Search for dark matter candidates in events with a jet and missing transverse momentum with the ATLAS detector

C. M. Delitzsch, P. Clavier

July 20, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Our article:

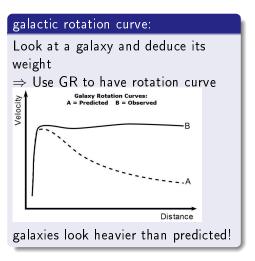
Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector ATLAS-CONF-2012-084 ATLAS Collaboration July 3, 2012

A CMS article: arXiv:1204.0821v1

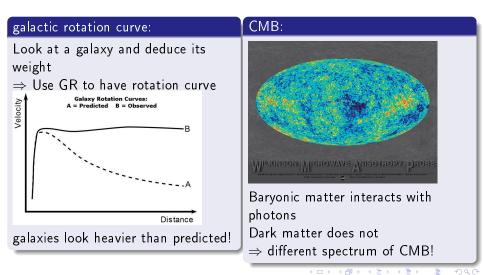
Introduction

2 Dark matter

4 Data set, event selection and background


Search for dark matter candiates

< □ > < □ > < □ > < □

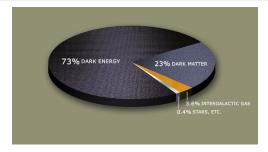

문 논 문

Dark matter= explanation to cosmological observations

Dark matter = explanation to cosmological observations

Dark matter = explanation to cosmological observations

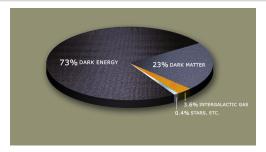
Search for dark matter candiates


C. M. Delitzsch, P. Clavier

Search for dark matter candiates

< □ > < □ > < □ > < □

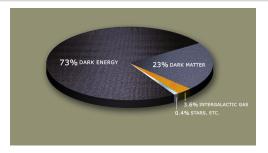
문 문 문


HUGE amount of dark matter!!

イロト イヨト イヨト イヨト

æ

HUGE amount of dark matter!!

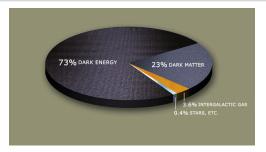

SUSY? Neutrinos? WIMPs?

Search for dark matter candiates

< D > < P > < P > < P >

э

HUGE amount of dark matter!!

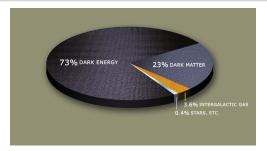

SUSY? Neutrinos? WIMPs? \Rightarrow BSM physics \Rightarrow accelerators

Search for dark matter candiates

< □</p>

э

HUGE amount of dark matter!!



SUSY? Neutrinos? WIMPs? \Rightarrow BSM physics \Rightarrow accelerators

Other theories:

Search for dark matter candiates

HUGE amount of dark matter!!

SUSY? Neutrinos? WIMPs? \Rightarrow BSM physics \Rightarrow accelerators

Other theories:

- MOdified Newton Dynamics (MOND)
- Dark Fluid
- Quantum Gravity

WIMPs(1)

Search for dark matter candiates

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

æ

▲御 ▶ ▲ 副 ▶

Characteristics:

< 1 → <

Characteristics:

- Interact only via weak force and gravity
- ${\bullet}\,$ Masses \sim 10 GeV 10 TeV
- numerous candidates (LSP, Neutralinos...)

Characteristics:

- Interact only via weak force and gravity
- ${\bullet}\,$ Masses \sim 10 GeV 10 TeV
- numerous candidates (LSP, Neutralinos...)

Assumptions:

Characteristics:

- Interact only via weak force and gravity
- Masses \sim 10 GeV 10 TeV
- numerous candidates (LSP, Neutralinos...)

Assumptions:

- Masses \gtrsim few GeV \Rightarrow effective theory
- Dirac fermions \Rightarrow bispinors transforming under $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ rep of SO(3,1).

Search for dark matter candiates

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

Search for dark matter candiates

・ロト ・部ト ・ヨト ・ヨト

æ

• $qar{q} o \chiar{\chi} \rightsquigarrow$ Scalar, Vector, Axial-Vector, Tensor operators

• $gg \rightarrow \chi \bar{\chi} \rightsquigarrow \text{Scalar operator}$

- ◆ 同 → - ◆ 三

- $q ar q o \chi ar \chi \rightsquigarrow$ Scalar, Vector, Axial-Vector, Tensor operators
- $gg \rightarrow \chi \bar{\chi} \rightsquigarrow \text{Scalar operator}$

The vector operator:

