Elements of QCD for hadron colliders

theoretical concepts and phenomenology

Steffen Schumann

II. Physikalisches Institut, Universität Göttingen

HASCO 2012

Göttingen

15. - 27.07. 2012

Basics of QCD

- The QCD Lagrangian
- Perturbation Theory & The running coupling
- Soft & collinear singularities
- The concepts of parton showers and jets
- QCD for processes with incoming protons
- Monte-Carlo event generators

(B) < B)</p>

Soft & collinear singularities: recap

I) soft/collinear gluon emission cross section factorizes

$$|\mathcal{M}_{qar{q}g}|^2 d\Phi_{qar{q}g} \simeq |\mathcal{M}_{qar{q}}|^2 d\Phi_{qar{q}} d\mathcal{S}$$

where

$$d\mathcal{S} = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}$$

 \rightsquigarrow divergent as $E \rightarrow 0$ and/or $\theta \rightarrow 0$

Soft & collinear singularities: recap

I) soft/collinear gluon emission cross section factorizes

$$|\mathcal{M}_{qar{q}g}|^2 d\Phi_{qar{q}g} \simeq |\mathcal{M}_{qar{q}}|^2 d\Phi_{qar{q}} d\mathcal{S}$$

where

$$d\mathcal{S} = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}$$

 \rightsquigarrow divergent as $E \rightarrow 0$ and/or $\theta \rightarrow 0$

→ let's look a little more exclusive now
 → estimate the number of emitted gluons

Let's try to integrate emission probability to estimate mean number of gluon emissions off a quark with energy $\sim Q$

$$\langle N_g \rangle \simeq \frac{2\alpha_s C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta > Q_0)$$

• diverges for $E \rightarrow 0 \& \theta \rightarrow 0$

cut out transverse momenta (k_t ≃ Eθ) smaller than Q₀ ~ Λ_{QCD}
 → below that the language of quarks & gluons loses its meaning

$$\langle N_g \rangle \simeq \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{Q_0} + \mathcal{O}\left(\alpha_s \ln \frac{Q}{Q_0}\right)$$

assume $Q = 200 \text{ GeV} \& Q_0 = 1 \text{ GeV} \rightsquigarrow \ln^2 \frac{Q}{Q_0} \approx 30$ \rightsquigarrow simple expansion in α_s spoiled by large logarithms, $\langle N_g \rangle > 1$

Is 1st order perturbation theory useless beyond total cross sections?

- Could try to calculate next order, and see what happens!
- Can try to approximate higher-order contributions!
- Look for better behaved final-state observables!

Once a gluon is emitted it can itself emit further gluons

- consider collinear (& soft) emissions only [logarithmically enhanced]
- in the small angle limit $(heta\ll 1)$ emissions factorize

- same divergence structure, independent of who emits
- only difference being the colour factor (C_F = 4/3, C_A = 3)
 → gluons emit more
- expect 1st-order structure ($lpha_s \ln^2 Q/Q_0$) to appear at each new order

Start out with the $q\bar{q}$ system

∢ 문 ► ★ 문 ►

Quark emits small angle gluon

(B) < B)</p>

Gluon radiates a further gluon

< E > < E >

And so on and so forth ...

< 注 → < 注 →

Meanwhile the same happend on the other side

At some point a non-perturbative transition happens

프 () () () (

Resulting in a pattern of collimated hadrons [at small angles wrt to the quarks]

Gluon vs. Hadron multiplicity

gluon multiplicity can be calculated by summing all orders of perturbation theory (n):

$$N_g \rangle \sim \frac{C_F}{C_A} \sum_{n=1}^{\infty} \frac{1}{(n!)^2} \left(\frac{C_A}{2\pi b_0^2 \alpha_s}\right)^n \\ \sim \frac{C_F}{C_A} \exp\left(\sqrt{\frac{2C_A}{\pi b_0^2 \alpha_s(Q)}}\right)$$

interprete as a function of $Q\equiv\sqrt{s}$

direct comparison suggests $\langle N_{
m had}
angle = c_{
m fit} \langle N_g
angle$

ヨート

Gluon vs. Hadron multiplicity

gluon multiplicity can be calculated by summing all orders of perturbation theory (n):

charged hadron multiplicity in

 e^+e^- collisions

HRS

80 1 √s/Ge\

Topaz Amv

direct comparison suggests $\langle N_{
m had}
angle = c_{
m fit} \langle N_g
angle$

Seems like perturbative QCD can get us quite far!

