Elements of QCD for hadron colliders

theoretical concepts and phenomenology

Steffen Schumann

II. Physikalisches Institut, Universität Göttingen

HASCO 2012

Göttingen

15. - 27.07. 2012

Quantum Chromodynamics

The theory describing the dynamics and interactions of quarks and gluons.

Quantum Chromodynamics

The theory describing the dynamics and interactions of quarks and gluons.

the ingredients of QCD

- quarks and anti-quarks
 - $\{u, d, s, c, b, t\}$ come in 3 colors
- gluons, bit like the photons in QED eight of them, carry colour charge
- a coupling, α_s

not so small, running fast

high-energy collider relevance

- strong-interaction processes
- phenomena such as hadronic jets
- short-distance structure of hadrons

3

→ detailed understanding crucial

I'll try to give you a feel for: How QCD works How theorists handle QCD at hadron colliders How hadron collisions get simulated

< 3 > < 3 >

-

Basics of QCD

- The QCD Lagrangian
- Perturbation Theory & The running coupling
- Soft & collinear singularities
- The concepts of parton showers and jets
- QCD for processes with incoming protons
- Monte-Carlo event generators

(B)

Disclaimer

These lectures are not exhaustive!

• lacks most of the details, derivations, ...

Recommended reading:

• Ellis, Stirling & Webber "QCD and Collider Physics"

Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996)

 Dissertori, Knowles & Schmelling "Quantum Chromodynamics"

International Series of Monographs on Physics · 115

• ... papers cited on the way

< 17 >

(*) * (*) *)

Basics of QCD

□ > < E > < E > E - のへで

Basics of QCD: the naïve parton model

1st tenet: hadronic matter made of quarks

• the fermionic quarks carry fractional charges

$$Q_{u,c,t}=+rac{2}{3},\;Q_{d,s,b}=-rac{1}{3}$$

- three-quark states form baryons: $|B
 angle=|\,q_1\,\,q_2\,\,q_3
 angle$
 - \rightsquigarrow baryons are fermions, follow Fermi-Dirac statistics
 - \rightsquigarrow wave functions must be totally anti-symmetric
- mesons thought of as bound states of quark & anti-quark: $|M
 angle = |\,q_1\,\,ar q_2
 angle$

글 🖌 🔺 글 🕨

Basics of QCD: the naïve parton model

1st tenet: hadronic matter made of quarks

• the fermionic quarks carry fractional charges

$$Q_{u,c,t} = +rac{2}{3}, \ Q_{d,s,b} = -rac{1}{3}$$

- three-quark states form baryons: $|B
 angle=|\,q_1\,\,q_2\,\,q_3
 angle$
 - \rightsquigarrow baryons are fermions, follow Fermi-Dirac statistics
 - \rightsquigarrow wave functions must be totally anti-symmetric
- mesons thought of as bound states of quark & anti-quark: $|M
 angle=|\,q_1\,\,ar q_2
 angle$

obstacle at the time: how to account for spin-3/2 baryons?

- consider the resonance |Δ⁺⁺⟩ = | u_↑ u_↑ u_↑ ⟩
 → symmetrical state in space, spin & flavour
- introduce new degree of freedom: colour index $a \in \{1, 2, 3\}$

$$\rightsquigarrow |\Delta^{++}\rangle = \epsilon_{abc} | u_{a\uparrow} u_{b\uparrow} u_{c\uparrow}\rangle$$

 \rightsquigarrow baryon wave-function totally anti-symmetric in that index

Basics of QCD: the naïve parton model

1st tenet: hadronic matter made of quarks

• the fermionic quarks carry fractional charges

$$Q_{u,c,t}=+rac{2}{3},\;Q_{d,s,b}=-rac{1}{3}$$

- three-quark states form baryons: $|B
 angle=|\,q_1\,\,q_2\,\,q_3
 angle$
 - \rightsquigarrow baryons are fermions, follow Fermi-Dirac statistics
 - \rightsquigarrow wave functions must be totally anti-symmetric
- mesons thought of as bound states of quark & anti-quark: $|M
 angle=|\,q_1\,\,ar q_2
 angle$

obstacle at the time: how to account for spin-3/2 baryons?

