$W \to \ell \nu$ and $Z/\gamma^\star \to \ell \ell$ cross-section measurements in p-p collisions at $\sqrt{s}=7$ TeV with the Atlas detector

Steffen Henkelmann and Nicolas G. Gutierrez Ortiz

University of Göttingen and University of Glasgow

Hadron Collider School 2012 in Göttingen

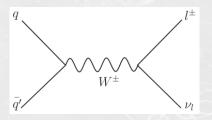
24th July 2012

OUTLINE

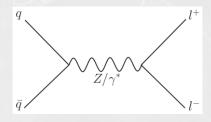
- DATASET AND SIGNATURE
- 2 W AND Z BACKGROUNDS
- **3** EVENT SELECTION
- 4 Cross section measurement
- 5 IMPACT

DATASET

First W+, W^ and Z/ γ^{\star} production cross section measurements with ATLAS at $\sqrt{s}=7~\text{TeV}$


■ data collected from March to July 2010

DATASET AND SIGNATURE

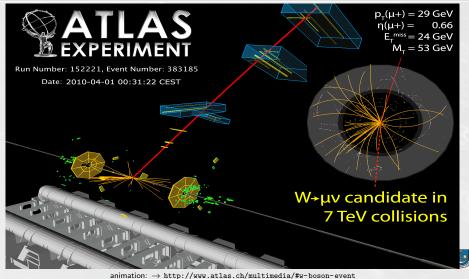

$$-\mathbf{W}
ightarrow \ell
u_{\ell} \ \mathbf{\&} \ \mathbf{Z}/oldsymbol{\gamma}^{\star}
ightarrow \ell \ell$$

Signature: $W \to \ell \nu_{\ell} \& Z/\gamma^{\star} \to \ell \ell$

 $W \to \ell \nu_\ell$ signature:

- lacksquare one isolated lepton with high p_T
- \(\beta_T \) from neutrino
- \Rightarrow peak in m_T distribution

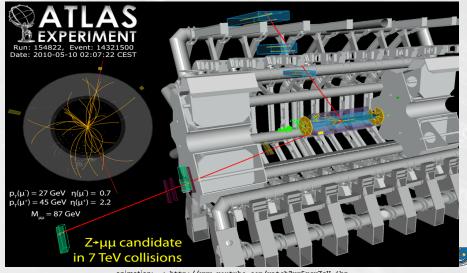
 $Z/\gamma^* \to \ell\ell$ signature:


- two opposite charged isolated leptons with high p_T
- \Rightarrow peak in $m_{\ell\ell}$ distribution

DATASET AND SIGNATURE

 $-\mathbf{W} \rightarrow \ell \nu_{\ell} \& \mathbf{Z}/\gamma^{\star} \rightarrow \ell \ell$

Event display: W $\rightarrow \mu\nu$ @ $\sqrt{s} = 7$ TeV



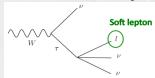
 $\mathrm{W}
ightarrow \ell
u$ and $\mathrm{Z}/\gamma^{\star}
ightarrow \ell \ell$ cross-section measurements

DATASET AND SIGNATURE

 $VW \rightarrow \ell \nu_{\ell} \& Z/\gamma^{\star} \rightarrow \ell \ell$

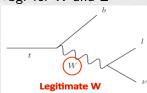
Event display: $Z \rightarrow \mu\mu$ @ $\sqrt{s} = 7$ TeV

 $animation: \ \rightarrow \ \texttt{http://www.youtube.com/watch?v=5xcw7sU_jkg}$


BACKGROUND PROCESSES (I)

EW and top backgrounds are estimated from MC

- o 1 muon outside muon-spec. acc. $\rightarrow \not\!\! E_T$
- \circ larger η for cal. in W $\to e\nu$
- •bgr for W $\rightarrow \mu\nu$, $e\nu_e$


 \circ in particluar via $au o \ell
u
u$

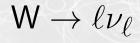
bgr for W and Z

 \circ smaller bgr via single or double leptonic audecays

bgr for W and Z

BACKGROUND PROCESSES (II)

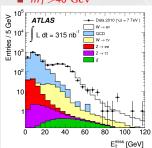
QCD background are estimated in data-driven approaches