0

20

40

60

Using the soft/collinear approximation we can make predictions for events' detailed partonic structure, when supplemented with a model for hadronization for hadronic final states even.

However, we cannot perform analytic calculations for every observable ever be measured. [too many experimenters, too many observables, too few theorists]

The solution: Parton-Shower simulations

- implement space-time picture of parton evolution [limited to leading logarithms]
- successive parton emissions for arbitrary processes
- Markov-chain Monte Carlo process describing the parton proliferation
- observable/process independent
- \rightsquigarrow cornerstone of Monte-Carlo event generators, more soon

The emergent picture: final-state jets

Jet definition (prel.): jets are collimated sprays of hadronic particles

- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons' directions

Counting jets

- \rightsquigarrow near perfect two-jet event
- \rightsquigarrow almost all energy contained in two cones

글 > : < 글 >

The emergent picture: final-state jets

Jet definition (prel.): jets are collimated sprays of particles

- hard partons undergo soft and collinear showering
- hadrons closely correlated with the hard partons' directions

Counting jets

- \rightsquigarrow hard emissions can induce more jets
- \rightsquigarrow jet counting not obvious, is this a three- or four-jet event?

Jet definition (addendum): jet number shouldn't depend upon just a soft/collinear emission

→ Infrared & collinear safety

Infrared & Collinear safe jet definitions

crucial for comparing theory with experimental results

< 注→ < 注→

Jet algorithms

Jet definition

- group together particles into a common jets [jet algorithm]
- typical parameter is R, distance in $y \phi$ space, determines angular reach
- combine momenta of jet constituents to yield jet momentum [recombination scheme]

two generic types of jet algorithms are commonly used:

- cone algorithms
 - widely used in the past at the Tevatron
 - jets have regular/circular shapes
 - some suffer from IR or collinear unsafety

sequential recombination algorithms

- widely used at LEP [Durham k_T algorithm]
- jet can have irregular shapes
- default at the LHC experiments [anti-k_T algorithm]

Sequential recombination algorithms

A generic jet finding algorithm

- **(**) compute a distance measure y_{ij} for each pair of final-state particles
- etermine all distance measures wrt the beam y_{iB}
- Output determine the minimum of all y_{ij}'s and y_{iB}'s
 - if y_{ij} is smallest, **combine** particles ij, sum four-momenta
 - **2** if y_{iB} is smallest, **remove** particle *i*, call it a jet
- go back to step one, until all particles are clustered into jets

in analyses one typically uses

- jets with inter-jet distances $y_{ij} > y_{cut}$ [exclusive mode]
- jets with inter-jet distances $y_{ij} > y_{\rm cut}$ & $E > E_{\rm cut}$ [inclusive mode]

different algorithms use different measures: $y_{ij} \mbox{ \& } y_{iB}$

Sequential recombination algorithms: the k_T algorithm

recall the soft and collinear limit of the gluon-emission probability for a
ightarrow ij

$$dS \simeq rac{2lpha_{s}C_{A/F}}{\pi} rac{dE_{i}}{\min(E_{i},E_{j})} rac{d heta_{ij}}{ heta_{ij}} \,,$$

using min (E_i, E_j) we can avoid specifying which of *i* and *j* is soft

The k_T -algorithm distance measure

$$y_{ij} = rac{2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{Q^2}$$

- \rightsquigarrow in the collinear limit: $y_{ij} \simeq \min(E_i^2 E_j^2) \theta_{ij}^2/Q^2$
- → relative transverse momentum, normalized to total energy
- → soft/collinear particles get clustered first
- \rightsquigarrow effectively inverts the sequence of shower emissions

