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x̄± σ√
n

P (172.2GeV < mtop < 174.2GeV ) = 0.68

3

µ true mean
x mean estimation

Confidence interval (1)

Meaning of confidence level

????

?
?

X ~ N(µ,σ) random variable with unknown µ and known σ 
n realization of X: x1,....xn

mHiggs > 114GeV (95%C.L.) P (mHiggs > 114GeV ) = 0.95
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Confidence interval (2)

In classical statistics (frequentist) mtop, mHiggs, have certain values even if 
unknown and it is not allowed to talk of probability for such quantities.

The limits of the confidence interval depend on the current estimation, 
but does not mean probability to find the true value within the interval.
Such probability will be indeed 0 o 1 (the true value will be within or 
outside such interval).

What we can say is that performing a long run of 
independent measurements under the same conditions of 
the same quantity, we’ll get a series of different x%CL 
intervals which will include the true value x% of the 
times
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Negative mass ?

Not uniform distribution of a physics variable

Some interesting cases

-4eV

σ=2eV

-6eV < mν < -2eV    68% ??

mν < 0    98% ??

P(µ > 1.1)=P(µ < 1.1) ??
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Probability of a hypothesis - Inference

P(H|D)                                             P(D|H)

P(H|D)   ↔   P(D|H)

Example test HIV
P(positive| HIV) =1.    P(positive|HIV)=0.002
Test on a randomly chosen person from the european population:  infected ∼1/600

P(HIV|positive) = ?

Probability of the hypothesis H 
given the observation D.
It is the quantity of interest.

Probability of the observation D 
assuming correct the hypothesis H. 
This is the quantity we can evaluate and 
it is a measurement of the “likelihood” 
of the observation in the framework 
described by the hypothesis H.
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Standard definition of probability

1- Ratio between the number of positive cases and all the possible cases 
(combinatorial)

2- Ratio between the number of times an event happens in a run and the total 
numbers of trials (frequentist)

Satisfactory definition?
Both incomplete:
1- It assumes implicitly that all possible cases have same probability (reuse of 
the probability concept in its definition)
2- The number of trials should be large (go to infinity), furthermore assumes 
implicitly that the process happened in the past and will happen in the future 
with the same probability.

They can be a good operative way to assign a value to a probability once the 
above conditions are satisfied, but as definitions they are not really 
satisfactory.

Thursday, 19 July, 2012



8

Subjective probability
Probability: Measurement of the degree of belief that an event happen

It could seem a vague and useless definition respect to the previous ones 
that at least give useful hints to evaluate it.
To better understand the definition let’s consider a parallel with the bets 
and try to make the definition operative:

the larger the degree of belief that an event occur, more will be the quantity 
of money A that a better would pay to get back a money B in case of win

          Estimating the probability of an event means evaluating p=A/B such 
that it makes no difference for a rational better to bet in favor or against 
the event (coherent bet)

Of course the above considerations set constraints on p, since no rational 
people would bet  A>B              0≤ p ≤ 1.

The subjective probability definition, together with the coherence condition 
leads to the usual probability laws.
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P (Hi|E) = P (E|Hi)P0(Hi)�
j P (E|Hj)P0(Hj)

P0(Hi)
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Inference and Bayes theorem
Let’s suppose to consider all possible different hypothesis Hi which can 
originate the event E. In this case the problem is the following: which is the  
probability of Hi assuming to have observed E?

probability of Hi before the measurement (prior)   

likelihood, new information gained by the observation of the event E

Mutual exclusivity Exhaustivity

go back to the HIV problem
Thursday, 19 July, 2012
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The Monty Hall problem
Brief history:
based on the American television game show 
“Let’s Make a Deal” (started in the sixties) 
and named after the shows original host.
A well-known statement of the problem was 
published in Marylin vos Savant's "Ask 
Marilyn" column in Parade magazine in 1990.
Many readers refused to believe that 
switching is beneficial. After the Monty Hall 
problem appeared in Parade, approximately 
10000 readers, including nearly 1000 with 
PhDs, wrote to the magazine claiming that vos 
Savant was wrong.
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P (C = c) = 1/3 c = {1, 2, 3}
P (C = c|S = s) = P (C = c) c = {1, 2, 3} s = {1, 2, 3}
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The bayesian approach to the 
Monty Hall problem

