Hunt for supersymmetry using large jet multiplicities and missing transverse momentum at ATLAS

HASCO 2012 - Gizzarelli F. (University of Rome "La Sapienza") and Graverini E. (University of Pisa)

Why SUSY

- Mass hierarchy: to avoid unnatural large corrections to the Higgs mass m_H
- SUSY also provides convergence of the couplings at one point Λ_{SUSY}
- LSP candidate for dark matter

CMSSM and production

Constrained Minimal Supersimmetric Model – one of the simplest models, which depends on 5 parameters. ATLAS' research put a lower boundary on the parameters m_0 (universal scalar mass) and $m_{1/2}$ (universal gaugino mass).

SUSY particles can be produced in pairs by strong interactions. For example, if $m(\tilde{q}) >> m(\tilde{g})$, the process

$$g g \rightarrow \widetilde{g} \widetilde{g} \rightarrow (t \overline{t} \widetilde{\chi}_{1}^{\circ}) + (t \overline{t} \widetilde{\chi}_{1}^{\circ})$$

has nearly 100% branching ratio.

HASCO 2012 - Gizzarelli F. and Graverini E.

Lee**g**

Event selection

Signal region	7j55	<mark>8</mark> j55	9j55	6j80	7j80	8j80
Number of isolated leptons (e, μ)	= 0					
Jet $p_{\rm T}$	$> 55 \mathrm{GeV}$ $> 80 \mathrm{GeV}$					
Jet $ \eta $	< 2.8					
Number of jets	≥ 7	≥ 8	≥ 9	≥ 6	≥ 7	≥ 8
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$> 4 { m GeV}^{1/2}$					

- No leptons: independent search in different channels
- High jet P_T to maximise signal over background
- $|\eta| < 2.8$ to exclude forward region and maximise detector response

Event selection

Signal region	7j55	8j55	9j55	6j80	7j80	8j80
Number of isolated leptons (e, μ)	= 0					
Jet $p_{\rm T}$	$> 55 \mathrm{GeV}$ $> 80 \mathrm{GeV}$					
Jet $ \eta $	< 2.8					
Number of jets	≥ 7	≥ 8	≥ 9	≥ 6	≥ 7	≥ 8
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$> 4 { m GeV}^{1/2}$					

$$\sqrt{H_T} = \sqrt{\sum_{E_T^{jet} > 40 \text{GeV}} P_T^{jet}}$$

E_T^{miss} = total missing transverse energy

Most background in the region

$$\frac{E_{T}^{miss}}{\sqrt{H_{T}}} < 1.5 \,\mathrm{GeV}^{1/2}$$

This event passed the 9j55 and 7j80 signal region selections, and has

1 – Leptonic background
All leptonic and semi-leptonic
W, Z and t-t_{bar} decays

q_

	$t\bar{t} + jets$	W + jets	Z + jets		
Muon kinematics	$p_{\rm T} > 20 \text{ GeV}, \eta < 2.4$				
Muon multiplicity		= 1	= 2		
Electron multiplicity	= 0				
<i>b</i> -tagged jet multiplicity	≥ 1	= 0			
$m_{ m T} ~{ m or} ~ m_{\mu\mu}$	$50~{\rm GeV} <$	$m_{\rm T} < 100~{\rm GeV}$	$80~{\rm GeV} < m_{\mu\mu} < 100~{\rm GeV}$		
$\mathrm{VR} \rightarrow \mathrm{CR}$ transform	$\mu \rightarrow \text{jet}$ $\mu \rightarrow \nu$				
Jet $p_{\rm T}$, $ \eta $, multiplicity (CR)	Ag in Table 1				
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ (CR)	As in Table 1.				

For example, we know how to compute the process $Z \rightarrow \mu \mu$ and we use it to validate the MC simulation with data. We then recast the muons as neutrinos in the algorythm to simulate the process $Z \rightarrow \nu \nu$, which gives the same signal as a SUSY candidate.

Validation region (to check MC accuracy)

Control region (to check the accuracy of the background estimation)

\						
	$t\bar{t} + jets$	W + jets		Z + jets		
Muon kinematics	$p_{\rm T} > 20 \text{ GeV}, \eta < 2.4$					
Muon multiplicity		= 1		= 2		
Electron multiplicity	= 0					
<i>b</i> -tagged jet multiplicity	≥ 1	= 0		—		
$m_{ m T}$ or $m_{\mu\mu}$	$50 \text{ GeV} < m_{\mathrm{T}} < 100 \text{ GeV}$ 80 Ge			$eV < m_{\mu\mu} < 100 \text{ GeV}$		
$VR \rightarrow CR$ transform	$\mu \rightarrow \text{jet}$			$\mu \rightarrow \nu$		
Jet $p_{\rm T}$, $ \eta $, multiplicity (CR)	Ag in Table 1					
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ (CR)	As in Table 1.					

Validation and control regions: background estimates in agreement with experimental data.