Sequential recombination algorithms: the anti- k_T algorithm

recall the soft and collinear limit of the gluon-emission probability for a
ightarrow ij

$$dS \simeq rac{2lpha_s C_i}{\pi} rac{dE_i}{\min(E_i, E_j)} rac{d heta_{ij}}{ heta_{ij}} \,,$$

using min (E_i, E_j) we can avoid specifying which of *i* and *j* is soft

The anti- k_T -algorithm distance measure

$$y_{ij} = 2Q^2 \min(E_i^{-2}, E_j^{-2})(1 - \cos \theta_{ij})$$

- → jet-finding starts out with hard objects
- → softer particles get clustered into hard jets later on
- → produces nicely regular shaped jets
- → default in current LHC physics analyses

∃ > < ∃ >

Jet algorithms at work: k_T jets at LEP

< ∃⇒

Jet algorithms at work: anti- k_T jets at LHC

Processes with incoming hadrons

- so far considered processes with final-state hadrons only
- to predict cross sections for processes involving initial-state hadrons, detailed understanding of the *short distance* structure of protons is needed
- at hadron colliders all processes, even of intrinsically electroweak nature, e.g. γ, W, Z, h, are induced by quarks & gluons

Processes with incoming hadrons

- so far considered processes with final-state hadrons only
- to predict cross sections for processes involving initial-state hadrons, detailed understanding of the *short distance* structure of protons is needed
- at hadron colliders all processes, even of intrinsically electroweak nature, e.g. γ, W, Z, h, are induced by quarks & gluons

Starting point: the naïve parton model

- quarks deeply bound inside proton
- \bullet binding forces responsible for confinement due to soft gluons $\mathcal{O}\simeq\Lambda_{\rm QCD}$
- the exchange of hard gluons would break the proton apart [recoil]

Processes with incoming hadrons

- so far considered processes with final-state hadrons only
- to predict cross sections for processes involving initial-state hadrons, detailed understanding of the *short distance* structure of protons is needed
- at hadron colliders all processes, even of intrinsically electroweak nature, e.g. γ, W, Z, h, are induced by quarks & gluons

Starting point: the naïve parton model

- quarks deeply bound inside proton
- \bullet binding forces responsible for confinement due to soft gluons $\mathcal{O}\simeq\Lambda_{\rm QCD}$
- the exchange of hard gluons would break the proton apart [recoil]
- \rightsquigarrow learn about the proton structure via Deep-Inelastic-Scattering (DIS)

Processes with incoming hadrons: factorization

hadronic cross section in the naïve parton model

$$\sigma(s) = \sum_{ij} \int dx_1 f_{i/\rho}(x_1) \int dx_2 f_{j/\rho}(x_2) \,\hat{\sigma}_{ij \to X}(x_1 x_2 s)$$

factorized cross section

- assume partons move collinear with the protons: p_i = x_iP_i
- partonic cms energy: $\hat{s} = x_1 x_2 s$
- f_{i/p} Parton-Distribution-Functions parametrize number densities of quarks inside protons

() <) <)
 () <)
 () <)
</p>

Parton-Distribution-Functions

Parton-Distribution-Functions: sum rules

•
$$|p\rangle = |u \ u \ d\rangle$$
, the valence quark distributions
 $\rightsquigarrow \int_{0}^{1} dx \ \left(f_{u/p}(x) - f_{\bar{u}/p}(x)\right) = 2$ & $\int_{0}^{1} dx \ \left(f_{d/p}(x) - f_{\bar{d}/p}(x)\right) = 1$

• fraction of proton's momentum carried by quarks

$$\sum_{q} \int_{0}^{1} dx \, x f_{q/p}(x) \simeq 0.5$$

1

 \rightsquigarrow well, we kind of forgot the gluons, carry $\simeq 0.5$ of protons' momentum