C: door hiding the car
S: door selected by the player
H: door opened by the host

HSC

Car position independent of the choice of the player
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P (H = h|C = c, S = s) =
0 h = s (the host cannot open the door picked by the player)
0 h = c (the host cannot open the door with the car)
1/2 s = c h �= s
1 s �= c h �= s h �= c
{

P (C = c|H = h, S = s) = P (H=h|C=c,S=s)P (C=c|S=s)
P (H=h,S=s)

P (H = h|S = s) =
�3

c=1 P (H = h,C = c|S = s) =
�3

c=1 P (H = h|C = c, S = s)P (C = c|S = s)

P (C = 1|H = 3, S = 2) =
1× 1

3

1× 1
3+

1
2×

1
3+0× 1

3
= 2

3
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Version 1: MH knows and the contestant knows he knows

new information                the host opens one door with a gout

HSC

Thus if the player initially chose door n. 2 
and the host opens door n.3, the probability 

to win switching is: 
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P (C = 1|H = 3, S = 2) =
1
2×

1
3

1
2×

1
3+

1
2×

1
3+0× 1

3
= 1

2
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0 h = s (the host cannot open the door picked by the player)
1/3 h = c (the host could open the door with the car)
1/2 s = c h �= s
1/2 s �= c h �= s h �= c

P (H = h|C = c, S = s) ={

P (C = c|H = h, S = s) = P (H=h|C=c,S=s)P (C=c|S=s)
P (H=h,S=s)

P (H = h|S = s) =
�3

c=1 P (H = h,C = c|S = s) =
�3

c=1 P (H = h|C = c, S = s)P (C = c|S = s)

Version 2: MH doesn’t know and the contestant knows he 
doesn’t know

HSC

Thus if the player initially chose door n. 2 
and the host opens door n.3, the probability 

to win switching is: 

new information                the host opens one door with a gout
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P (C = c|H = h, S = s) =
�1

k=0 P (H=h|C=c,S=s,K=k)P (C=c|S=s)P (K=k)
P (H=h,S=s)

P (H = h|S = s) =
�3

c=1

�1
k=0 P (H = h,C = c,K = k|S = s) =

�3
c=1

�1
k=0 P (H = h|C = c,K = k, S = s)P (C = c|S = s)P (K = k)

15

1/2 k=0, MH doesn’t know

1/2 k=1, MH knows
P (K = k) ={

Version 3: the contestant doesn’t know if MH knows (general case)

HSC

Thus if the player initially chose door n. 2 
and the host opens door n.3, the probability 

to win switching is: 

A new variable k should be introduced as nuisance parameter: k={0,1}

Let’s use a flat prior for P(K)

P (C = 1|H = 3, S = 2) =
1
2×1× 1

3+
1
2×

1
2×

1
3

1
2×[1× 1

3+
1
2×

1
3+0× 1

3 ]+
1
2×[ 12×

1
3+

1
2×

1
3+0× 1

3 ]
= 3

5
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What we learned from this “simple” problem ?

the Bayesian approach drives you directly to the solution, it is just 
needed some care to set correctly the problem. 

fundamental role of the priors:
the result depend on how the system is prepared or better from the 
informations on how it was prepared         priors, no way to avoid them

treatment of the nuisance parameters (systematic uncertainties)

In summary

MH knows and player knows                       P(switching)=2/3
MH doesn’t know and player knows             P(switching)=1/2
player doesn’t know if MH knows                P(switching)=3/5 
(flat prior assumed) 

Also the most apparently harmless problem has its obscure sides:
“Statistics is subtle and even malicious.”, but

Thursday, 19 July, 2012
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Example: Probability that a player be cheating after n consecutive winnings

Ricorsive formula: the prior is the posterior of the previous step

probability update as new 
data become available

Dependence from the prior

(H)

Thursday, 19 July, 2012



S
N = P (S|T )

P (N |T ) =
P (T |S)
P (T |N) ×

P0(S)
P0(N)
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Example: Probability that a muon detector trigger be due to a true µ

- Trigger efficiency for a true µ = 0.95 
- Probability of misidentification of a π  = 0.02
- Beam composition: π 90% , µ 10% 

Signal to noise ratio S/N:

The likelihood ratio is the factor of improvement due to the new information

Thursday, 19 July, 2012
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Gaussian variables
Suppose we want to estimate the mean value µ of a random variable 
gaussian distributed with a known standard deviation σ

