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Bayesian vs Frequentist

 We are interested in using a given sample of data to make inferences about a
probabilistic model

* In frequentist statistics, probability is interpreted as the frequency of the
outcome of a repeatable experiment. parameter estimation

* Frequentist statistics provides the usual tools for reporting the outcome of an
experiment objectively, without needing to incorporate prior beliefs
concerning the parameter being measured or the theory being tested

* In Bayesian statistics, the interpretation of probability is more general and
includes degree of belief called subjective probability

* Probability density function (p.d.f.) for a parameter expresses one’s state of
knowledge about where its true value lies

* they require the prior p.d.f. as input for the parameters, i.e., the degree of
belief about the parameters values before carrying out the measurement
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Bayesian Inference, Priors Probability

* “aquantitative measure of strength of our anticipation, founded on the said knowledge,
that the event comes true “ (D’ Agostini 2003)

e “...Probability of an event to be understood as given state of knowledge.”

A and B are two propositions Set of propositions
L; Hj = 0
0<P(A) <1 -
HinH, = 0 if j#k
P(2) =1 (tautology)
P(AUB)=P(A)+ P(B)— P(An B) Z P(H;) = 1
7

PANB)=PA|B)P(B)=P(B|A)P(A
(AN B) = P(A| B) P(B) = P(B| 4) P(A) Py = S P,
P(A)+PA) = 1 1-
P(H;) = ZP(HHEJP(EJ
In physics .experiments, o'lealwith measurement PE) ZIP(EE-,HJ)
That are discrete or continuous F

P(E) = ) P(E;|H;)P(H;)

For discrete x, expression p(x) Probability Function ’

For continuous , expression p(x) dx  Probability density function
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Bayesian Inference

e Everything we do based on what we know about the physical world
* Conclusions about hypotheses will be based on our general background knowledge
 Dependence of probability on the state of background information, 7

P(A,B|I)=P(A|B,I)P(B|I)= P(B|A,I)P(A|I)

P(H;|E:I) _ P(E:|H;.I)
PH;[I)  PED

P(E;| H;.1) P(H; | )
P(E: | T)

P(H; | E.T) =

Bayes’ theorem
* Alogical rule to update our beliefs on the basis of new conditions

P(E,|H;.1) P(H, |I)
>, P(E: | H;.T) P(H; | 1)

P(H;| E:, )

P(Hj | Ei, 1) o P(E;i|H; 1) P(Hj|1I)

posterior o likelihood x prior
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Bayesian Inference, Priors Gaussian Model

CAUSE ) Response signal d from detector
T True value u
EFFECT T d' Inference Standard deviation ¢

 Known as normal often assumed that errors are normally distributed according to

function
1 (d - p)°
— I
I 1 (d— p)? (uld.D) \f2:rroexp 202 pll)
. — — p l'-’:' b -
pld]pm 1) VIZ_’?TJEKP 20° 1 exp —{d_‘u)g plp|I)dp
—eo V2O 202
* Considering all values of u equally likely over a large interval
1 (1 —d)?
d l) = e
p(pld,I) QWJEXPI 5o

* If the quantity is constrained in physical region pu > 0, while d falls outside it or at its edge
* Prior (step function)
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Bayesian Inference, Priors Binomial Model

: p(&g|n,N)

* Inalarge class of experiments, the
observations consist of counts (events) 4[

* The # of counts described I n= 1 N
probabilistically by Binomial or Poisson | 3
model '

Inference about the efficiency of al
detector [ |
Branching ratio in particle decay Al . N=9
. ' oL N=3

+  The binomial distribution describes the ———55" T
probability of randomly obtained n p(0|n.N.I) — 19” (1— Hli_"’
events (success) in N independent Jo € (1 —8)¥-"de
trials _ E?FN-I_ 1]‘\“ an |::1 _ H}N—ﬂ

* Assume the probability 6 that the B(6) — 1 T
event will happen - N +2

N+ 1) 20 (n+1)(N—n+1) E(®) (1-E(@®)
_ T U o V- T (N+3)(N+2)2 N+3
p(”|9=N)_n!(N—n)!M1 9 O — %
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Bayesian Inference, Priors Poisson Model