- consider the resonance |Δ⁺⁺⟩ = | u_↑ u_↑ u_↑ ⟩
 → symmetrical state in space, spin & flavour
- introduce new degree of freedom: colour index $a \in \{1, 2, 3\}$

$$\rightsquigarrow |\Delta^{++}\rangle = \epsilon_{abc} | u_{a\uparrow} u_{b\uparrow} u_{c\uparrow}\rangle$$

 \rightsquigarrow baryon wave-function totally anti-symmetric in that index

2nd tenet: hadronic matter must be colour-singlet states

Basics of QCD: colour degree of freedom

• consider the decay
$$\pi^0 \to \gamma\gamma \left[|\pi^0\rangle = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle - |d\bar{d}\rangle \right) \right]$$

 $\Gamma^{\text{theo}}(\pi^0 \to \gamma\gamma) = \xi^2 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{64\pi} \frac{m_\pi^3}{f_\pi^2} = 7.6 \,\xi^2 \,\text{eV}$

electric charge and colour factor ξ given by

$$\xi = N_c \left[\left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 \right] = \frac{N_c}{3}$$

experimental value is $\Gamma^{exp} = 7.74 \pm 0.55 \, eV \, [PDG] \rightsquigarrow \xi = 1 \rightsquigarrow N_c = 3$

Basics of QCD: colour degree of freedom

• consider the decay
$$\pi^0 \to \gamma\gamma \left[|\pi^0\rangle = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle - |d\bar{d}\rangle \right) \right]$$

 $\Gamma^{\text{theo}}(\pi^0 \to \gamma\gamma) = \xi^2 \left(\frac{\alpha}{\pi}\right)^2 \frac{1}{64\pi} \frac{m_\pi^3}{f_\pi^2} = 7.6 \,\xi^2 \,\text{eV}$

electric charge and colour factor ξ given by

$$\xi = N_c \left[\left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 \right] = \frac{N_c}{3}$$

experimental value is $\Gamma^{exp} = 7.74 \pm 0.55 \, \mathrm{eV}$ [PDG] $\rightsquigarrow \xi = 1 \rightsquigarrow N_c = 3$

• consider the ratio $R = \sum_q \sigma_{tot}(e^+e^- \rightarrow q\bar{q})/\sigma_{tot}(e^+e^- \rightarrow \mu^+\mu^-)$ u, d, s only $R = N_c \left[\left(\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 \right] = N_c \frac{2}{3}$ u, d, s, c, b only $R = N_c \left[2 \times \left(\frac{2}{3}\right)^2 + 3 \times \left(-\frac{1}{3}\right)^2 \right] = N_c \frac{11}{9}$ \rightsquigarrow data consistent with $N_c = 3$

Basics of QCD: the SU(3) colour group

the group of unitary 3×3 matrices U with det(U) = +1

 \rightsquigarrow SU(3) generators, hermitian & traceless Gell-Mann matrices

$$\begin{split} \lambda^{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ \lambda^{5} &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} &= \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix} \end{split}$$

by convention we define $t_{ab}^A \equiv \frac{1}{2}\lambda_{ab}^A \quad \rightsquigarrow \quad U = \exp\{i\alpha_A t^A\}$

$$[t^A, t^B] = i f_{ABC} t^C$$

with f_{ABC} the SU(3) structure constants (anti-symmetric in all indices) $\rightarrow SU(3)$ is a non-abelian group

Note: The analogs of SU(2) you know well, the Pauli matrices & ϵ_{ijk}

母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

the free quark part

denote quark fields by ψ^a_q , where a denotes a colour index $a \in \{1,2,3\}$

$$\mathcal{L}_{\mathsf{free Dirac}} = \sum_{q} \bar{\psi}^{a}_{q} i \delta_{ab} \gamma^{\mu} \partial_{\mu} \psi^{b}_{q} - m_{q} \bar{\psi}^{a}_{q} \psi^{a}_{q} \quad \mathsf{with} \quad q \in \{u, d, s, c, b, t\}$$