Given a run of n1 measurements, the mean value x1 will be ~ N(µ,σ/√n1) 

simplest choice flat prior 

N.B. enough to be constant for few σ1s from x1

Thursday, 19 July, 2012
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Summarizing:

- The true value µ is gaussian distributed around x1

- It’s best estimation is µ = x1

- The “credibility” intervals are easily computable

Thursday, 19 July, 2012
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Combination of different measurements:

Suppose to analyze a second set of measurements:

Let’s use the results of the first set as prior:

Final result: 

Where we found the usual formula of the weighted mean
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Measurements close to the physics limit: neutrino mass
Experiment to measure the νe mass

σm= 3.3 eV (independent of the mass)
Experimental result: m=-5.4 eV

What can we say about the νe mass ? 
Prior: positive and not too large mass
let’s assume a constant mass in the range 0 ≤ m≤ 30 eV

0 m (eV)-5.4 30

Thursday, 19 July, 2012



x = −5.4 eV
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most probable value m=0
95% CL    m < 3.8 eV

No large differences using different priors

gaussian

triangular

In both cases 95% CL    m < 3.7 eV

k dm

20

P (mνe |x) =
�m95

0 P (Mνe |x)dmνe = 0.95

Thursday, 19 July, 2012
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Nobs=5
Npred=4.0
Nsig=σBSM·lumi·eff   lumi=100pb-1  eff=0.5

Example: Poissonian variables
Probability of a Beyond Standard Model signal

σBSM (pb)

P

Likelihood:

Thursday, 19 July, 2012
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σBSM

σBSM

σBSM (pb)

95% CL limit:

Nobs N95CL

Choice of the prior

σ95%CL � 0.14 pb

What about the case Nobs=0 ?

Thursday, 19 July, 2012



P (H|E) =
� �

P (E|H,ε1,ε2)g(ε1)g(ε2)dε1dε2×P0(H)
P (E)

26

Systematic uncertainties
The parameters affected by syst. uncertainties are treated as probabilistic 
variables. The dependence of the posterior by the systematic uncertainties can 
be eliminated integrating the parameters according to their probability 
distribution function.

g(ε1)

ε1

g(ε2)

ε2

Thursday, 19 July, 2012



27Example: measurement of a gaussian variable 

Let’s come back to the previous example on the measurement of the mean 
value of a gaussian variable
This time assume that the measurement instrument be affected by a 
systematic uncertainty z,  gaussian distributed around 0 (the instrument is 
correctly calibrated) with a standard deviation σz

P (x1|µ) =
Likelihood:

P (µ|x1)

Posterior for the mean value µ: 

performing the integration:
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The results is that  P(µ) is still gaussian but its global σ is due to stat. 
and syst. uncertainties added in quadrature. 

Final remark: both statistical and systematic uncertainties have 
probabilistic nature and are treated in the same way.
Different is the way the informations are acquired:
- statistical uncertainties are due to the fact that measurements are 
based on a finite set of observations,
- systematic uncertainties can be obtained from someone else (the 
instrument manufacturer), previous experiments, the knowledge of the 
detector, the simulation, the theoretical models...

Another difference is that usually we are not interested in the pdf of 
the systematic sources, but only on the effect of the systematic 
uncertainties on the pdf of the variable we want to measure. This is why 
we integrate them out (marginalization).
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The MonteCarlo methods are a collection of techniques which use pseudo-
random generators (computer simulated) to solve numerically mathematical 
problems too complicated to be solved analytically.
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MonteCarlo methods

The easy task of the Bayesian approach is the evaluation of the not normalized 
function of the parameters (likelihood x prior), the difficult one is the 
normalization of such function, the estimation of expectation values, the 
marginalization respect to the nuisance parameters, the estimation of the 
credibility interval. 
It is clear that if we were able to sample the posterior (even the not-
normalized one) the problem is solved at least approximately.