- 1. Hypotesis (verified with data): the background shape does not depend on the jet multiplicity \rightarrow B/A = D/C
- 2. Measure **C** background content
- 3. Adapt it to the **D** region with a transfer factor D=CB/A

2 – Hadronic background (QCD)

Results

Results

Signal region	7j55	8j55	9j55	6j80	7j 80	8j80
Multi-jets	91 ± 20	10 ± 3	$1.2{\pm}0.4$	67 ± 12	$5.4{\pm}1.7$	$0.42{\pm}0.16$
$t\bar{t} \to q\ell, \ell\ell$	55 ± 18	$5.7{\pm}6.0$	$0.70{\pm}0.72$	24 ± 13	$2.8{\pm}1.8$	$0.38{\pm}0.40$
W + jets	18 ± 11	$0.81{\pm}0.72$	0+0.13	13 ± 10	$0.34{\pm}0.21$	0+0.06
Z + jets	$2.7{\pm}1.6$	$0.05{\pm}0.19$	0+0.12	$2.7{\pm}2.9$	$0.10{\pm}0.17$	0+0.13
Total Standard Model	167 ± 34	17 ± 7	$1.9{\pm}0.8$	107 ± 21	8.6 ± 2.5	$0.80{\pm}0.45$
Data	154	22	3	106	15	1
$N_{\rm BSM,max}^{95\%}$ (exp)	72	16	4.5	46	8.4	3.5
$N_{\rm BSM,max}^{95\%}$ (obs)	64	20	5.7	46	15	3.8
$\sigma_{\rm BSM,max}^{95\%} \cdot A \cdot \epsilon \ (exp) \ [fb]$	15	3.4	0.96	9.8	1.8	0.74
$\sigma_{\rm BSM,max}^{95\%} \cdot A \cdot \epsilon ~{\rm (obs)}~{\rm [fb]}$	14	4.2	1.2	9.8	3.2	0.81
$p_{\rm SM}$	0.64	0.27	0.28	0.52	0.07	0.43

Expectation

Experimental results

Results

Signal region	7j55	8j55	9j55	6j80	7j80	8j80
Multi-jets	$91{\pm}20$	10 ± 3	$1.2{\pm}0.4$	67 ± 12	$5.4{\pm}1.7$	$0.42{\pm}0.16$
$t\bar{t} \to q\ell, \ell\ell$	55 ± 18	$5.7{\pm}6.0$	$0.70{\pm}0.72$	24 ± 13	$2.8{\pm}1.8$	$0.38{\pm}0.40$
W + jets	18 ± 11	$0.81{\pm}0.72$	0+0.13	13 ± 10	$0.34{\pm}0.21$	0+0.06
Z + jets	$2.7{\pm}1.6$	$0.05{\pm}0.19$	0+0.12	2.7 ± 2.9	$0.10{\pm}0.17$	0+0.13
Total Standard Model	167 ± 34	17 ± 7	$1.9{\pm}0.8$	107 ± 21	8.6 ± 2.5	$0.80{\pm}0.45$
Data	154	22	3	106	15	1
$N_{\rm BSM,max}^{95\%}$ (exp)	72	16	4.5	46	8.4	3.5
$N_{\rm BSM,max}^{95\%}$ (obs)	64	20	5.7	46	15	3.8
$\sigma_{\rm BSM,max}^{95\%} \cdot A \cdot \epsilon ~({\rm exp})~[{\rm fb}]$	15	3.4	0.96	9.8	1.8	0.74
$\sigma_{\rm BSM,max}^{95\%} \cdot A \cdot \epsilon ~{\rm (obs)}~{\rm [fb]}$	14	4.2	1.2	9.8	3.2	0.81
$p_{\rm SM}$	0.64	0.27	0.28	0.52	0.07	0.43

This is still a not significant result! \rightarrow Limits on σ_{SUSY}

Conclusions

• Each point of this plane represents a couple $m(\tilde{g}), m(\tilde{\chi}_1^\circ)$ in the simplified model CMSSM • For each point, a MC simulation is used to estimate the signal for the SUSY process • Yellow band represents expected limits on SUSY ±1σ with L=4.7 fb⁻¹ at $\sqrt{s} = 7 TeV$ • The observed limit (red line) is slightly lower than the expected one

 $m(\tilde{g}) > 870 \text{GeV} \text{ for } m(\tilde{\chi}_1^\circ) > 100 \text{GeV}$

Backup slides

Conclusions

Each point of this plane
represents a couple m(g̃), m(χ̃^o₁)
in the simplified model CMSSM
For each point, a montecarlo
estimates the signal content for
SUSY processes
Yellow band represents

• Yellow band represents expected limits on SUSY $\pm 1\sigma$ at L=4.7 fb⁻¹ at $\sqrt{s} = 7 TeV$ • Actual limit is lower because of the excess in the region **7j80**

is not significant

 $m(\tilde{g}) > 870 \text{GeV} \text{ for } m(\tilde{\chi}_1^\circ) > 100 \text{GeV}_1^\circ$

Conclusions

This plot presents the limits on the gaugino mass $m_{1/2}$ in correlation with those on the universal scalar mass m_0 .