★ E ► ★ E ► E

the free quark part

denote quark fields by $\psi^{\textit{a}}_{\textit{q}},$ where a denotes a colour index $\textit{a} \in \{1,2,3\}$

$$\mathcal{L}_{\mathsf{free \ Dirac}} = \sum_{q} \bar{\psi}^{a}_{q} \, i \delta_{ab} \gamma^{\mu} \partial_{\mu} \, \psi^{b}_{q} - m_{q} \bar{\psi}^{a}_{q} \psi^{a}_{q} \quad \mathsf{with} \quad q \in \{u, d, s, c, b, t\}$$

the pure gluon part

denote the gluon fields by $A^{\mathcal{A}}_{\mu}$, with $\mathcal{A} \in \{1,..,8\}$

$$\mathcal{L}_{\mathsf{pure Gluon}} = -rac{1}{4} F^A_{\mu
u} F^{A\mu
u} \quad \mathsf{with} \quad F^A_{\mu
u} = \partial_\mu A^A_
u - \partial_
u A^A_\mu - g_s f_{ABC} A^B_\mu A^C_
u$$

■▶ ▲目▶ ▲目▶ = 目 - のへで

the free quark part

denote quark fields by ψ^a_q , where a denotes a colour index $a \in \{1,2,3\}$

$$\mathcal{L}_{\mathsf{free \ Dirac}} = \sum_{q} \bar{\psi}^{a}_{q} \, i \delta_{ab} \gamma^{\mu} \partial_{\mu} \, \psi^{b}_{q} - m_{q} \bar{\psi}^{a}_{q} \psi^{a}_{q} \quad \mathsf{with} \quad q \in \{u, d, s, c, b, t\}$$

the pure gluon part

denote the gluon fields by $A^{\mathcal{A}}_{\mu}$, with $\mathcal{A} \in \{1,..,8\}$

$$\mathcal{L}_{\text{pure Gluon}} = -\frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu} \quad \text{with} \quad F^{A}_{\mu\nu} = \partial_{\mu} A^{A}_{\nu} - \partial_{\nu} A^{A}_{\mu} - g_{s} f_{ABC} A^{B}_{\mu} A^{C}_{\nu}$$

coupling the quarks to gluons

minimal coupling of quarks with gluons, consistent with local gauge invariance

$$\mathcal{L}_{ ext{interaction}} = \sum_{q} g_{s} \bar{\psi}^{a}_{q} \gamma^{\mu} t^{a}_{ab} A^{a}_{\mu} \psi^{b}_{q} \quad ext{with} \quad g^{2}_{s} = 4\pi lpha_{s}$$

御 オ オ ヨ オ ヨ オ ヨ う り つ つ

the classical QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{free Dirac}} + \mathcal{L}_{\text{interaction}} + \mathcal{L}_{\text{pure Gluon}}$$

$$= \sum_{q} \bar{\psi}^{a}_{q} \left(i\delta_{ab}\gamma^{\mu}\partial_{\mu} + g_{s}\gamma^{\mu}t^{a}_{ab}A^{A}_{\mu} \right) \psi^{b}_{q} - m_{q}\bar{\psi}^{a}_{q}\psi^{a}_{q} - \frac{1}{4}F^{A}_{\mu\nu}F^{A\mu\nu}$$

▲ 문 ▶ | ▲ 문 ▶

the classical QCD Lagrangian

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \mathcal{L}_{\text{free Dirac}} + \mathcal{L}_{\text{interaction}} + \mathcal{L}_{\text{pure Gluon}} \\ &= \sum_{q} \bar{\psi}_{q}^{a} \left(i \delta_{ab} \gamma^{\mu} \partial_{\mu} + g_{s} \gamma^{\mu} t_{ab}^{a} A_{\mu}^{A} \right) \psi_{q}^{b} - m_{q} \bar{\psi}_{q}^{a} \psi_{q}^{a} - \frac{1}{4} F_{\mu\nu}^{A} F^{A\mu\nu} \\ &= \sum_{q} \bar{\psi}_{q}^{a} \left(i \gamma^{\mu} (D_{\mu})_{ab} - \delta_{ab} m_{q} \right) \psi_{q}^{b} - \frac{1}{4} F_{\mu\nu}^{A} F^{A\mu\nu} \\ &\qquad \text{with} \quad (D_{\mu})_{ab} = \delta_{ab} \partial_{\mu} - i g_{s} t_{ab}^{A} A_{\mu}^{A} \quad \text{the } SU(3)_{c} \text{ covariant derivative} \end{split}$$

