pair production EW single top quark production



**Tevatron:** X-sec  $\approx$  7 pb (5%) X-sec  $\approx$  3 pb (t + t-bar)

LHC /7TeV: ≈ 165 pb /8TeV: ≈ 230 pb ε≤5% /14TeV: ≈ 870 pb ≈ 85 pb

≈ 320 pb

25-Jul-12

S. Tokar, top quark physics, HASCO 2012

# Top Quark Decay



### Cross Section of Top Quark production

### t T Production Cross Section

Top quark X-section: Experiment vs Theory

Factorization theorem:

$$(\hat{\sigma}) = \sum_{i,j} \int dx_1 dx_2 F_i^{(1)}(x_1, \mu_F) F_j^{(2)}(x_2, \mu_F) (\hat{\sigma}_{ij}(s; \mu_F, \mu_R))$$

Parton Distribution Functions (PDFs)

 $F_i^{(\lambda)}(x_{\lambda}, \mu_F) \equiv \text{probability density to observe a parton } i$  with longitudinal momentum fraction  $x_{\lambda}$  in incoming hadron  $\lambda$ , when probed at a scale  $\mu_F$ 

 $\mu_F \equiv$  factorization scale (a free parameter) - it determines the proton structure if probed (by virtual photon or gluon) with  $q^2 = -\mu_F^2$ 

Usual choice:  $\mu_F = \mu_R = \mu \in (m_t/2, 2m_t)$ 



theory

25-Jul-12

experiment

### t t Production Cross Section

The LO top quark pairs cross section (Born term):

$$d\hat{\sigma} = \frac{1}{2(p_1 + p_2)^2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} \delta(p_1 + p_2 - p_3 - p_4) \overline{|M|^2}$$

Quark -antiquark annihilation

$$\overline{|M|^{2}}(q\overline{q} \rightarrow t\overline{t}) = (4\pi\alpha_{s})^{2} \frac{8}{9} \left(2 \frac{(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{2}} + \frac{m_{t}^{2}}{(p_{1} + p_{2})^{2}}\right)$$
  
Gluon fusion
$$\overline{|M|^{2}}(q\overline{q} \rightarrow t\overline{t}) = (4\pi\alpha_{s})^{2} \left(\frac{(p_{1} + p_{2})^{4}}{(p_{1} + p_{2})^{4}} - \frac{8}{9}\right)$$
Averaged over initial and summed over final color and spin state
$$\overline{|M|^{2}}(gg \rightarrow t\overline{t}) = (4\pi\alpha_{s})^{2} \left(\frac{(p_{1} + p_{2})^{4}}{(24(p_{1} \cdot p_{3})(p_{2} \cdot p_{3})} - \frac{8}{9}\right)$$

$$\times \left(4 \frac{(p_{1} \cdot p_{3})^{2} + (p_{2} \cdot p_{3})^{2}}{(p_{1} \cdot p_{2})^{4}} + \frac{4m_{t}^{2}}{(p_{1} + p_{2})^{2}} - \frac{m_{t}^{4}(p_{1} + p_{2})^{4}}{(p_{1} \cdot p_{3})^{2}(p_{2} \cdot p_{3})^{2}}\right)$$
Experiment:
LO tt-bar Xsec is not sufficient!
Higher orders are needed
$$25-JU-12$$
S. Tokar, top quark physics, HASCO 2012

### t T Production Cross Section

Theory for top X-section is at NNLO:

Xsec is expanded into series of strong coupling constant:

$$\sigma_{ij}\left(\beta,\frac{\mu^{2}}{m^{2}}\right) = \frac{\alpha_{s}^{2}}{m^{2}}\left\{\sigma_{ij}^{(0)} + \alpha_{s}\left[\sigma_{ij}^{(1)} + L\sigma_{ij}^{(1,1)}\right] + \alpha_{s}^{2}\left[\sigma_{ij}^{(2)} + L\sigma_{ij}^{(2,1)} + L^{2}\sigma_{ij}^{(2,2)}\right] + O\left(\alpha_{s}^{3}\right)\right\}$$
  

$$LO \sim \alpha_{s}^{2}, \quad NLO \sim \alpha_{s}^{3}, \quad NNLO \sim \alpha_{s}^{4} \cdots \beta = \sqrt{1 - 4m^{2}/s} \quad L \equiv \text{big log term}$$

#### NLO: virtual and real corrections are added to LO

Virtual corrections:



Taking  $|A+B|^2 = ... + AB^* + ..., AB^* \sim \alpha_s^3$ 

Real corrections – with real gluons (~  $\alpha_s^3$ ):