The Poisson distribution gives the
probability of observing n counts in fixed

time interval
p(A|n)
) 1p
# of counts to be observed is A !
Ate 0.8
A = -8
p(n|A) — -\n:ﬂ
To infer A from n counts observed “-ﬁj'\
0.4} \
By using uniform prior p(A | I)forA "} . n=1
)'.n-E.'_}' L ._\,\'ﬂ=2
] A e 0.2p ;H“ N —IEiS n=10
pOm,T) = ——2 N e
P nl [/ X e —
f Iﬂ‘,‘-!'lL M:--:T\—r Rt e 2
1] ! 2.5 5 7.5 10 12.5 15 17.5 20

The expectation and variance of A is
n+1, while the most probable value is
Am=n
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Bayesian Inference, Priors Choice of priors

- Choice of priors is crucial in non-likelihood-dominated situations, i.e. outcomes not
assumed to be equally likely

- Priors are often left implicit or dealt with inappropriately

- Good choice of prior can be a significant advantage of a Bayesian approach over a
frequentist one

- A good prior function should:
- Model the current information on the underlying PDF

- Be mathematically handy!
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Bayesian Inference, Priors Improper priors

When choosing a function to model a prior, in most cases detailed values (or normalization)
don't matter

In fact, the choice of “improper” priors can be extremely advantageous

Choose a family of functions with suitable adjustable parameters

Test effect of chosen prior on posterior (sensitivity tests)
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Bayesian Inference, Priors Conjugate priors/1

- Need to model information realistically while keeping the calculation feasible

- The idea arises of choosing a prior such that the posterior is of the same functional
family: Conjugate Priors

e.g. Gaussian likelihood * Gaussian prior — Gaussian posterior

As an expression of the form

—(x1—w)? . (x2—W)?
204 2035

Can always be casted into the form

oG —w?
K exp[ 2’2
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Bayesian Inference, Priors Conjugate priors/2

- The conjugated priors for important PDFs can be summarized as follows

Likelihood Conjugate prior Posterior
Binomial (N,p) Beta (r,s) Beta (r+N, s+N-n)
Poisson () Gamma (r,s) Gamma(r+n, s+1)
Normal (p, o) Normal (p,, G,) Normal (i,, )
! T : : : 0.5
= 0,0§=U.2 I | 25k N L Y RIS S, k=1,0=20 —
09 r u=00,=10 —— I k=2,0=20 ——
u=0,02=5.0 — - ) k=3,0=20 —
08 p=-2,6=05 —— " 1”-3 04 | k=50=10 —
2.0k B S SRR, WO — a=lA=2 k=9,0=05 —
2sb\ o N _% o
o\ o N\ NS
N (A B X T T
"8 02 i . i 08 10 0 2 4 6 8 0 2 W 16 15
Normal distribution Beta distribution Gamma distribution
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Bayesian Inference, Priors General-principle-based priors

- For some applications, useful to determine prior from general principles,
keeping “subjective” factor to a minimum

- Some of these rules are obtained by requiring transformation invariance
-> Translational invariance

Requiring that p(a)da = p(a’)da’ (where a' = a+b)
—> p(a) = const. (flat prior)
-> Scale invariance

Requiring that  p(a)da = Bp(Ba)da for a scaling factor f3

1
—>  p(a) x - (Jeffreys' prior)

HASCO-2012 Group 1 —B.Ali, S.De Nicola



Bayesian Inference, Priors Alternative methods

Other family of approaches based on Maximum Entropy Principle (MEP)
- Choose prior that maximizes Shannon-Jaynes information entropy, defined as
n
s == ) (ulnp)
subjected to what we assume to know about the PDF.
Same principles are recovered. E.g. :
1
- If there are no constraints, S is maximized by Jeffreys' prior ( p(a) -)
Yet another approach: Reference priors

- Maximize Kullback-Leibler divergence —> amount of information from posterior
(1.e. “least informative™ prior)

- Most used to tackle multivariate problems, where other priors (Jeffreys’ ) can result
in unwanted behaviours
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Summary

* Two school of statistics: Bayesian and Frequentist
* The concept of Bayes’ theorem

* Bayesian Inference for different PDFs

e Suitable choice of priors

* Conjugated priors

e Obtaining priors from general principles

* Alternative views on the choice of priors
(e.g. maximum entropy, reference priors)
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