(本語)) (本語)) (二)

the classical QCD Lagrangian

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \mathcal{L}_{\text{free Dirac}} + \mathcal{L}_{\text{interaction}} + \mathcal{L}_{\text{pure Gluon}} \\ &= \sum_{q} \bar{\psi}_{q}^{a} \left(i \delta_{ab} \gamma^{\mu} \partial_{\mu} + g_{s} \gamma^{\mu} t_{ab}^{a} A_{\mu}^{A} \right) \psi_{q}^{b} - m_{q} \bar{\psi}_{q}^{a} \psi_{q}^{a} - \frac{1}{4} F_{\mu\nu}^{A} F^{A\mu\nu} \\ &= \sum_{q} \bar{\psi}_{q}^{a} \left(i \gamma^{\mu} (D_{\mu})_{ab} - \delta_{ab} m_{q} \right) \psi_{q}^{b} - \frac{1}{4} F_{\mu\nu}^{A} F^{A\mu\nu} \\ &\qquad \text{with} \quad (D_{\mu})_{ab} = \delta_{ab} \partial_{\mu} - i g_{s} t_{ab}^{A} A_{\mu}^{A} \quad \text{the } SU(3)_{c} \text{ covariant derivative} \end{split}$$

 \rightsquigarrow interacting field theory \rightsquigarrow non-abelian gauge field theory [to be quantized]

- \rightsquigarrow quark & gluon propagators
- \rightsquigarrow quark–gluon & gluon self interactions

$$\mathcal{L}_{\rm QCD} \quad \supset \quad \bar{\psi}^{a}_{q} \left(-ig_{s}\gamma^{\mu}t^{A}_{ab}A^{A}_{\mu} \right) \psi^{b}_{q} - g_{s}f^{ABC}(\partial_{\mu}A^{A}_{\nu})A^{B\mu}A^{C\nu} - \frac{1}{4}g^{2}_{s}f^{XAB}f^{XCD}A^{A\mu}A^{B\nu}A^{C}_{\mu}A^{D}_{\nu}$$

(*) *) *) *)

Basics of QCD: The Feynman rules

- gluon emission repaints the quark colour
- gluon carries colour and anti-colour
- gluon emission repaints the gluon colours

Basics of QCD: Quick guide to colour algebra

some useful SU(N_c) colour algebra relations

 \hookrightarrow appear when summing squared amplitudes colours

trace relation	corresponding diagram
$\operatorname{Tr}\{t^{A}t^{B}\}=T_{R}\delta^{AB}, T_{R}=rac{1}{2}$	A B
$\sum_A t^A_{ab} t^A_{bc} = C_F \delta_{ac} , C_F = rac{N_c^2 - 1}{2N_c}$	a 2003 - c
$\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB} , C_A = N_c$	A B B B B B B B B B B B B B B B B B B B
O(D; N) = number of colours = 3	$\Rightarrow C_4 = 3 \& C_5 = \frac{4}{3}$

3 b 4 3 b

given the Lagrangian we could start calculating, e.g. cross sections

- numerical solution in discretized space time (lattice QCD)
 → suitable for static properties of hadrons, e.g. hadron masses
 → not practicable for dynamical LHC collision events
- have to rely on perturbative techniques

 \rightsquigarrow relies on order-by-order expansion in small coupling, $\alpha_{\rm s} \ll 1$

 \rightsquigarrow calculational complexity grows extremely fast with powers of α_s , thus α_s better is small!?

● ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

Basics of QCD: The running coupling

as other couplings/parameters α_s is scale dependent [momentum scale μ^2]

$$\frac{d\alpha_s(\mu^2)}{d\ln\mu^2} = \beta(\alpha_s(\mu^2)), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots)$$

where

$$b_0 = rac{11C_A - 2n_f}{12\pi}, \qquad b_1 = rac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = rac{153 - 19n_f}{24\pi^2}$$

Note sign of β : Asymptotic freedom, due to gluon self interaction

[Nobel prize in 2004 to Gross, Politzer & Wilczek]

- \rightsquigarrow at high scales μ^2 coupling becomes small, quarks & gluons are almost free interactions weak, perturbation theory works
- → at low scales coupling becomes strong, quarks & gluons interact strongly perturbation theory fails

Basics of QCD: The running coupling cont'd

as other couplings/parameters $\alpha_{\sf s}$ is scale dependent $_{[momentum \ scale \ \mu^2]}$

 \rightsquigarrow ignoring all terms other than b_0 , we get for $\alpha_s(\mu^2)$

$$\frac{d\alpha_s(\mu^2)}{d\ln\mu^2} = -b_0\alpha_s^2 \quad \rightsquigarrow \quad \alpha_s(\mu^2) = \frac{\alpha_s(\mu_0^2)}{1 + b_0\alpha_s(\mu_0^2)\ln\frac{\mu^2}{\mu_0^2}} = \frac{1}{b_0\ln\frac{\mu^2}{\Lambda_{\rm QCD}^2}}$$

result expressed in terms of

- reference scale μ^0 , e.g. M_Z^2
- non-perturbative constant $\Lambda_{\rm QCD}\simeq 0.2~\text{GeV}$
 - fundamental scale of QCD
 - sets scale for hadron masses
- perturbation theory valid for $\mu \gg \Lambda_{\rm QCD}$
- non-perturbative description $\mu \simeq \Lambda_{\rm QCD}$

Basics of QCD: Perturbation Theory II

QCD perturbation theory for the LHC?

• "New Physics" searched for at scales $\mu \sim p_T \sim 50 \, {\rm GeV} - 5 {\rm TeV}$

The coupling is certainly small!

- but we're colliding protons $m_p \simeq 0.94$ GeV The coupling is large!
- in the detectors we see hadrons perturbation theory doesn't apply lots of them – no one-to-one hadron-parton correspondence, when limiting ourselves to 1 or 2 orders in perturbation theory

() <) <)
 () <)
 () <)
</p>

Basics of QCD: Perturbation Theory II

QCD perturbation theory for the LHC?

• "New Physics" searched for at scales $\mu \sim p_T \sim 50 \, {\rm GeV} - 5 {\rm TeV}$

The coupling is certainly small!

- but we're colliding protons $m_p \simeq 0.94$ GeV The coupling is large!
- in the detectors we see hadrons perturbation theory doesn't apply lots of them – no one-to-one hadron-parton correspondence, when limiting ourselves to 1 or 2 orders in perturbation theory

PT only offers no full solution for QCD at colliders

use perturbative QCD + non-perturbative modelling key ingredient: factorization

use perturbative QCD + non-perturbative modelling

key ingredient:

factorization

Next items on the menue:

- what perturbation theory tells us about the structure of QCD events
 - soft- & collinear singularities & jets
 - parton distribution functions (PDFs)
- introduce methods available to carry out QCD predictions
 - fixed-order perturbative calculations
 - Monte-Carlo event generators

Soft & Collinear Singularities

Singularities: soft-gluon amplitude

consider the process (e^+e^- $\rightarrow)\gamma^* \rightarrow q\bar{q}$

$$\mathcal{M}_{q\bar{q}} = \underbrace{\mathbf{p}_{1}}_{ie\gamma_{\mu}} \underbrace{\mathbf{p}_{2}}_{p_{2}}$$
$$= \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}\delta_{ab}v_{b}(p_{2})$$

● ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = ∽ � � �

Singularities: soft-gluon amplitude

consider the process $(\mathrm{e^+e^-} \rightarrow)\gamma^* \rightarrow q\bar{q}$

$$\mathcal{M}_{q\bar{q}} = \mathcal{M}_{q\bar{q}} = \mathbf{p}_{1}$$
$$\mathbf{p}_{2}$$
$$= \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}\delta_{ab}v_{b}(p_{2})$$

emit a gluon (momentum k, polarization vector ϵ)

$$\mathcal{M}_{q\bar{q}g} = \underbrace{\bar{u}_{a}(p_{1})ig_{s}\not\in t_{ab}^{A}}_{p_{2}} + \underbrace{\bar{u}_{a}(p_{1}+k)}_{p_{2}} ie_{q}\gamma_{\mu}v_{b}(p_{2}) + \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}\frac{i(\not p_{2}+k)}{(p_{2}+k)^{2}}ig_{s}\not\in t_{ab}^{A}v_{b}(p_{2})$$

▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 → � � �

Singularities: soft-gluon amplitude

consider the process $(\mathrm{e^+e^-} \rightarrow)\gamma^* \rightarrow q\bar{q}$

$$\mathcal{M}_{q\bar{q}} = \mathcal{M}_{q\bar{q}} = \mathbf{p}_{1}$$
$$\mathbf{p}_{2}$$
$$= \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}\delta_{ab}v_{b}(p_{2})$$

emit a gluon (momentum k, polarization vector ϵ)

$$\mathcal{M}_{q\bar{q}g} = \underbrace{\lim_{k \in \mathcal{V}_{\mu}} \sum_{k,e}^{p_{1}} + \lim_{k \in \mathcal{V}_{\mu}} \sum_{k,e}^{p_{1}} + \sum_{p_{2}}^{ie \gamma_{\mu}} \sum_{k,e} \sum_{p_{2}} \sum_{p_{2$$

make gluon soft $\equiv k \ll p_1, p_2$, ignore terms suppressed by powers of k

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}t^{\mathcal{A}}_{ab}v_{b}(p_{2})g_{s}\left(rac{p_{1}\cdot\epsilon}{p_{1}\cdot k}-rac{p_{2}\cdot\epsilon}{p_{2}\cdot k}
ight)$$

$$\begin{aligned} |\mathcal{M}_{q\bar{q}g}|^{2} \simeq \sum_{A,a,b,\text{pol}} \left| \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}t^{A}{}_{ab}v_{b}(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2} \\ = -|\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}\end{aligned}$$

* 注入 * 注入

æ

$$\begin{aligned} |\mathcal{M}_{q\bar{q}g}|^{2} \simeq \sum_{A,a,b,\text{pol}} \left| \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}t^{A}{}_{ab}v_{b}(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2} \\ = -|\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}\end{aligned}$$

include phase-space factor $d\Phi_{q\bar{q}g} \simeq d\Phi_{q\bar{q}} \frac{d^3\vec{k}}{2E(2\pi)^3} = d\Phi_{q\bar{q}} \frac{E^2 dE \sin\theta d\theta d\phi}{2E(2\pi)^3}$ [factorizes as well]

$$|\mathcal{M}_{qar{q}g}|^2 d\Phi_{qar{q}g} \simeq |\mathcal{M}_{qar{q}}|^2 d\Phi_{qar{q}} d\mathcal{S}$$

 \rightsquigarrow factorization into hard $q\bar{q}$ piece & soft-gluon emission probability $d\mathcal{S}$

$$\begin{aligned} |\mathcal{M}_{q\bar{q}g}|^{2} \simeq \sum_{A,a,b,\text{pol}} \left| \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}t^{A}{}_{ab}v_{b}(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2} \\ = -|\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}\end{aligned}$$

include phase-space factor $d\Phi_{q\bar{q}g} \simeq d\Phi_{q\bar{q}} \frac{d^3\vec{k}}{2E(2\pi)^3} = d\Phi_{q\bar{q}} \frac{E^2 dE \sin\theta d\theta d\phi}{2E(2\pi)^3}$ [factorizes as well]

$$|\mathcal{M}_{qar{q}g}|^2 d\Phi_{qar{q}g} \simeq |\mathcal{M}_{qar{q}}|^2 d\Phi_{qar{q}} d\mathcal{S}$$