- Semileptonic decays from heavy quarks
- Hadron fakes (hadrons misidentified as leptons)
- e-channel → electrons from conversions

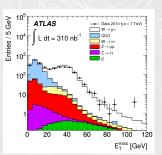
EVENT SELECTION

 $\vdash_{\mathbf{W}} \to \ell \nu_{\ell}$

EVENT SELECTION (I)



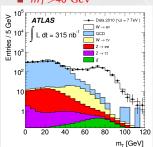
 $\vdash_{\mathbf{W}} \to \ell \nu_{\ell}$


EVENT SELECTION (I)

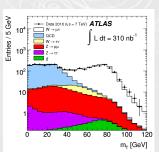
$W \rightarrow e \nu_e$ selection:

- one high E_T electron with $E_T > 20$ GeV in $|\eta| < 2.47$
- no isolation
- additional electrons are vetoed
- *E*_T>25 GeV
- *m*_T>40 GeV

- one high p_T muon with $p_T > 20$ GeV in $|\eta| < 2.4$
- Isolation cut: $\Sigma p_T^{\text{ID}}/p_T < 0.2$
- *Ę*_T>25 GeV
- m_T>40 GeV



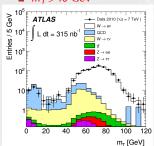
$$\vdash_{\mathbf{W}} \to \ell \nu_{\ell}$$

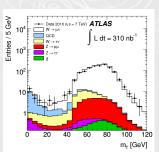

EVENT SELECTION (I)

$W \rightarrow e \nu_e$ selection:

- one high E_T electron with $E_T > 20$ GeV in $|\eta| < 2.47$
- no isolation
- additional electrons are vetoed
- #_T>25 GeV
- *m*_T>40 GeV

- one high p_T muon with $p_T > 20$ GeV in $|\eta| < 2.4$
- Isolation cut: $\Sigma p_T^{\text{ID}}/p_T < 0.2$
- *Ę*_T>25 GeV
- m_T>40 GeV

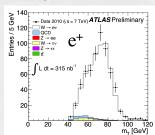


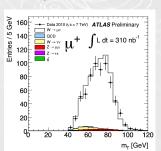

EVENT SELECTION (I)

$W \rightarrow e \nu_e$ selection:

- one high E_T electron with E_T >20 GeV in $|\eta| < 2.47$
- no isolation
- additional electrons are vetoed
- *Ę*_T>25 GeV
- *m*_T>40 GeV

- one high p_T muon with $p_T > 20$ GeV in $|\eta| < 2.4$
- Isolation cut: $\Sigma p_T^{\text{ID}}/p_T < 0.2$
- *Ę*_T>25 GeV
- m_T>40 GeV




EVENT SELECTION (I)

$W \rightarrow e \nu_e$ selection:

- one high E_T electron with $E_T{>}20$ GeV in $|\eta| < 2.47$
- no isolation
- additional electrons are vetoed
- *Ę*_T>25 GeV
- *m*_T>40 GeV

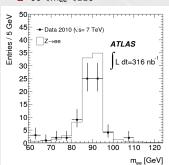
- one high p_T muon with $p_T > 20$ GeV in $|\eta| < 2.4$
- Isolation cut: $\Sigma p_T^{\rm ID}/p_T < 0.2$
- *Ę*_T>25 GeV
- *m*_T>40 GeV

EVENT SELECTION

 $L_{\mathbf{Z}/\boldsymbol{\gamma}^{\star}} \to \ell\ell$

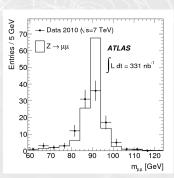
EVENT SELECTION (II)

$$Z/\gamma^* \to \ell\ell$$



$$L_{\mathbf{Z}/\boldsymbol{\gamma}^{\star}} \to \ell\ell$$

EVENT SELECTION (II)


$Z/\gamma^* \rightarrow$ ee selection:

- two high E_T electrons with $E_T{>}20$ GeV in $|\eta| < 2.47$
- opposite charg and same flavour
- veto on three or more electrons
- $= 66 < m_{ee} < 116$

${\sf Z}/\gamma^\star \to \mu\mu$ selection:

- two high p_T leptons with $p_T > 20$ GeV
- opposite charge and same flavour
- $66 < m_{\mu\mu} < 116$

OBSERVED EVENTS AFTER FULL SELECTION

Number of observed candidate events $N_{ m obs}$

$W \to \ell \nu_{\ell}$ channel:

	ℓ	Observed candidates	Background (EW+tī)	Background (QCD)	Background-subtracted signal N _W ^{sig}
1069	e^+	637	$18.8 \pm 0.2 \pm 1.7$	$14.0 \pm 2.1 \pm 7.1$	604.2 ± 25.2 ± 7.6
	e	432	$14.7 \pm 0.2 \pm 1.3$	$14.0 \pm 2.1 \pm 7.1$	403.2 ± 20.8 ± 7.5
	e^\pm	1069	$33.5 \pm 0.2 \pm 3.0$	$28.0 \pm 3.0 \pm 10.0$	$1007.5 \pm 32.7 \pm 10.8$
1181	μ^+	710	42.5 ± 0.2 ± 2.9	$12.0 \pm 3.0 \pm 4.6$	$655.6 \pm 26.6 \pm 6.2$
	μ^{-}	471	35.1 ± 0.2 ± 2.4	$10.9 \pm 2.4 \pm 4.1$	425.0 ± 21.7 ± 5.4
	μ^{\pm}	1181	77.6 ± 0.3 ± 5.4	22.8 ± 4.6 ± 8.7	1080.6 ± 34.4 ± 11.2

$Z \to \ell\ell$ channel:

70-	-	01 1	D. I.		I D 1 1 1 1 1 1
	Ĺ	Observed candidates	Background (EW+tt̄)	Background (QCD)	Background-subtracted signal N_Z^{sig}
109	e [±]	70	$0.27 \pm 0.00 \pm 0.03$	0.91 ± 0.11 ± 0.41	68.8 ± 8.4 ± 0.4
	μ^{\pm}	109	$0.21 \pm 0.01 \pm 0.01$	$0.04 \pm 0.01 \pm 0.04$	$108.8 \pm 10.4 \pm 0.0$

Pocket equation:
$$\sigma = \frac{N_{processed...events}}{Lu \min osity}$$

As we measure only on the leptonic channel:

$$\sigma_{W(Z)} \to \sigma_{W(Z)} \cdot BR(W \to lv(Z \to ll))$$

As a result of the geometrical features of the detector and the object selection:

$$N_{events} = \frac{N_{W(Z)}^{signal}}{A_{W(Z)} \cdot C_{W(Z)}}$$

Pocket equation:

$$\sigma = \frac{N_{processed...events}}{Lu\min osity}$$

Number of candidates

$$N_{events} = \frac{N_{W(Z)}^{signal}}{A_{W(Z)} \cdot C_{W(Z)}}$$

Pocket equation:

$$\sigma = \frac{N_{processed...events}}{Lu\min osity}$$

$$N_{events} = \frac{N_{W(Z)}^{signal}}{A_{W(Z)} \cdot C_{W(Z)}}$$

Factor due to the geometry of the detector and kinematic constrains

Pocket equation:
$$\sigma = \frac{N_{processed...events}}{Lu \min osity}$$

$$N_{events} = \frac{N_{W(Z)}^{signal}}{A_{W(Z)} \cdot C_{W(Z)}}$$
Factor due to the candidate