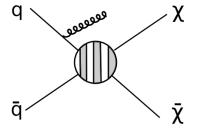
< / □ > <

э

- $qar{q} o \chiar{\chi} woheadrightarrow {\sf Scalar},$ Vector, Axial-Vector, Tensor operators
- $gg \rightarrow \chi \bar{\chi} \rightsquigarrow \text{Scalar operator}$

The vector operator:

•
$$\mathcal{O}_V = \frac{1}{M_*^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$$


- spin-independent scattering
- s-channel: $q\bar{q} \rightarrow Z' \rightarrow \chi \bar{\chi}$

 \mathcal{O}_V is the effective coupling derived from the Feynman diagram:

Signal events in monojet topology

- one high-energetic jet (initial state radiation)
- large missing transverse energy

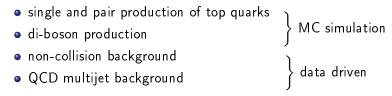
Name	Initial state	Туре	Operator
D1	qq	scalar	$\frac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$
D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$

Data set and event selection

Data set:

- Full 2011 data set
- $\sqrt{s} = 7$ TeV, $\mathcal{L} = 4.7$ fb⁻¹

Event Selection:


- Quality requirements, e.g. trigger has fired, good primary vertex, ...
- ② max. of two jets with $p_T>$ 30 GeV, $|\eta|<$ 4.5, leading jet: $|\eta|<$ 2
- ullet suppress dijet events: $|\Delta \phi(ec{
 ho}_{ ext{T}}^{ ext{miss}},ec{
 ho}_{ ext{T}}^{ ext{jet2}})| > 0.5$
- veto event which have an electron or muon
- define four different signal regions (SR) with different kinematic selections
 - \implies sensitive to a wide range of BSM models

Signal region		SR2		
cut on ${\it ho}_{ m T}^{ m jet1}$, ${\it E}_{ m T}^{ m miss}$ [GeV]	120	220	350	500

Dominant background:

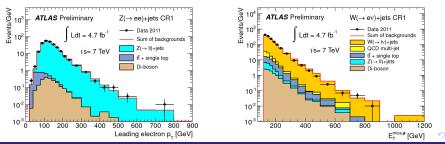
- $Z \rightarrow \nu\nu$ + jets • $W \rightarrow l\nu_l$ + jets • $Z \rightarrow ll$ + jets
- estimated in four different control regions

Further backgrounds:

Z/W + jets background estimation |

- ullet define four different control regions (CR) by selecting e^\pm or μ^\pm
- tighter cuts on electrons, muons than in signal region
- CR dominated by Z and W events, no contamination from BSM
- ullet apply same cuts on $E_{
 m T}^{
 m miss}$ and leading jet $p_{
 m T}$ as in SR

SR	$Z \rightarrow \nu \bar{\nu} + jets$	$W \rightarrow \tau \nu + \text{jets}$	$W \rightarrow ev + jets$	$Z \rightarrow \tau^+ \tau^- + \text{jets}$
		$W \rightarrow \mu \nu + \text{jets}$	W Zevrjets	$Z \rightarrow \mu^+ \mu^- + jets$
CR	$W \rightarrow ev + jets$		$W \rightarrow ev + jets$	$Z \rightarrow \mu^+ \mu^- + jets$
	$W \rightarrow \mu \nu + \text{jets}$	$W \rightarrow \mu \nu + jets$		
	$Z \rightarrow e^+e^-$ +jets	$W \rightarrow \mu V + jets$		
	$Z \rightarrow \mu^+ \mu^- + \text{jets}$			

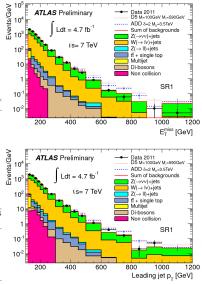

- estimate background shape and normalization in SR from CR by applying corrections
- corrections account for e.g different kinematic selections and trigger
- correction factors calculated using data and MC simulations

Z/W + jets background estimation II

$$\begin{split} & \mathsf{Background\ prediction\ in\ SR} \\ & \mathcal{N}_{\mathrm{SR}}^{\mathrm{predicted}} = (\mathcal{N}_{\mathrm{CR}}^{\mathrm{data}} - \mathcal{N}_{\mathrm{CR}}^{\mathrm{bkg}}) \cdot \mathcal{C} \cdot \frac{\mathcal{N}_{\mathrm{SR}}^{\mathrm{MC}}}{\mathcal{N}_{\mathrm{jet}/\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}}} \end{split}$$

• C : contains acceptances, efficiencies and trigger luminosities • $\frac{N_{SR}^{MC}}{N_{jet/E_T}^{MC}}$: translates observed number of events in data in CR to