 \rightsquigarrow factorization into hard q ar q piece & soft-gluon emission probability $d \mathcal{S}$

$$d\mathcal{S} = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}, \text{ with } \theta = \theta_{\rho_1 k} \& \phi \text{ azimuth}$$

$$\begin{aligned} |\mathcal{M}_{q\bar{q}g}|^{2} \simeq \sum_{A,a,b,\text{pol}} \left| \bar{u}_{a}(p_{1})ie_{q}\gamma_{\mu}t^{A}{}_{ab}v_{b}(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2} \\ = -|\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |\mathcal{M}_{q\bar{q}}^{2}|\mathcal{C}_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}\end{aligned}$$

include phase-space factor $d\Phi_{q\bar{q}g} \simeq d\Phi_{q\bar{q}} \frac{d^3\vec{k}}{2E(2\pi)^3} = d\Phi_{q\bar{q}} \frac{E^2 dE \sin\theta d\theta d\phi}{2E(2\pi)^3}$ [factorizes as well]

$$|\mathcal{M}_{qar{q}g}|^2 d\Phi_{qar{q}g} \simeq |\mathcal{M}_{qar{q}}|^2 d\Phi_{qar{q}} d\mathcal{S}$$

 \rightsquigarrow factorization into hard q ar q piece & soft-gluon emission probability $d \mathcal{S}$

$$dS = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}, \text{ with } \theta = \theta_{\rho_1 k} \& \phi \text{ azimuth}$$

gluon emission singularity structure (universal/process independent)

- diverges for $E \rightarrow 0$ aka infrared/soft singularity
- diverges for heta
 ightarrow 0 and $heta
 ightarrow \pi$ aka collinear singularity

Singularities: Real-virtual cancellation

 $\mathcal{O}(\alpha_s)$ correction to total cross section, sum of real & virtual contributions

Total cross section must be finite. If real part it divergent, so must the virtual!

∃ ► < ∃ ►</p>

Singularities: Real-virtual cancellation

 $\mathcal{O}(\alpha_s)$ correction to total cross section, sum of real & virtual contributions

Total cross section must be finite. If real part it divergent, so must the virtual!

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} R\left(\frac{E}{Q}, \theta\right) - \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} V\left(\frac{E}{Q}, \theta\right) \right)$$

• $R(E/Q, \theta)$ parametrizes full real-emission matrix element $(E \gg 0)$

$$\lim_{E\to 0} R(E/Q,\theta) = 1$$

- $V(E/Q, \theta)$ parametrizes virtual corrections for all momenta
- for every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ cancel

$$\lim_{E \to 0} (R - V) = 0 \quad \text{and} \quad \lim_{\theta \to 0, \pi} (R - V) = 0$$

The emerging picture

- ullet corrections to $\sigma_{\rm tot}$ dominated by hard, large-angle gluons
- soft gluons play no role for σ_{tot}
 - collision characterised by $t_{
 m hard} \sim 1/Q$
 - soft gluons emitted on long time scales $t_{\rm soft} \sim 1/(E\theta^2)$ \rightsquigarrow cannot influence cross section
 - transition to hadrons occurs on long time scales $t_{\rm had} \sim 1/\Lambda_{\rm QCD}$ \rightsquigarrow can thus be ignored

• with proper choice for scale of α_{s} , $\mu=Q$, perturbation theory works well

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(\underbrace{1}_{\text{LO}} \underbrace{+1.045 \frac{\alpha_s(Q^2)}{\pi}}_{\text{NLO}} \underbrace{+0.94 \left(\frac{\alpha_s(Q^2)}{\pi}\right)^2}_{\text{NNLO}} \underbrace{-15 \left(\frac{\alpha_s(Q^2)}{\pi}\right)^3}_{\text{NNNLO}} + \cdots \right)$$

[coefficients given for $Q = M_Z$]

Total cross sections are inclusive quantities, inclusive in the number of additional QCD partons!

The QCD Lagrangian

- gauge-field theory for the strong force
- dynamics and interactions of strongly interacting particles
 - \rightsquigarrow quarks & gluons carry colour charges
- renormalized coupling runs fast

The two faces of QCD

- confined phase: large coupling regime, physics of hadrons
- asymptotic free phase: coupling small, perturbation theory applicable

Soft & collinear divergences

- singularities associated with the emission of soft/collinear gluons
- generic feature of massless gauge-field theories
- divergences cancel between real & virtual corrections