### A few top Cross Section issues

Higher order real and virtual corrections exhibit IR and UV divergences:

Example:  

$$q$$
 $\overline{q}$ 
 $\overline{q}$ 
 $\overline{t}$ 
 $propagator = \frac{1}{\left(p+k\right)^2} = \frac{1}{2E_pE_k} \cdot \frac{1}{1-\beta_p\cos\theta}, \quad \beta_p = \sqrt{1-m^2/E_p^2}$ 

✓ IR singularity:  $E_k \rightarrow 0$  and  $1 - \beta_p \cos \theta \rightarrow 0 \Rightarrow$  cancelled when Xsec of virtual and real emission are summed also mass singularities are cancelled  $\Rightarrow$ Cancelation is not full  $\Rightarrow$  presence of big logs (L) in Xsec terms !

✓ UV singularities in loops ( ) are handled by renormalization.



In real we observe  $t\overline{t}$  decay products not  $t\overline{t}$ Factorization is used based on the narrow width approximation:

 $\checkmark$  polarized top quarks are produced on mass shell ✓ polarized on-shell top quarks decay Narrow width app. vs direct  $pp \rightarrow WWbb$ :

For LHC 7TeV/DIL: Xsec(fb) 837 vs 841 also done for 14 and 1.96TeV

# Top cross section - measurement

Selection criteria: trigger + offline selection  $\Rightarrow$  candidate events  $\Box$  Depend on the analysed channel:  $t\overline{t}$  production

- lepton+jets (LJ), dilepton (DL) and all hadronic mode (AH)
- $l_{v2b2j}$   $2(l_{v})2b$  2b4j all: +1j, 2j...
- LJ: single lepton high- $p_T(E_T)$  trigger applied + Reconstructed level:
  - ✓ 1 high- $p_T$  lepton + ≥4high- $p_T$  jets (1-2b-tagged) + high  $E_T$
  - ✓ Restricted on pseudo-rapidity,  $p_T(E_T) > 20 \text{ GeV } E_T > 20 \text{ GeV}$
- What are selection criteria for DL and AH?

 $\Box$  Background processes - non  $t\overline{t}$  events also pass Selection criteria:

- Bascic bkgd processes for LJ channel:
  - ✓ W+jets, Z+jets, diboson, single top quark, QCD multijets
- Bkgd processes: studied using MC + data driven techniques

 $N_{obs}(N_{bkg}) \equiv observed (expected bkgd)$  events A = acceptance,  $\varepsilon \equiv trigger$  efficiency, L= luminosity

 $\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{A \cdot \varepsilon \int L dt}$ 

# Theory (NNLO) vs Experiment

|                | Tevatron                                 | LHC 8GeV                                  |   |            |
|----------------|------------------------------------------|-------------------------------------------|---|------------|
| TOPIXS 1.0     | $7.00^{+0.21}_{-0.31}{}^{+0.29}_{-0.25}$ | $229.8^{+16.5}_{-16.7}{}^{+9.7}_{-9.0}$   |   |            |
| top++ 1.3      | $7.00^{+0.20}_{-0.31}{}^{+0.29}_{-0.24}$ | $230.2^{+15.3}_{-15.2}^{+9.8}_{-9.0}$     |   |            |
| HATHOR         | $7.07^{+0.31}_{-0.40}{}^{+0.29}_{-0.24}$ | $246.8^{+13.4}_{-17.7}{}^{+10.8}_{-9.9}$  | - | theory     |
| TopNNLO        | $6.59^{+0.07}_{-0.41}{}^{+0.63}_{-0.41}$ | $220.0^{+11.7}_{-11.8}{}^{+19.0}_{-18.5}$ |   |            |
| Kidonakis 2010 | $7.08^{+0.00}_{-0.24}{}^{+0.00}_{-0.27}$ |                                           |   |            |
| D0 2011        | 7.56 <sup>+0.63</sup> <sub>-0.56</sub>   |                                           |   |            |
| CDF 2009       | $7.50_{-0.48}^{+0.48}$                   |                                           | - | experiment |
| CMS 2012       |                                          | $227^{+15}_{-15}$                         |   |            |

Theory: Tevatron  $\approx 5\%$ , experiment: CDF  $\approx 6.4\%$ , CDF+D0  $\approx 5.5\%$ LHC  $\approx 4\%$  CMS  $\approx 6.3\%$ Events: CDF: 1 200 vs CMS: 7 000

