ROOT and statistics tutorial Exercise: Discover the Higgs, part 2

Attilio Andreazza Università di Milano and INFN

> **Caterina Doglioni** Université de Genève

Hadron Collider School - HASCO

Outline

What will we do today:

- **Discover the Higgs boson of course!** ...well, check ATLAS is not cheating us \bigcirc

- What we will learn!
 - Computing confidence levels based on ____ Poissonian statistics.
 - Compute confidence levels based if the expected $\mu_{(B,S)}$ is uncertain.
- For people running fast:

Dataset

Expected B only

- Expected 95% level exclusion + error bars

2011

2012

9

Hadron Collider School - HASCO

Observed in the data 4

Root and statistics tutorial: Exercises

Confidence level definition

- Definition of confidence level
 - *N.B.:* this is **the frequentist definition**, not the Bayesian one from the lectures, but that allows you to make all computations by yourself and to grasp the main features of the problem.
 - A certain criterion rejects an hypothesis with C.L. α if, in case the hypothesis is true, it would be erroneously rejected by that criterion on a fraction 1- α of the cases.
- In our exercise:
 - We observe a certain number of events
 - N_{obs}
 - We expect a certain number of background events: N_B
 - **Discovery:** we reject the hypothesis our sample contains only background events if: $P(N^3 N_{obs} | N_B) < 1 - 2$
 - Exclusion: we reject an hypothesis expecting N_S signal events if:

 $P(N \neq N_{\rm obs} \mid N_{\rm B} + N_{\rm S}) < 1 - \partial$

Hadron Collider School - HASCO

Root and statistics tutorial: Exercises

Confidence level computation

- At first just assume a Poisson statistics:
 - We can compute the probability summing the probabilities of all N up to N_{obs}
 - But we want to use a Monte Carlo method!
 Why? It will be easier to extend to the treatment of systematic uncertainties (this is what BAT or RooStats do for example).
- What to do:
 - Sample the probability distribution M times (say M=10000)
 - Count how many cases M' the value of N exceeds (or is lower than, if appopriated) N_{obs} .
 - We can reject the hypothesis if M'/M<1- α .
 - Something like:

```
Int_t M=0;
for (Int_t i=0; i<10000; i++) {
    Int_t N = gen.Poisson(NB);
    if ( N>=Nobs ) M++;
}
Double t CL = 1.-M/10000.
```

Root and statistics tutorial: Exercises

Computing confidence levels

- Neglecting uncertainties on N_B
- With which CL can we reject the background-only hypothesis when using:
 - Only 2011 data
 - Only 2012 data
 - The combined set
- If one would have been observed only the expected backgroun (i.e. $N_{obs} = 2,3$ and 5 events respectively for 2011, 2012 and combined dataset), with which confidence level one would have rejected the hypothesis of the Higgs presence?
- Repeat adding the uncertainty on the μ value of the Poisson distribution. Assume the uncertainties on N_B and N_S are fully correlated.
 - In such a situation $P(N|\langle N_B \rangle, S_B) = 0 dN_B Poisson(N|N_B)P(N_B)$ and the integral can be performed by sampling **N**_B from a Gaussian distribution and afterward sampling *N*.

Computing exclusion limit

- Observed exclusion limit:
 - after getting N_{obs} events, all $N_S > N_{0,S}$ are excluded at confidence level α , where is the $N_{0,S}$ minimum one satisfying the relation:

 $P(N \in N_{\text{obs}} | N_{\text{B}} + N_{\text{S}}) < 1 - \partial$

- Determining this minimum, even in this simple case is quite computationally expensive, and special tools are usually employed.
- Expected exclusion limit:

Hadron Collider School - HASCO

- Is the one that would obtained if N_{obs} would correspond to the median of $P(N|\langle N_B \rangle, S_B)$
- The $\pm 1\sigma$ expected values correspond to the limit that would be obtained if \mathbf{N}_{obs} would coincide with the 16% and 84% percentiles of $P(N|\langle N_B \rangle, S_B)$
- The $\pm 1\sigma$ expected values correspond to the limit that would be obtained if \mathbf{N}_{obs} would coincide with the 2.25% and 97.75% percentiles of $P(N|\langle N_B \rangle, S_B)$
- Compute the expected limits for ATLAS and m_H=125 GeV