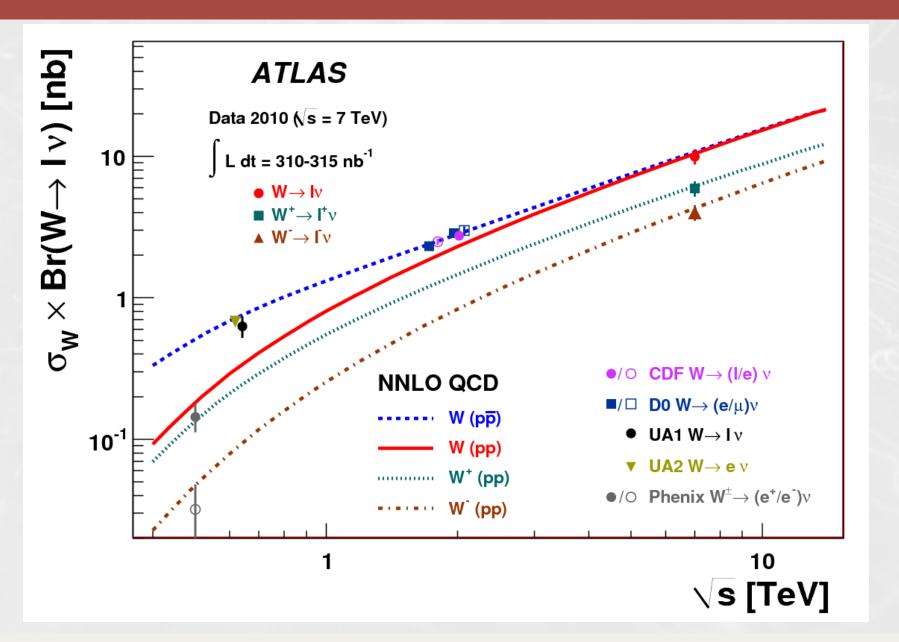
Factor due to the candidate selection

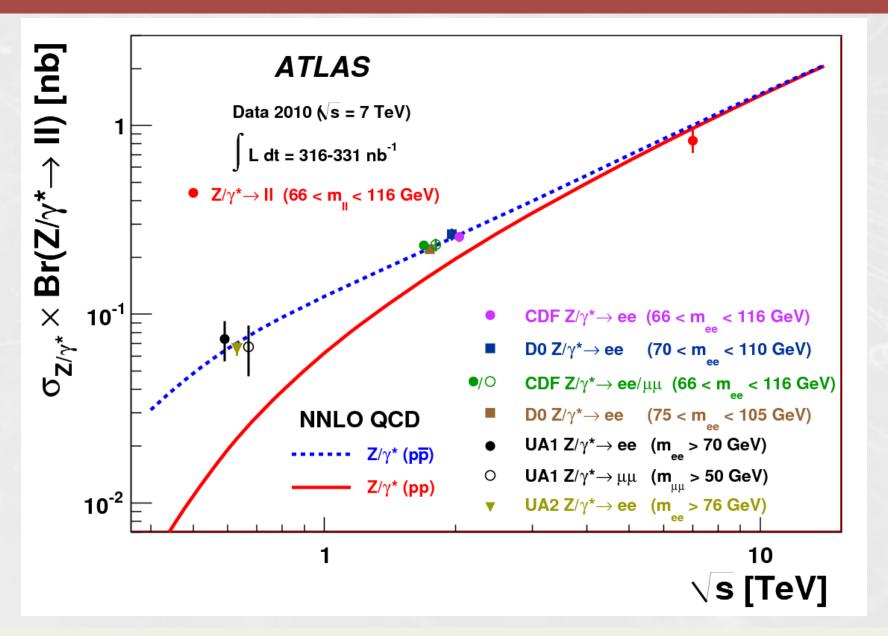
$$C_{W(Z)} = f\left(\varepsilon_{event_select.}, \varepsilon_{reconstruction}, \varepsilon_{lepton_select.}, \varepsilon_{trigger}\right)$$

Pocket equation:
$$\sigma = \frac{N_{processed...events}}{Lu \min osity}$$

$$\sigma_{W(Z)}^{total} = \frac{N_{W(Z)}^{signal}}{A_{W(Z)} \cdot C_{W(Z)} \cdot L_{W(Z)}}$$

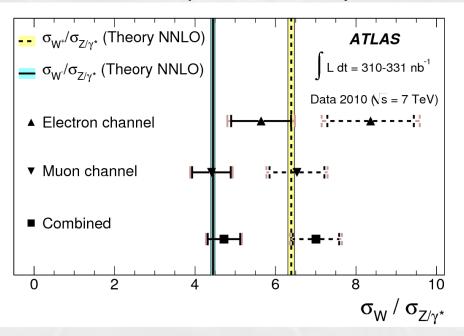
Requires theoretical extrapolation

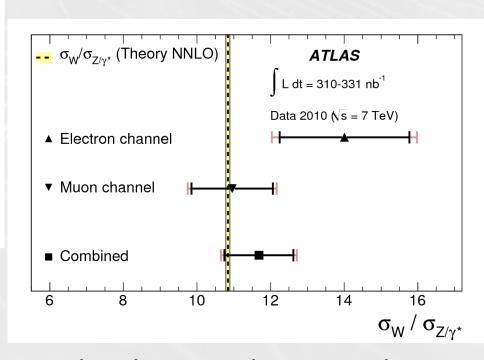

$$\sigma_{W(Z)}^{\textit{fiducial}} = \frac{N_{W(Z)}^{\textit{signal}}}{C_{W(Z)} \cdot L_{W(Z)}}$$