# Tevatron (2TeV): Top pair cross sections

#### **CDF** combination



#### Main uncertainties

- ✓ JES for all
- ✓ b-tagging for SVX analysis
- ✓ Generator for all

#### DØ Run II July 2011 lepton+jets + dileptons (PLB) **7.40** +0.19 +0.57 -0.19 -0.50 pb 5.4 fb<sup>-1</sup> lepton+jets (topo + b-tagged, PRD) **7.65** +0.25 +0.75 -0.25 -0.57 pb 5 3 fb<sup>-1</sup> dileptons (topo + b-tagged, PLB) **7.27** <sup>+0.45</sup> <sup>+0.76</sup> <sub>-0.45</sub> <sup>-0.63</sup> HOH pb $5.4 \text{ fb}^{-1}$ lepton+track (b-tagged)\* 5.0 +1.6 +0.9 ±0.3 pb 1.0 fb<sup>-1</sup> tau+lepton (b-tagged)\* 7.32 <sup>+1.34</sup> <sup>+1.20</sup> <sub>-1.24</sub> <sup>+0.45</sup> pb ----2.2 fb<sup>-1</sup> tau+jets (b-tagged, PRD) 6.30 <sup>+1.15 +0.72</sup><sub>-1 09-0 67</sub> ±0.40 pb $1.0 \, \text{fb}^{-1}$ alliets (b-tagged, PRD) 6.9 <sup>+1.3</sup> <sup>+1.4</sup> <sub>-1.3</sub> <sub>-1.4</sub> ±0.4 pb 1.0 fb<sup>-1</sup> (stat) (syst) (lumi) M. Cacciari et al., JHEP 0809, 127 (2008) m<sub>top</sub> = 175 GeV N. Kidonakis and R. Vogt, PRD 78, 074005 (2008) CTEQ6.6M S. Moch and P. Uwer, PRD 78, 034003 (2008) 2 0 6 8 10 12 \* = preliminary red = 2011 result $\sigma (p\bar{p} \rightarrow t\bar{t} + X)$ [pb] blue = 2010 results

All channels are compatible
 Exper. error ≈ theo. Error
 Full NNLO needed!

# LHC ttbar cross section measurement

#### Atlas, $\sqrt{s}=7$ TeV



- ✓ A good agreement with theory
- ✓ Statistical error plays no role ...



#### **Top Quark Mass Reconstruction**

### Top mass and EW precision physics

#### Masses of top, W and Higgs are bounded by

$$M_W^2 \left( 1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \left( 1 + \Delta r \right), \quad \Delta r = \Delta \alpha + \frac{S_W}{C_W} \Delta \rho + \left( \Delta r \right)_{nl}$$

From rad. Corrections to W-boson propagator (any process, e.g.  $\mu^- \rightarrow v_{\mu} W^- \rightarrow v_{\mu} e^- \overline{v_e}$ ):



Precise  $M_W$  and  $m_t \Rightarrow$  constraint on  $M_H$ !  $\checkmark$  LHC can improve:  $\Delta m_{+}$  and  $\Delta M_{W}$ ✓ Stringent consistency test of SM



W

# ...an another Higgs restriction plot



### How to measure top mass?

Top quark mass can be reconstructed in all  $t\overline{t}$  topologies (LJ, DL AH) Best results usually in lepton + jets topology

Different approaches are used - usually:

- ✓ Template methods different variants
- ✓ Matrix element methods use dependence of top pair production Xsec on top quark mass.
- $\checkmark$  Any variable correlated with top quark mass can be used for determination of top mass e.g. mean lepton  $p_{T}$  (LJ, DL)
- To retrieve top mass usully event kinematic should be reconstructed

# Top quark mass template method

Basic idea of template method - L+jets topology :

- $\checkmark$  to find invariant mass of top decay products:  $t \rightarrow bq\overline{q}, \overline{t} \rightarrow \overline{b}l\nu, t \leftrightarrow \overline{t}$
- ✓ Using reconstructed objects of candidate events a kinematic fitter is used to find 4-momenta of top decays products.
- ✓ Kinematic fitter minimizes  $\chi^2$  function, e.g.:

$$\chi^{2} = \sum_{i=l,4\,jets} \frac{\left(p_{T}^{i,fit} - p_{T}^{i,meas}\right)^{2}}{\sigma_{i}^{2}} + \sum_{j=1,2} \frac{\left(U_{j}^{fit} - U_{j}^{meas}\right)^{2}}{\sigma_{j}^{2}} + \frac{\left(M_{jj} - M_{W}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(M_{lv} - M_{W}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(M_{bjj} - m_{t}^{rec}\right)^{2}}{\Gamma_{t}^{2}} + \frac{\left(M_{blv} - m_{t}^{rec}\right)^{2}}{\Gamma_{t}^{2}}$$

Problem: for candidate event we can have several event configurations - connected with different assignments of jets to quarks - without btagging: 12 configurations per a LJ event (and for 1 or 2-btags?)