- \rightsquigarrow gluons appear in splitting processes $q \rightarrow qg$
- \rightsquigarrow let's better check impact of higher-order QCD corrections

(B) < B)</p>

Factorization revised

most fluctuations inside the proton happen at times $t_{\rm had} \sim 1/\Lambda_{QCD}$

Factorization revised

most fluctuations inside the proton happen at times $t_{\rm had} \sim 1/\Lambda_{QCD}$

- a hard interaction (e.g. γ^* in DIS) probes much shorter times $t_{
 m hard} \sim 1/Q$
- hard probes take instantaneous snapshots of hadron structure
- PDFs are scale dependent objects: $f_{i/p}(x) \rightarrow f_{i/p}(x, Q^2)$

Factorization revised: the factorization scale

consider soft & collinear emissions from an inital-state quark

$$\sigma_{g+h}(p) \simeq \sigma_h(zp) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

where we assume σ_h involves momentum transfer $Q \gg k_t$

total cross section receives contributions from both

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_s C_F}{\pi} \underbrace{\int_0^{Q^2} \frac{dk_t^2}{k_t^2}}_{\text{infinite}} \underbrace{\int_0^1 \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]}_{\text{finite}}$$

regulate the singularity in the k_t integral by μ_F , the factorization scale absorb the singularity into redefined, scale dependent, PDFs

A B A B A B A QQ

Factorization into hard and soft component (resummed in PDFs)

$$\sigma_{pp \to X_{\text{part}}}(s; \mu_R^2, \mu_F^2) \equiv \sum_{ij} \int dx_1 dx_2 \ f_{i/p}(x_1, \mu_F^2) f_{j/p}(x_2, \mu_F^2) \ d\hat{\sigma}_{ij \to X_{\text{part}}}(\hat{s}; \{p_X\}, \mu_R^2, \mu_F^2)$$

- emissions with $k_t \lesssim \mu_F$ implicitely included in PDFs
- ullet emissions with $k_t\gtrsim\mu_F$ described by the hard process
- change of PDFs wrt to μ_F covered by perturbative QCD, calculable [in analogy to the renormalization scale, μ_R]
 ~→ only need to extract PDFs at some non-perturbative input scale
- ullet typically we identify μ_F with the inherent process scale, Q

PDFs for the LHC

- current PDF sets extracted from DIS, $p\bar{p}$ & fixed target data
- only since very recently first LHC data gets included in fits
- much, much more to come over the next years

3 x 3

perturbative QCD gets us quite far

multiple gluon emission & jets

- we can calculate multiple gluon emissions efficiently
- resummation of leading higher-order terms [parton shower]
- giving rise to internal structure of jets
- proper jet definition allows to consistently use jets
 - in fixed-order calculations
 - after parton showering
 - including hadronization corrections

The hadron-hadron cross section

- factorization of soft and hard component
- hard kernel convoluted with non-perturbative PDFs
- need to be extracted from data
- PDFs scale dependent, evolution described by pQCD

Search for New Physics in a busy QCD environment

- identify relevant/measureable signatures
 - \rightsquigarrow largest cross sections for color-charged particles
- find selection criteria to enhance signal over SM background $[S/B \sim 1]$ \rightarrow many hard jets, isolated leptons/photons, large $\not{\!\!E}_T$
 - \rightsquigarrow might need to focus on rare decays, e.g. $h\to\gamma\gamma$
 - → New Physics encoded in energies, flavors, kinematical edges

What does discovery look like?