Thursday, 19 July, 2012
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The R package: http://www.r-project.org/
free software environment for statistical computing and graphics

Thursday, 19 July, 2012
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xs = rnorm(100000) # simulate 10,000 draws from N(0,1) 
xcount = sum((xs>-1) & (xs<0)) # count number of draws between -1 and 0 
est=xcount/100000 # Monte Carlo estimate of probability 
Rest=pnorm(0)-pnorm(-1) # Compare it to R's answer (cdf at 0) - (cdf at -1) 
print("Estimation:")
print(est)
print("Compare it to R estimation (cdf at 0) - (cdf at -1):")
print(Rest)
hist(xs,breaks=100,xlim=c(-5,5),probability=TRUE,col="lightblue",main="Normal 
distribution")
abline(v=0.,col="blue",lwd=2)
abline(v=-1.,col="blue",lwd=2

31

In many cases we want to estimate the expectation value of a function f
(x) respect to a pdf p(x):

� b
a g(x)dx g = N(0, 1)

< f >=
�
f(x)p(x)dx

R macro: norm.R

General method:
1- sampling p(x) generating x1,.....xn

2- estimate <f> : < f >= 1
n

�n
i=1 f(xi)

Simple example:

So what we need are general sampling methods: 

Thursday, 19 July, 2012
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Importance Sampling
Also in this case we start with a sampling distribution q(x), but this time there 
is no requirement on q(x) (apart that q(x) should be positive):

- possible to focus the sampling on part of the p(x)
- different pdf can be sampled using the same sampling distribution
In this case the sampling produces weighted events.

< f >= 1
n

�n
i=1 f(xi)w(xi) w(xi) =

p(xi)
q(xi)

Rejection Sampling
If we are able to generate points (x) according to a function q(x) such that 
p(x)≤cq(x) (c constant), then we accept x with probability p(x)/cq(x). 
It is clear that in this way q(x) is reshaped to p(x) and the procedure does 
not depend on the absolute normalization of p(x). In the simple 1-d case 
the trivial choice for q(x) is a uniform distribution (hit or miss method).

Sampling methods

Markov chain Montecarlo
In this case the sequence of generated points form a random walk in the 
parameter space. The aim is to drive the random walk preferably towards 
high probability region of the parameter space 

Thursday, 19 July, 2012



A Markov process is a chain of states produced  by a transition process 
such that the probability of the next state depends only on the current 
state and not of the previous ones:
P (Xn+1 = x|X1 = x1, X2 = x2, ...., Xn = xn) = P (Xn+1 = x|Xn = xn)

33

Markov Chains 

Simple example drunkard’s walk:
starting point x=0, P(x+1 | x)=P(x-1 | x)=0.5                    

R macro:  drunkwalk.R 

x<-c(0)
y<-c(0)
for (i in 1:1000){
if( runif(1,-1,1) > 0 ) {x<-c(x,x[length(x)]+1)}
else {x<-c(x,x[length(x)]-1)}
}
for (i in 1:1000){
if( runif(1,-1,1) > 0 ) {y<-c(y,y[length(y)]+1)}
else {y<-c(y,y[length(y)]-1)}
}
plot(x,col=4,pch=20,ylim=c(-100.,100.))
par(new=T)
plot(y,col=2,pch=20,ylim=c(-100.,100.))
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�
0.5 0.3
0.5 0.7

�

�
P (rain)

P (no rain)

�

34

Example: two state system

Markov Chains 

2

Weather:

• raining today   40% rain tomorrow    

    60% no rain tomorrow   

• not raining today  20% rain tomorrow 

    80% no rain tomorrow

Markov Process
Simple Example

rain no rain

0.60.4 0.8

0.2

Stochastic Finite State Machine:

Tuesday, 17 July, 2012

0.5 0.5 0.7

0.3

raining today
50% raining tomorrow

50% not raining tomorrow

not raining today
30% raining tomorrow

70% not raining tomorrow

Stationary assumption: transition matrix independent of time

transition matrix

Thursday, 19 July, 2012
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R macro:  mcmcrain.R 

matr<-c()
matr<-c(0.5,0.3,0.5,0.7)
trans=matrix(matr,2,2,TRUE)
ini<-c(0.,1.)
story1<-c()
story2<-c()
state=matrix(ini,2,1)
for (i in 1:20){
 story1<-c(story1,state[1])
 story2<-c(story2,state[2])
 print(state)
 state=trans %*% state
# readline ("goto next iteration")
}
plot(story1,col=4,pch=20,ylim=c
(0.,1.))
par(new=T)
plot(story2,col=2,pch=20,ylim=c
(0.,1.))
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How does MCMC work and why it is so important in 
Bayesian analysis

 Output of Bayesian analysis are posterior 
probability densities, often functions of a 
large numbers of parameters (n-dim space)

 Sampling n-dim functions is a difficult 
task

 use a random walk preferably driven to 
high probability region to efficiently 
explore the n-dim space