 $\checkmark\,$  The  $\chi^2$  fit is applied to all the event configurations

✓ KF gives for each event comb.  $m_t^{rec}$  and  $\chi^2$  - correct  $m_t^{rec}$  ⇔ minimal  $\chi^2$ 

Using MC for a given input top mass - expected rec. mass distribution (template) can be found - data mass distr. is compared with mass templates

## Top mass in DIL chanel: templates

✓ Top quark mass measured in dilepton channel using a template method.

✓ Due to 2 neutrinos  $M_{top}$  reconstruction from dilepton events is underconstrained  $\Rightarrow P_z^{t\bar{t}}$  fixed to solve event kinematics

✓The sample is separated into b-tagged and non-tagged samples.





For each event  $M_{top}^r$  reconstructed assum.:

$$M_{W^{\pm}} = 80.4 \,\text{GeV/c}^2, M_t = M_{\overline{t}} \text{ and } p_z^t + p_z^{\overline{t}} = 0$$

 $M_{top} = 169.7^{+5.2}_{-4.9}$  (stat.)  $\pm 3.1$  (syst.) GeV/c<sup>2</sup>

using a cross-section constraint

 $M_{top} = 170.7^{+4.2}_{-3.9}$  (stat.)  $\pm 2.6$  (syst.)  $\pm 2.4$  (th.) GeV/c<sup>2</sup>

B-tagged signal templates

# Top quark mass



# Single Top Quark production

## Single top quark production

#### Production via weak forces

- Xsection~ $|V_{tb}|^2$ 
  - ( direct measurement of  $V_{tb}$  )
- Significant bckgd to Higgs signal
- Single top -100% polarization

   (test of V-A structure of EW)
- Possible new physics



t-channel s-channel

assoc. prod.

|                             | Tevatron | 7 TeV LHC | 14 TeV LHC |
|-----------------------------|----------|-----------|------------|
| $t(\overline{t})$ "t"-ch    | 1.2      | 40 (20)   | 150 (100)  |
| $t\left(ar{t} ight)$ "s"-ch | 0.55     | 2.5 (1.4) | 7 (4)      |
| $tW^-$                      | 0.15     | 8         | 45         |

#### Signature of Single Top Event

- ✓ Only 1 isolated high  $p_T$  lepton (e or  $\mu$ ):  $p_T$  > 20 GeV
- ✓ High miss- $p_T$  ( $E_T$ ) > 25 GeV
- ✓ 2 or 3 high  $p_T$  jets:  $p_T$  > 20 GeV
- $\checkmark$   $\geq$  1 b-tagged jet

# Single top quark cross section

#### Present status:

- $\checkmark\,$  Production and decay are factorized
- $\checkmark\,$  NLO corrections in production
- $\checkmark\,$  resummation of soft logs
- ✓ top decay, at LO/NLO, spin correlations
- ✓ off-shell effects / non-factorizable corrections
- $\checkmark$  b quark issues ( $m_b$  mass) ...

Single top: s-channel Kidonakis m<sub>t</sub> = 173 GeV

$$\sigma_{TeV} = 0.523^{+0.001+0.030}_{-0.005-0.028} \text{ pb}$$
  
 $\sigma_{LHC} = 3.170^{+0.06}_{-0.06} + 0.13}_{-0.06} \text{ pb}$ 



Zhu et al.  $m_t$  = 173.2 GeV

$$\sigma_{TeV} = 0.467^{+0.010}_{-0.010} \text{ pb}$$

$$\sigma_{LHC} = 2.81 {}^{+0.16}_{-0.10} \text{ pb}$$

# Single top: t-channel and assoc.prod

Single top: t-channel, calculated at  $m_t = 173 \text{ GeV}$ Kidonakis[1103.2792]Zhu et al. [1010.4509] $\sigma_{TeV} = 1.04^{+0.00}_{-0.02} \pm 0.06 \text{ pb}$  $\sigma_{TeV} = 0.982 \text{ pb}$  $\sigma_{LHC7} = 41.7 + 1.6}_{-0.2} \pm 0.8 \text{ pb}$  $\sigma_{LHC7} = 40.9 + 0.1 - 0.1 \text{ pb}$  $\sigma_{LHC14} = 151 + 4 \pm 3 \text{ pb}$  $\sigma_{LHC14} = 152.4 + 0.4 - 1.0 \text{ pb}$ An excellent compatibility of the theoretical calculations