Searching for New Physics in collision experiments

Find excess of events over the Standard Model expectation

The theory challenge Precise SM predictions & Flexible New Physics simulations

Theoretical modelling of hadron-hadron collisions

Monte Carlo Event Generators

• Hard interaction

exact matrix elements $|\mathcal{M}|^2$

• QCD bremsstrahlung

parton showers in the initial and final state

• Multiple Interactions

beyond factorization: modelling

• Hadronization

non-perturbative QCD: modelling

• Hadron Decays

phase space or effective theories

- \Rightarrow stochastic simulation of pseudo data
- \Rightarrow fully exclusive hadronic final states

Pythia, Herwig, Sherpa

[Buckley, S. et al. Phys. Rept. 504 (2011) 145]

 \Rightarrow direct comparison with experimental data, e.g. ATLAS, CMS, LHCb, DØ, CDF

modulo detector simulation

Hard-Process generation

프 () () () (

The Hard Process

$$\sigma_{pp \rightarrow X_n} = \sum_{ab} \int dx_1 dx_2 \ f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \ |\mathcal{M}_{ab \rightarrow X_n}|^2 \ d\Phi_n$$

generic features

- high-dimensional phase space $dim[\Phi_n] = 3n 4$
- $|\mathcal{M}_{ab \to X_n}|^2$ wildly fluctuating over Φ_n
- steep parton densities [parametrization]

state-of-the-art

- \bullet tree-level fully automated [up to 2 \rightarrow 8 10]
 - extract Feynman rules from Lagrangian \mathcal{L} [FeynRules by Christensen & Duhr Comput. Phys. Commun. **180** (2009) 1614]
 - generate compact expressions for $|\mathcal{M}|^2$
 - self-adaptive Monte-Carlo integrators
 - $\rightsquigarrow\,$ e.g. MadGraph, Alpgen, Sherpa
- at NLO QCD first $2 \rightarrow 5$ results available
- ightarrow automation of one-loop calculations within reach

Anatomy of NLO QCD calculations [in dim. regularization $d = 4 - 2\epsilon$]

$$\sigma_{2 \to n}^{NLO} = \int_{n} \mathsf{d}^{(4)} \sigma^{B} + \int_{n} \mathsf{d}^{(d)} \sigma^{V} + \int_{n+1} \mathsf{d}^{(d)} \sigma^{R}$$

• (UV renormalized) virtual-corrections $\sigma^V \rightsquigarrow \mathsf{IR}$ divergent

• real-emission $\sigma^R \rightsquigarrow \mathsf{IR}$ divergent

 \rightsquigarrow for IR safe observables sum is finite

Anatomy of NLO QCD calculations [in dim. regularization $d = 4 - 2\epsilon$]

• (UV renormalized) virtual-corrections $\sigma^V \rightsquigarrow \mathsf{IR}$ divergent

• real-emission $\sigma^R \rightsquigarrow \mathrm{IR} \operatorname{divergent}$

 \rightsquigarrow for IR safe observables sum is finite

Dipole subtraction method [Catani, Seymour Nucl. Phys. B 485 (1997) 291]

$$\sigma_{2 \to n}^{NLO} = \int_{n} \left[\mathbf{d}^{(4)} \sigma^{B} + \int_{\text{loop}} \mathbf{d}^{(d)} \sigma^{V} + \int_{\mathbf{1}} \mathbf{d}^{(d)} \sigma^{A} \right]_{\epsilon=0} + \int_{n+1} \left[\mathbf{d}^{(4)} \sigma^{R} - \mathbf{d}^{(4)} \sigma^{A} \right]$$

• subtraction terms yield local approximation for the real emission process

• describe the amplitude in the soft & collinear limits $[1/\epsilon \text{ and } 1/\epsilon^2 \text{ poles}]$

$$\int_{n+1} \mathrm{d}^{(d)} \sigma^{\mathrm{A}} = \sum_{\substack{\mathrm{dipoles} \\ \text{spin- \& color correlations}}} \int_{n} \mathrm{d}^{(d)} \sigma^{\mathrm{B}} \otimes \int_{1} \mathrm{d}^{(d)} V_{\mathrm{dipole}}$$

The emerging picture: a fully differential NLO calculation

$$\sigma_{2 \to n}^{NLO} = \int_{n+1} \left[\mathrm{d}^{(4)} \sigma^{\mathrm{R}} - \mathrm{d}^{(4)} \sigma^{\mathrm{A}} \right] + \int_{n} \left[\mathrm{d}^{(4)} \sigma^{B} + \int_{\mathrm{loop}} \mathrm{d}^{(d)} \sigma^{\mathrm{V}} + \int_{1} \mathrm{d}^{(d)} \sigma^{\mathrm{A}} \right]_{\epsilon=0}$$

