

Detector Physics

M. Weber

Crash at Crush, TX (1896)

First attempt to produce Higgs ?

M.Weber, HASCO 2012

3

Overview

How do we "measure" particles ?

- What we measure (tracks, momentum, energy)
- How well we do it

One hour... I chose to stay general and give an overview...The basics...

Charged Particles

Energy loss by interaction with atomic electrons

- Soft collision: atom is excited (electron to higher shell)
- Hard collision: atom is ionised (electron kicked out)
- Negligible deflection since m(particle) >> m(electron)
- Small energy loss per collision (eV)
- But many electrons in the way: in total a large effect:

Ionization energy loss (Bethe Bloch)

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

 $K = 4 \pi N_A r_e^2 m_e c^2$ Z:Atomic number of absorber A:Atomic mass of absorber *I*: Mean excitation energy δ : density effect correction

- dE/dx in MeVg⁻¹cm²
- dE/dx depends on β
- MINIMUM: M.I.P.
- Z/A similar for most elements
- $I \approx I_0 Z$, with $I_0 \approx 10 \text{ eV}$

A first detector

Drift tubes

NOTE: Drift speed (mobility) of electrons is much larger than the one of ions

M.Weber, HASCO 2012

| 12

Magnets / bending

Toroid

$$qvB = \frac{p}{R}v$$
$$B[\mathsf{T}] \cdot R[\mathsf{m}] = 3.3356 \cdot p \left[\mathsf{GeV/c} \right]$$

Particle ID and tracking

M.Weber, HASCO 2012

| 17

Impact parameter resolution

Resolution

Tracking close to the interaction point: need resolution !

Silicon detectors

Solenoid magnets

Momentum Resolution

- Momentum resolution goes linear with the momentum
- Momentum resolution gets better with the square of the lever arm L and linearly with B
- 100% error means that charge cannot be measured
- Ideal undisturbed particle path

Multiple scattering

Bremsstrahlung / Pair production

• Energy loss due to emission of photons in the electromagnetic field of the nucleus (and of the atomic electrons).

Bremsstrahlung and Pair production

JV217.c

- Absorber (passive) and detector (active) layers
- Fluctuations in visible energy: "sampling fluctuations" due to variation of the nnumber of charged particles in the detector

Energy resolution

Statistical fluctations

- In the number of particles in the shower
- In the number of escaping or undetected particles

Noise

- Electronic noise
- Pile up
- Constant
 - Dead material
 - Calibration errors
 - Mechanical imperfections

Higher energy -> better resolution

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{\sigma_n}{E} \oplus \text{constant}$$

Position, momentum, energy

And... the most common objects ?

Jets

Hadron interactions

- Interaction length λ is much larger than the radiation length X_0
- Due to strong interaction, the shower is much wider

Summary

Ionisation

• Magnets $B[T] \cdot R[m] = 3.3356 \cdot p \left[\text{GeV/c} \right]$

p[GeV

- Tracking detectors
 - Momentum resolution
 - Impact parameter resolution
- Showers / Calorimeters
- Particle ID
- Collider detectors

 $\approx 0.25 - \Delta s[\mu m]$

 $L[\text{cm}]^2 B[$

 $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{\sigma_n}{E} \oplus \text{ constant}$

M.Weber, HASCO 2012

43