Metropolis algorithm
 Start at some randomly chosen xi

 Randomly generate y around xi

 If f(y)  ≥ f(xi) set xi+1 = y
 If f(y) < f(xi) set xi+1 = y with prob. f(y)/f(xi)
 if y not accepted xi+1 = xi (stay where you are)
 start over
N.Metropolis et al., J. Chem. Phys. 21 (1953) 1087.
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A closer look to the Markov chain generation

Generation of the next point
proposal function: probability density used to 
generate the next step

should be independent of the distribution 
we want to sample
 shape is very important (Breit-Wigner 

for example is a good choice)
 width related to the efficiency (fraction 

of the accepted points)

small width = 
large efficiency

large width = 
small efficiency

Thursday, 19 July, 2012



p(�λ| �D) ∝ p( �D|�λ)p0(�λ)

p(λi| �D) ∝
�
p( �D|�λ)p0(�λ)dλj �=i

38

Use of MCMC in bayesian inference

 Use MCMC to sample the posterior 
probability distribution

 Marginalization of the posterior:

Fill a histogram with just one 
parameter during sampling
 Error propagation: any function 

of the parameters can be 
evaluated during sampling
 Point estimate: find mode 

during sampling

marginalized distributions
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a package which makes use of MCMC to perform Bayesian analysis, 
interfaced with ROOT

Details on the package and its installation in:
http://www.mppmu.mpg.de/bat/

Usually independent chains are used to check convergence (BAT default is 5):

BAT: Bayesian Analysis Toolkit
A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit  
Computer Physics Communications 180 (2009) 2197-2209

Thursday, 19 July, 2012
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P0(σBSM ) = cost

40

Nobs=5
Npred=4.0
Nsig=σBSM·lumi·eff   lumi=100pb-1  eff=0.5

Example: Same exercise as before using BAT:
Probability of a Beyond Standard Model signal

Poiss(Nobs, µ) =

sigma
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p(
si

gm
a|

da
ta

)

0

2
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8

10

12

14

sigma
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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a|

da
ta

)

0
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4
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8

10

12

14  -0.032
+0.049 = 0.047 medsigma Global mode

Mean

Median

Central 68%

sigma
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p(
si

gm
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4
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8

10

12
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sigma
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p(
si

gm
a|

da
ta

)

0

2

4

6

8
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12

14

sigma
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p(
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a|
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)

0

2

4

6

8
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14  -0.032
+0.049 = 0.047 medsigma Global mode

Mean

Median

Central 68%

sigma
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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)
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BAT output
 List of parameters and properties of the 
marginalized
 distributions:
  (0) Parameter "sigma":
      Mean +- sqrt(V):                0.05567 +- 
0.04227
      Median +- central 68% interval: 0.04684 +  
0.04948 - 0.03169
      (Marginalized) mode:            0.0225
       5% quantile:                   0.004969
      10% quantile:                   0.009615
      16% quantile:                   0.01516
      84% quantile:                   0.09878
      90% quantile:                   0.1139
      95% quantile:                   0.1377
      Smallest interval(s) containing 68% and 
local modes:
       (0, 0.075) (local mode at 0.0225 with rel. 
height 1; rel. area 0.6966)

sigma
0 0.1 0.2 0.3 0.4 0.5

p(
si

gm
a|

da
ta

)

0

2

4

6

8

10

12

Prior probability

Posterior probability
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par0 · (1 + σsyst ·N(0, 1))
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BAT output (including systs.)

sigma
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Npred syst: ± 0.2
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no systs

95 CL

The systematic uncertainties on eff, lumi and Npred have been included 
assuming gaussian priors:

nominal value relative syst. unc.

systs included
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npredseffslumis
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Conclusions
My personal view after some years of involvements mainly as user in statistical 
issues:

 Statistics is often quite complicated and there are on the market a lot of 
recipes and programs often used as black-box.

 On the other hand one of the advantage in using the Bayesian approach is 
that you always control what you are doing.

 Its basic concepts are simple and natural, the connection of the probability, 
meant as “degree of belief”, with the status of information is exactly what we 
all do (mostly unconsciously) when we have to make decision.

 As we have seen some care is needed in understanding the problem and 
setting it up correctly, after that the road towards the result is well designed.

I strongly encourage you to use it, I’m pretty sure you’ll 
enjoy statistical analysis using Bayesian inference !
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