Monte-Carlo codes

- all the tree-level bits
- subtraction of singularities

One-Loop codes

• Loop amplitudes, *i.e.* $2\Re(\mathcal{A}_V \mathcal{A}_P^{\dagger})$

Loop integration

• efficient phase-space integration $\rightarrow 1/\epsilon$, $1/\epsilon^2$ coefficients & finite terms

some recent NLO calculations by the year:

W + 3 jets, $t\bar{t}bb$ W + 4jets, Z + 3jets 2011 Z + 4 jets, $t\bar{t}$ + 2 jets, $b\bar{b}b\bar{b}$, WW + 2 jets, 4 jets γ + 3 jets

BLACKHAT+SHERPA: Z + 4jets LHC predictions [Ita et al. Phys. Rev. D 85 (2012) 031501]

• include one-loop virtual & real emission corrections, e.g.

 \rightsquigarrow reduced scale uncertainties in cross sections & differential distributions

Parton Showers & Matching with Fixed Order

Approximating multi-parton production

n-parton cross section dominated by soft and/or collinear emissions

• valid when the gluon is much lower in energy than the emitter, i.e. $z \leq 1$ • emission angle θ ($k_t \simeq E\theta$) is much smaller than the angle between the

emitter and any other parton in the event [angular ordering, color coherence]

 \rightsquigarrow lends itself into simulation: parton shower of subsequent emissions

向下 イヨト イヨト 三日

Approximating multi-parton production

The QCD Parton Shower picture

- construct explicitly the initial- & final-state partons history/fate
- successive branching of incoming and outgoing legs

 \rightsquigarrow exclusive partonic final states

• evolve parton ensemble from high- to low scale $Q_0 \sim \mathcal{O}(1 {
m GeV}^2)$

 \rightsquigarrow link the hard process to universal hadronization models

• model intra-jet energy flows: jets become multi-parton objects

Matching exact matrix elements with parton showers

The art of combining matrix elements with parton showers

- model (few) hardest emissions by exact matrix elements
- avoid any double counting or dead regions of emission phase space
- preserve fixed-order & logarithmic precision of the calculation
- seminal work:
 - multileg tree-level matching: Catani et al. JHEP 0111 (2001) 063 ~→ ME+PS
 - NLO + Parton Shower: Frixione, Webber JHEP 0206 (2002) 029 ~→ MCatNLO

Matching exact matrix elements with parton showers

The art of combining matrix elements with parton showers

- model (few) hardest emissions by exact matrix elements
- avoid any double counting or dead regions of emission phase space
- preserve fixed-order & logarithmic precision of the calculation
- seminal work:
 - multileg tree-level matching: Catani et al. JHEP 0111 (2001) 063 \rightsquigarrow ME+PS
 - NLO + Parton Shower: Frixione, Webber JHEP 0206 (2002) 029 → MCatNLO

 \rightsquigarrow the new standards for LHC event generation $_{\rm [Alwall \, et \, al. \, Eur. \, Phys. \, J. \, C \, 53 \, (2008) \, 473]}$

→ necessitates truncated showering [Höche, S. et al. JHEP 0905 (2009) 053]

Leaving the perturbative ground: The Underlying Event & Hadronization

The Underlying Event: remnant-remnant interactions

Definition: An attempt

everything but the hard interaction including showers & hadronization
 → soft & hard remnant-remnant interactions

(B) < B)</p>

The Underlying Event: remnant-remnant interactions

Definition: An attempt

everything but the hard interaction including showers & hadronization
 → soft & hard remnant-remnant interactions

