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          Bayesian vs Frequentist 

• We are interested in using a given sample of data to make inferences about a 
probabilistic model 

 

• In frequentist statistics, probability is interpreted as the frequency of the 
outcome of a repeatable experiment. parameter estimation 

• Frequentist statistics provides the usual tools for reporting the outcome of an 
experiment objectively, without needing to incorporate prior beliefs 
concerning the parameter being measured or the theory being tested 

 

• In Bayesian statistics, the interpretation of probability is more general and 
includes degree of belief called subjective probability 

• Probability density function (p.d.f.) for a parameter expresses one’s state of 
knowledge about where its true value lies 

• they require the prior p.d.f. as input for the parameters, i.e., the degree of 
belief about the parameters values before carrying out the measurement 
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Bayesian Inference, Priors                             Probability 

• ‘’ a quantitative measure of strength of our anticipation, founded on the said knowledge, 
that the event comes true ‘’   (D’ Agostini 2003) 

• “ ….Probability of an event to be understood as given state of knowledge.” 

 

A and B are two propositions                     Set of propositions  
    

                   

  (tautology) 

 

 

 

 

In physics experiments, deal with measurement  

That are discrete or continuous 

 

For discrete x, expression p(x)             Probability Function 

For continuous ,  expression p(x) dx        Probability density function 
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Bayesian Inference 

4 

• Everything we do based on what we know about the physical world 

• Conclusions about hypotheses will be based on our general background knowledge 

• Dependence of probability on the state of background information, I   
 

 

 

 

                                                Bayes’ theorem  

• A logical rule to update our beliefs on the basis of new conditions 

 

 
 
 

    posterior  likelihood  prior 
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Bayesian Inference, Priors                      Gaussian Model 

CAUSE      Response signal d from detector 

      True value    

EFFECT    d     Inference Standard deviation  

 

• Known as normal  often assumed that errors are normally distributed according to 
function 

 

 

 

• Considering all values of  equally likely over a large interval 

 

 

 

• If the quantity is constrained in physical region  ≥ 0, while d falls outside it or at its edge 

• Prior (step function) 
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Bayesian Inference, Priors                      Binomial Model 

• In a large class of experiments, the 
observations consist of counts (events) 

• The # of counts described 
probabilistically by Binomial or Poisson 
model   

- Inference about the efficiency of 
detector 

-     Branching ratio in particle decay 

 

• The binomial distribution describes the 
probability of randomly obtained n 
events (success) in N independent 
trials 

• Assume the probability  that the 
event will happen 
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Bayesian Inference, Priors                      Poisson Model 

• The Poisson distribution gives the 
probability of observing n counts in fixed 
time interval 

 

• # of counts to be observed is  

 

 

• To infer   from n counts observed 

 

• By using uniform prior p(  | I ) for  

 
 

 

 

• The expectation and variance of  is 
n+1, while the most probable value is 
m = n 
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 Bayesian Inference, Priors                  Choice of priors 
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- Choice of priors is crucial in non-likelihood-dominated situations, i.e. outcomes not 

assumed to be equally likely 

 

 

- Priors are often left implicit or dealt with inappropriately  

  

 

- Good choice of prior can be a significant advantage of a Bayesian approach over a 

frequentist one 

 

 

- A good prior function should: 

  

 - Model the current information on the underlying PDF 

  

 - Be mathematically handy! 

   

 



9 7/19/2012 

Bayesian Inference, Priors    Improper priors 
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- When choosing a function to model a prior, in most cases detailed values (or normalization) 

don't matter 

 

 

- In fact, the choice of “improper” priors can be extremely advantageous 

 

   

-    Choose a family of functions with suitable adjustable parameters 

 

 

-   Test effect of chosen prior on posterior (sensitivity tests) 
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Bayesian Inference, Priors   Conjugate priors/1 
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-   Need to model information realistically while keeping the calculation feasible 

 

-   The idea arises of choosing a prior such that the posterior is of the same functional 

family: Conjugate Priors 

 

 e.g. Gaussian likelihood * Gaussian prior → Gaussian posterior 

 

As an expression of the form 

 

 

Can always be casted into the form 

𝐾′exp
− 𝑥′ − μ 2

2σ′2
 

K exp
− 𝑥1−μ

2

2σ1
2 −

𝑥2−μ
2

2σ2
2  

 



Likelihood Conjugate prior Posterior 

Binomial (N,p) Beta (r,s) Beta (r+N, s+N-n) 

Poisson () Gamma (r,s) Gamma(r+n, s+1) 

Normal (, )  Normal (0, 0) Normal (1, 1) 
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Bayesian Inference, Priors   Conjugate priors/2 
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- The conjugated priors for important PDFs can be summarized as follows 

Normal distribution Beta distribution Gamma distribution 
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Bayesian Inference, Priors  General-principle-based priors 

HASCO-2012  Group 1 – B.Ali, S.De Nicola 

- For some applications, useful to determine prior from general principles, 

  keeping “subjective” factor to a minimum 

 

- Some of these rules are obtained by requiring transformation invariance 

 

 -> Translational invariance 

 

Requiring that                                                (where a' = a+b) 

 

                                                                        

                                                                              (flat prior) 

 

  

  -> Scale invariance 

 

 

Requiring that                                             for a scaling factor β 

 

                                                                             (Jeffreys' prior) 

 

 

 

   

 

𝑝 𝑎 𝑑𝑎 = 𝑝 𝑎′ 𝑑𝑎′ 

𝑝 𝑎 𝑑𝑎 = β𝑝 β𝑎 𝑑𝑎 

𝑝 𝑎 ∝
1

𝑎
 

𝑝 𝑎 = 𝑐𝑜𝑛𝑠𝑡. 
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Bayesian Inference, Priors                     Alternative methods 
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Other family of approaches based on Maximum Entropy Principle (MEP) 
 

- Choose prior that maximizes Shannon-Jaynes information entropy, defined as 

 

                                   

 

subjected to what we assume to know about the PDF. 

 

Same principles are recovered. E.g. : 

- If there are no constraints, S is maximized by Jeffreys' prior (  p a ∝
1

𝑎
 ) 

 

Yet another approach: Reference priors 
 

- Maximize Kullback–Leibler divergence         amount of information from posterior 

( i.e. “least informative” prior)  

 

- Most used to tackle multivariate problems, where other priors (Jeffreys’ ) can result 

in unwanted behaviours 

 

 

= − 𝑝𝑖𝑙𝑛𝑝𝑖

𝑛

𝑖

 S 



Summary 

• Two school of statistics: Bayesian and Frequentist 

 

• The concept of Bayes’ theorem 

 

• Bayesian Inference for different PDFs 

 

• Suitable choice of priors 

 

• Conjugated priors 

 

• Obtaining priors from general principles 

 

• Alternative views on the choice of priors  

     (e.g. maximum entropy, reference priors) 
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