Direct measurement

	$\sigma_W^{fiducial} \cdot BR(W \to ev) [nb]$	$\sigma_W^{fiducial} \cdot BR(W \to \mu v) [nb]$		
$W^{\scriptscriptstyle +}$	$2.92 \pm 0.12(stat) \pm 0.21(syst) \pm 0.32(lumi)$	$2.71 \pm 0.11(stat) \pm 0.12(syst) \pm 0.30(lumi)$		
W^{-}	$1.93 \pm 0.10(stat) \pm 0.14(syst) \pm 0.21(lumi)$	$1.83 \pm 0.10(stat) \pm 0.08(syst) \pm 0.20(lumi)$		
W	$4.85 \pm 0.10(stat) \pm 0.34(syst) \pm 0.53(lumi)$	$4.60 \pm 0.10(stat) \pm 0.20(syst) \pm 0.51(lumi)$		
	$\sigma_{Z/\gamma^*}^{fiducial} \cdot BR(Z/\gamma^* \to ee) \ [nb]$	$\sigma_{Z/\gamma^*}^{fiducial} \cdot BR(Z/\gamma^* \to \mu\mu) [nb]$		
	$66 < m_{ee} < 116 GeV$	$66 < m_{\mu\mu} < 116 GeV$		
Z/γ^*	$0.33 \pm 0.04(stat) \pm 0.03(syst) \pm 0.04(lumi)$	$0.43 \pm 0.04(stat) \pm 0.02(syst) \pm 0.05(lumi)$		

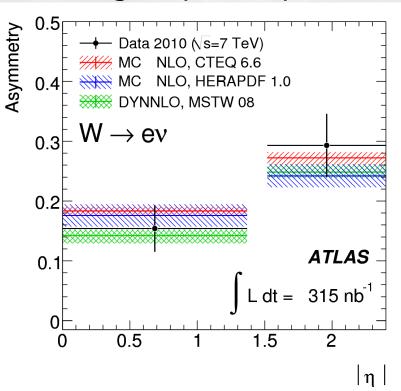
TOTAL CROSS SECTION MEASUREMENT

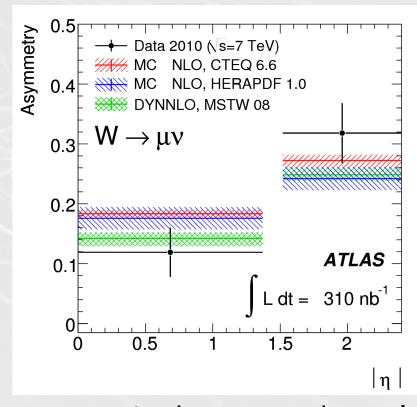



TOTAL CROSS SECTION MEASUREMENT

CROSS SECTION RATIO

W+ W- to Z/γ^* ratio compared with NNLO theory predictions





Combined W to Z/γ^* ratio compared with NNLO theory predictions

W CHARGE ASYMMETRY

W charge asymmetry in the electron channel

$$A_{l} = \frac{\sigma_{W^{+}}^{fiducial} - \sigma_{W^{-}}^{fiducial}}{\sigma_{W^{+}}^{fiducial} + \sigma_{W^{-}}^{fiducial}}$$

W charge asymmetry in the muon channel

ATLAS

Measurement of the W \rightarrow Iv and Z/ γ * in proton proton collisions at sqrt(7) TeV with the ATLAS detector

Theory

Other experiments

Other experiments (cited by similar measurements)

arXiv:1012.2466

Measurements of Inclusive W and Z Cross Sections in pp Collisions at sqrt(s)=7 TeV.

arXiv:1102.5435

Study of Z boson production in PbPb collisions at nucleon-nucleon centre of mass energy = 2.76 TeV.

arXiv:1204.1620

Inclusive W and Z production in the forward region at sqrt(s)=7 TeV.