Beyond factorization: Multiple-Parton Interactions

$$\begin{aligned} \sigma_{\rm QCD}^{2\to2}(p_{T,\min}^2) &= \int_{p_{T,\min}^2}^{s/4} dp_T^2 \frac{d\sigma_{QCD}^{2\to2}(p_T^2)}{dp_T^2} \\ &= \int \int \int \int_{p_{T,\min}^2}^{s/4} dx_a dx_b dp_T^2 f_a(x_a, p_T^2) f_b(x_b, p_T^2) \frac{d\hat{\sigma}_{QCD}^{2\to2}}{dp_T^2} \sim \frac{\alpha_s^2(p_T^2)}{p_T^4} \end{aligned}$$

 \rightsquigarrow for low $p_{T,\min}$: $\langle \sigma_{\text{QCD}}^{2 \to 2}(p_{T,\min}^2) / \sigma_{pp}^{\text{ND}} \rangle > 1 = \langle n \rangle$

→ there might be many interactions per event $\mathcal{P}_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$ → strong dependence on cut-off $p_{T,\min} \rightarrow$ energy dependent!

(日) (同) (三) (三)

Multiple Interactions: A simple model

Sjöstrand, Zijl Phys. Rev. D 36 (1987) 2019

- hard process defines scale p_{T,hard}
- generate sequence of additional 2 \rightarrow 2 QCD scatterings ordered in p_T

$$\mathcal{P}(p_{T}) = \frac{1}{\sigma_{ND}} \frac{\mathrm{d}\sigma_{QCD}^{2 \to 2}}{\mathrm{d}p_{T}^{2}} \exp\left\{-\int_{p_{T}^{2}}^{p_{T,hard}^{2}} \frac{1}{\sigma_{ND}} \frac{\mathrm{d}\sigma_{QCD}^{2 \to 2}}{\mathrm{d}p_{T}^{2'}} \mathrm{d}p_{T}^{2'}\right\}$$

with $\hat{\sigma}_{\rm QCD}^{2\rightarrow2}$ regulated according to

$$\frac{\mathrm{d}\hat{\sigma}_{QCD}^{2\to2}}{\mathrm{d}p_{\perp}^{2}} \rightarrow \frac{\mathrm{d}\hat{\sigma}_{QCD}^{2\to2}}{\mathrm{d}p_{\perp}^{2}} \times \frac{p_{\perp}^{4}}{(p_{\perp}^{2} + p_{\perp0}^{2})^{2}} \frac{\alpha_{s}^{2}(p_{\perp}^{2} + p_{\perp0}^{2})}{\alpha_{s}^{2}(p_{\perp}^{2})} \quad \text{[parameter } p_{T,0} \approx 2 \text{ GeV]}$$

further features

- impact parameter dependence [typically double Gaussian]
- \rightsquigarrow central collisions more active, \mathcal{P}_n broader than Poissonian
 - use rescaled PDFs taking into account used up momentum
- $\rightsquigarrow \mathcal{P}_n$ narrower than Poissonian
 - attach parton showers/hadronization

The Underlying Event: comparison to Tevatron data

From partons to hadrons: Hadronization Models

Objectives: dynamical hadronization of multi-parton systems

- capture main non-perturbative aspects of QCD
- universality
 - \rightarrow robust extrapolation to new machines, higher energies
 - \rightarrow should not depend on specifics of the hard process
- model (un)known decays of (un)known hadrons \rightarrow hadron multiplicities, meson/baryon ratios

 - \rightarrow decay branching fractions
 - \rightarrow hadron-momentum distibutions

Lund string fragmentation

implemented in PYTHIA

From partons to hadrons: Cluster-Hadronization Model

- Cluster-formation model
- Cluster-decay model

features

- preconfinement [colour neighboring partons after shower close in phase space]
- parametrization of primary-hadron generation
- locality and universality