W t production : Kidonakis [1005.4451], at m<sub>t</sub> = 173 GeV  $\sigma(tW^{-}) = 7.8 \pm 0.2^{+0.00}_{-0.02}$  pb

- ✓ NLO  $\rightarrow$  'N'NLO: 8% increase at 7 TeV LHC
- $\checkmark\,$  At LHC assoc. production gives a noticeable contribution

# Single top: experimental analysis

Single top quark production first observed by DO and CDF in 2009

Main problem in experiment: huge background – an example from CDF andlysis at L=3.2 fb<sup>-1</sup>

#### Main Backgrounds

| Single top       | 145.7 ± 21.4   |  |  |  |
|------------------|----------------|--|--|--|
| Total background | 2119.3 ± 350.9 |  |  |  |
| Total prediction | 2265.0 ± 375.4 |  |  |  |
| Observed         | ed 2229        |  |  |  |



# Multivariate techniques

To cope with background Multivariate techniques (MVT) are used:

- ✓ Neural Networks (NN)
- ✓ Boosted Decision Tree (BDT)
- ✓ Matrix Element (ME)
- ✓ Likelihood Discriminants (LD)

Basic idea: a set of different kinematic variables ( $M_{lvb}$ ,  $H_T$ ,  $M_{jj}$ ,  $M_T$ ...) is used as input for MVT which employ them to optimize Signal vs Background.

Output of MVT: output discriminat - a variable in (0,1) or (-1, 1)



# ATLAS: single top quark

Xsec of single top quark production in the t-channel,  $L{=}1.04~fb^{-1},$  pp collision data at  $\sqrt{s}=7~TeV$ 

SM expectation:  $\sigma_t = 64^{+2.7}_{-2.0} \text{ pb}, \quad \sigma_{Wt} = 15.7 \pm 1.1 \text{ pb}, \quad \sigma_s = 4.6 \pm 0.2 \text{ pb}$ 

Event selection: exactly one charged lepton (e or  $\mu$ ), two or three jets, and  $\mathcal{E}_T > 25 \text{ GeV}, \ m_T(W) > (60 \text{ GeV} - \mathcal{E}_T)$ 

|                              | Electron       |                | Muon           |                |
|------------------------------|----------------|----------------|----------------|----------------|
|                              | 2-jet          | 3-jet          | 2-jet          | 3-jet          |
| single-top <i>t</i> -channel | $447 \pm 11$   | $297 \pm 7$    | 492 ± 12       | 323 ± 8        |
| <i>tt</i> , other top        | $785 \pm 52$   | $1700 \pm 120$ | 801 ± 53       | $1740 \pm 130$ |
| W+light jets                 | $350 \pm 100$  | $128 \pm 56$   | $510 \pm 150$  | $209 \pm 91$   |
| W+heavy flavour jets         | $2600 \pm 740$ | $1100 \pm 400$ | $3130 \pm 880$ | $1270 \pm 480$ |
| Z+jets, diboson              | $158 \pm 63$   | 96 ± 44        | $166 \pm 61$   | $80 \pm 31$    |
| Multijet                     | $710 \pm 350$  | $580 \pm 290$  | $440 \pm 220$  | $270 \pm 140$  |
| Total expected               | $5050 \pm 830$ | 3900 ± 520     | $5530 \pm 930$ | $3900 \pm 520$ |
| Data                         | 5021           | 3592           | 5592           | 3915           |

Higher # events than in CDF: 18300 vs 2200

Higher signal % : 8.5% vs 6.5%

NN discriminant: 12 input variables in the jet data set:  $m(\ell vb)$ , the highest  $p_T$  untagged jet  $|\eta(j_u)|$  and  $E_T(j_u)$  - most important

# ATLAS: single top quark



Measured Xsec in the t-channel, simultaneous measurement in the 2-jet and 3-jet channels:

$$\sigma_t = 83 \pm 4(\text{stat})_{-19}^{+20}(\text{syst}) \text{ pb} = 83 \pm 20 \text{ pb}$$

Significance: 
$$7.2\sigma$$

 $|V_{tb}|^2$  is extracted: ratio of the observed  $\sigma_t$  and SM expectation:  $|V_{tb}| = 1.13^{+20}_{-19}$  + the 95% C.L. lower limit  $|V_{tb}|$  is 0.75.

(see arXiv.1205.3130, sub. Phys. Lett.B)

