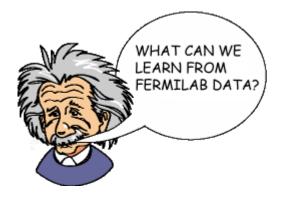
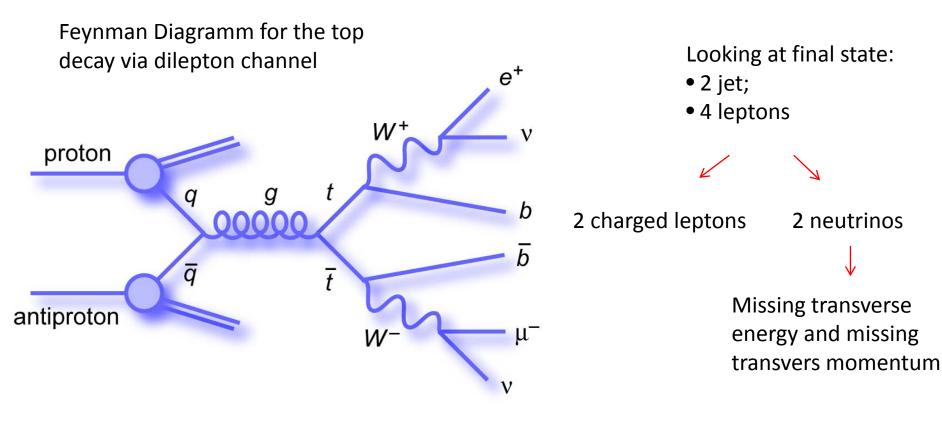
Measurement of the top quark mass in the dilepton channel using mT2 at CDF

Ambra Provenza, "La Sapienza" University of Rome Martin Putnik, University of Uppsala


Supervisor William Klemm

Outline


- Motivation
- Top quark decay channels
- Generalization of transverse mass
- Measurement of m_{T2}
- Monte Carlo simulation
- Systematic uncertainties
- Conclusion and result

Motivation

- Constrain on Higgsmass with precise topmass (ttbar to Higgs, Wtb-vertex)
- Mt2 sensitive for new physics (dark matter)
- Testing SM at high energy scale

Top quark decay channels

We only know
$$\, {f p_{T,miss}} = {f p_T^{(1)}} + {f p_T^{(2)}}$$

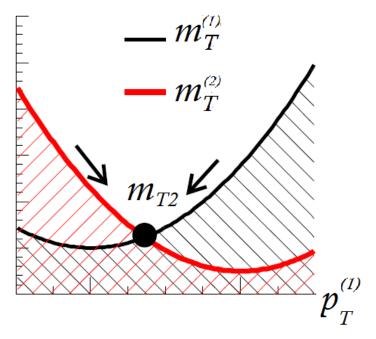
Generalization of transverse mass

Transverse mass is observable, define as

$$m_T^2 = (E_{T_1} + E_{T_2})^2 - (\vec{p_{T_1}} + \vec{p_{T_2}})^2$$

Can use m_T in decay with one missing energy / momentum

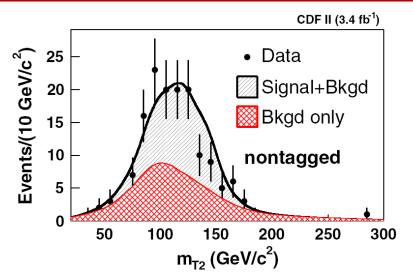
In the decay with two missing energy / momentum we use a generalization of $\ensuremath{m_T}$


$$m_{T2}(m_{inv}) = min_{p_T^{(1)}, p_T^{(2)}}(max \ (m_T(m_{inv}, \ p_T^{(1)}), \ m_T(m_{inv}, \ p_T^{(2)})))$$

m_{T2} for one event

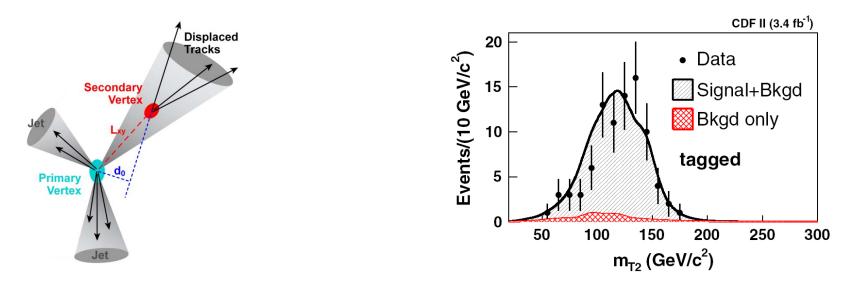
To calculate m_{T2} we need to consider all combinations:

- 1. Jet 1 connects to lepton 1 and Jet 2 connects to lepton 2
- 2. Jet 1 connects to lepton 2 and Jet 2 connects to lepton 1

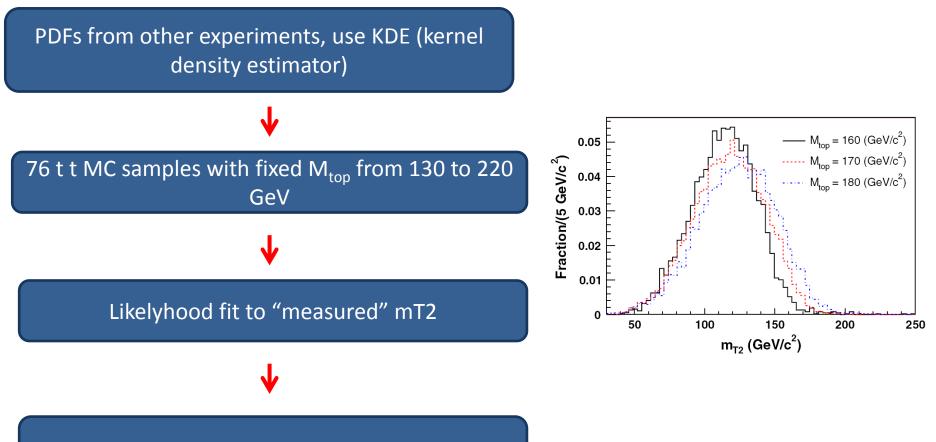

We take first one combination and calculate m_{T2} , as in the picture

$$\mathbf{p}_{\mathbf{T},\mathbf{miss}} = \mathbf{p}_{\mathbf{T}}^{(1)} + \mathbf{p}_{\mathbf{T}}^{(2)}$$

 $p_{\mathbf{T}}^{(1)}$ goes from 0 to $\mathbf{P}_{\mathbf{T},\mathbf{miss}}$


Then we make the same thing for the other combination and we take the smaller $\,m_{T2}$

m_{T2} for all events


With $3.4 fb^{-1}$ luminosity achieve mT2 distribution in range of 0 to 300 GeV The MC signal+background are included and fitted.

If we consider b tagging, the background and uncertainty in data will be reduced

Monte Carlo simulation

For full background simulation, we start with

Best fit to the data: $M_{top} = 168 \text{ GeV}$

Systematic uncertainties

The highest uncertainty is due to jet energy scale (light quarks). This comes from modeling of b-fragmentation, b hadron branching fractions and calorimeter response

TABLE II. Estimated statistical ($M_{top} = 175 \text{ GeV}/c^2$), systematic, and total uncertainties in GeV/c^2 .

		m_{T2}
Statistical		4.0
Systematic	Jet energy scale (light quarks)	2.6
	Generator	0.3
	Parton distribution functions	0.5
	b jet energy scale	0.2
	Background shape	0.4
	Gluon fusion fraction	0.3
	Initial- and final-state radiation	0.6
	MC statistics	0.3
	Lepton energy	0.6
	Multiple hadron interaction	0.2
	Color reconnection	0.7
	Total systematic uncertainty	2.9
Total		5.0

Conclusion and result

We took $3.4 fb^{-1}$ of CDF data in $p\bar{p}$ collision with $\sqrt{s} = 1.96 TeV$ From these 236 $t\bar{t}$ events with the dileptonic signature were selected Using m_{T2} :

$$M_{top} = 168 \pm \frac{4.8}{4.0} (stat) \pm 2.9 (syst) GeV/c^2$$

With m_t^{NWA} (Neutrino weighted algorithm) and m_{T2} :

$$M_{top} = 169.3 \pm 2.7 \ (stat) \pm 3.2 \ (syst) \ GeV/c^2$$

The systematic uncertainties of M_{top} using m_{T2} are lower than previous measurement in single lepton channel, this makes m_{T2} to one of the best observables for the topmass.