医下口 医下

Parton shower ends up with colour-ordered parton list

independent of cm energy of the hard process

(B) < B)</p>

From partons to hadrons: Cluster-Decay Model

Ansatz: Cluster mass ⇒ transition type

- *M_C* in hadron regime
 → 1-body decay *C* → *H*
- **9** else 2-body decay $\mathcal{C} \to \mathcal{X}\mathcal{Y}$
 - determine $M_{\mathcal{X}} \& M_{\mathcal{Y}}$
 - select channel
 - $\mathcal{C} \to \mathcal{CC}$ / $\mathcal{C} \to \mathcal{HH}$
 - $\bullet \ \mathcal{C} \to \mathcal{CH} \, / \, \mathcal{HC}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Point of reference: LEP @ $\sqrt{s} = 91.2$ GeV

particle multiplicities: HERWIG++

[Gieseke et al. JHEP 0402 (2004) 005]

Particle	Measured LEP	Herwig++
All Charged	20.924 ± 0.117	20.814
γ_	21.27 ± 0.6	22.67
π^0	9.59 ± 0.33	10.08
$\rho(770)^{0}$	1.295 ± 0.125	1.316
π^{\pm}	17.04 ± 0.25	16.95
$\rho(770)^{\pm}$	2.4 ± 0.43	2.14
η	0.956 ± 0.049	0.893
$\omega(782)$	1.083 ± 0.088	0.916
$\eta'(958)$	0.152 ± 0.03	0.136
κ ⁰	2.027 ± 0.025	2.062
К*(892) ⁰	0.761 ± 0.032	0.681
K [*] (1430) ⁰	0.106 ± 0.06	0.079
κ± .	2.319 ± 0.079	2.286
К*(892) [±]	0.731 ± 0.058	0.657
$\phi(1020)$	0.097 ± 0.007	0.114
р	0.991 ± 0.054	0.947
Δ^{++}	0.088 ± 0.034	0.092
Σ-	0.083 ± 0.011	0.071
٨	0.373 ± 0.008	0.384
Σ^0	0.074 ± 0.009	0.091
Σ^+	0.099 ± 0.015	0.077
Σ(1385) [±]	0.0471 ± 0.0046	0.0312*
Ξ-	0.0262 ± 0.001	0.0286
Ξ(1530) ⁰	0.0058 ± 0.001	0.0288*
Ω-	0.00125 ± 0.00024	0.00144

[Sherpa unpublished]

event shapes: SHERPA

∃ ► < ∃ ►</p>

э

Steffen Schumann

QCD at TeV energies

白マ くぼう くぼう

э.

Direct multijet production @ LHC

ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

→ multijet-production rates well under control

Direct multijet production @ LHC

ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

- \rightsquigarrow more differential observables can discriminate calculations
- \rightsquigarrow matrix-element based approaches superior for high- p_T jets

Direct multijet production @ LHC

ATLAS $Z(
ightarrow e^+e^-/\mu^+\mu^-)$ +jets analysis [G. Aad *et al.* Phys. Rev. D **85** (2012) 032009]

Steffen Schumann Elements of QCD for hadron colliders

< A >

'Indirect' multijet sensitivity @ Tevatron

Diphoton analysis of DØ [V. M. Abazov et al. Phys. Lett. B 690]

latest plots: http://www-d0.fnal.gov/Run2Physics/WWW/results/final/QCD/Q10B/

→ sophisticated QED⊕QCD matching algorithm [Höche, S., Siegert Phys. Rev. D 81 (2010) 034026]
 → high-multiplicity matrix elements crucial to describe data

'Indirect' multijet sensitivity @ LHC

Diphoton analysis of CMS [S. Chatrchyan et al. JHEP 1201 (2012) 133]

preliminary NNLO

∃ ► < ∃ ►</p>

Summary 3rd lecture

Monte-Carlo generators: Stochastic simulation of exclusive events

- precise predictions for the Standard Model
 - multileg tree-level & one-loop matrix elements
 - sophisticated parton-shower & matching algorithms
- flexible New Physics simulations
 - quick and easy implementation of new ideas
 - generic search strategies

QCD is a very predictive theory Plenty of interesting phenomena QCD Monte Carlos are predictive tools for LHC physics