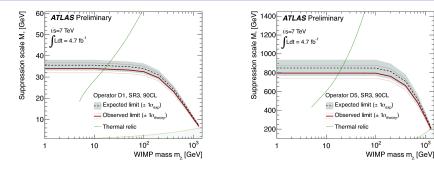
predicted number of events in SR


Search for dark matter candiates

Results

good data/MC agreement
 ⇒ set limits on visible σ_{vis}

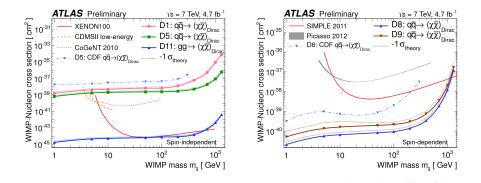
$$\sigma_{\rm vis} = \sigma \cdot A \cdot \epsilon$$


	SR1	SR2	SR3	SR4
$Z \rightarrow \nu \bar{\nu} + jets$	63000 ± 2100	5300 ± 280	500 ± 40	58 ± 9
$W \rightarrow \tau \nu + jets$	31400 ± 1000	1853 ± 81	133 ± 13	13 ± 3
$W \rightarrow e\nu + jets$	14600 ± 500	679 ± 43	40 ± 8	5 ± 2
$W \rightarrow \mu \nu + jets$	11100 ± 600	704 ± 60	55 ± 6	6 ± 1
$t\bar{t} + \text{single } t$	1240 ± 250	57 ± 12	4 ± 1	-
Multijets	1100 ± 900	64 ± 64	8^{+9}_{-8}	-
Non-coll. Background	575 ± 83	25 ± 13	-	-
$Z/\gamma^* \rightarrow \tau \tau + jets$	421 ± 25	15 ± 2	2 ± 1	-
Di-bosons	302 ± 61	29 ± 5	5 ± 1	1 ± 1
$Z/\gamma^* \rightarrow \mu\mu$ +jets	204 ± 19	8 ± 4	-	-
Total Background	124000 ± 4000	8800 ± 400	750 ± 60	83 ± 14
Events in Data (4.7 fb ⁻¹)	124703	8631	785	77
$\sigma_{ m vis}^{ m obs}$ at 90% [pb]	1.63	0.13	0.026	0.006
$\sigma_{ m vis}^{ m exp}$ at 90% [pb]	1.54	0.15	0.020	0.006
$\sigma_{ m vis}^{ m obs}$ at 95% [pb]	1.92	0.16	0.030	0.007
$\sigma_{ m vis}^{ m exp}$ at 95% [pb]	1.82	0.17	0.024	0.008

Search for dark matter candiates

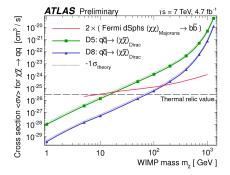
C. M. Delitzsch, P. Clavier

Limits on suppression scale M_*



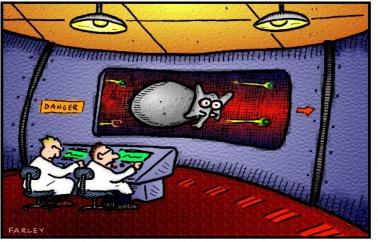
- 90% CL on suppression scale M_* as a function of WIMP mass m_{χ}
- Limits for different operators
- Systematics taken into account
- Green curve: thermal relic density

Name	Initial state	Туре	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3} ar{\chi} \chi ar{q} q$
D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_{\star}^3}\bar{\chi}\chi\alpha_s(G^a_{\mu u})^2$
	• • • • • • • •		E> ≣ ୬۹୯


Limits on WIMP-nucleon scattering cross section

- convert limits on suppression scale to WIMP-nucleon scattering
- compare with direct dark matter detection experiments
- spin-dependent and independent interactions

Limits on WIMP annihilation rates


- Limits on M_{*} can be translated in upper limits on annihilation rate of WIMPs to light quarks (vector and axial-vector interaction)
- Assumption: WIMPs annihilate only into the four light flavor quarks

• Red curve: annihilation to $b\bar{b}$ from galactic high-energy gamma ray observations

Search for dark matter candiates

- Dark matter is needed for astrophysical observations to make sense
- WIMPs are good candidates for dark matter
- ullet Search for events with a high $p_{
 m T}$ jet and $E_{
 m T}^{
 m miss}$ in 2011 data set
- Analysis sensitive to a wide range of BSM models (four different signal regions)
- No deviations from Standard Model predictions were found
- Limits on suppression scale M_* are set
- WIMP pair production at LHC is compared to direct dark matter detection experiments

THANK YOU FOR YOUR ATTENTION !

Deep within the atomic supercollider, the search continues for the elusive elephantino.

the Internet for personal viewing only are not those of the University of Chicago -arley, World rights reserved. David dgfl@midway.uchi Opinions expresse or the University o Copyrigh This cartoo

of North Carolins

Search for dark matter candiates

< A