Other experiments (cited by similar measurements)

CMS arXiv:1012.2466

Measurements of Inclusive W and Z Cross Sections in pp Collisions at sqrt(s)=7 TeV.

Other experiments (cited by similar measurements)

CMS

arXiv:1102.5435

Study of Z boson production in PbPb collisions at nucleon-nucleon

Other experiments (cited by similar measurements)

LHCb arXiv:1204.1620

Inclusive W and Z production in the forward region at sqrt(s)=7 TeV.

Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrt(s) = 7 TeV proton-proton collisions.

arXiv:1012.1792

Measurement of the top quark-pair production cross section with ATLAS in pp collisions at s ,àö=7 TeV.

arXiv:1110.2299

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using sqrt(s)=7 TeV pp collisions with the ATLAS detector.

arXiv:1012.5419

Measurement of the centrality dependence of J/{\psi} yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC.

arXiv:1103.4344

Search for supersymmetry in pp collisions at sqrt{s} = 7TeV in final states with missing transverse momentum and b-jets.

arXiv:1108.5602

Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS.

arXiv:1109.5141

Measurement of the inclusive W+- and Z/gamma cross sections in the electron and muon decay channels in pp collisions at sqrt(s) = 7 TeV with the ATLAS datactor.

arXiv:1109.6572

Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrt(s) = 7 TeV proton-proton collisions.

arXiv:1012.1792

Measurement of the top quark-pair production cross section with ATLAS in pp collisions at sqrt(s)=7 TeV.

arXiv:1110.2299

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using sqrt(s)=7 TeV pp collisions with the ATLAS detector.

arXiv:1012.5419

Measurement of the centrality dependence of J/{\psi} yields and observation of Z production in lead-lead collisions with the ATLAS detector at the LHC.

arXiv:1103.4344

Search for supersymmetry in pp collisions at sqrt{s} = 7TeV in final states with missing transverse momentum and b-jets.

Understanding the objects performance in a SM process, is the necessary to explore new physics scenarios.

arXiv:1108.5602

Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS.

Understanding the objects performance in a SM process, is the necessary to explore new physics scenarios.

arXiv:1109.5141

Measurement of the inclusive W+- and Z/gamma cross sections in the electron and muon decay channels in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector. Updated measurement.

Understanding the objects performance in a SM process, is the necessary to explore new physics scenarios.

Theory

arXiv:1101.1300

arXiv:1011.3540

arXiv:1101.5057

Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology.

-> Comparison with predicted cross sections from theoretical PDF.

FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order.

-> Comparison with predicted cross section from NNLO MC generator.

TMD Parton Distribution and Fragmentation Functions with QCD Evolution.

-> Comparison with predicted cross section from Transverse Mom. Dependent PDF

NNLO Benchmarks for Gauge and Higgs Boson Production at TeV Hadron Colliders.

-> Comparison with NNLO predictions

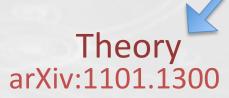
arXiv:1106.5788

arXiv:1011.6259

Parton distribution function dependence of benchmark Standard Model total cross sections at the 7 TeV LHC.

-> Complementary information for PDF discussions.

arXiv:1204.6038


Displaced Supersymmetry.

-> Complementary information for Electron and Muon selection in an exotic search.

arXiv:1206.7024

Physics at the LHC -- From Standard Model measurements to Searches for New Physics.

-> Listed as one of the 2010-2011 major ATLAS results. Its implication on NNLO cross section was discussed.

Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology.

-> Comparison with predicted cross sections from theoretical PDF.

arXiv:1011.3540

FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order.

Comparison with predicted cross section from NNLO MC generator.

arXiv:1101.5057

TMD Parton Distribution and Fragmentation Functions with QCD Evolution.

Comparison with predicted cross section from Transverse Mom.
 Dependent PDF

arXiv:1011.6259

NNLO Benchmarks for Gauge and Higgs Boson Production at TeV Hadron Colliders.

-> Comparison with NNLO predictions

arXiv:1106.5788

Parton distribution function dependence of benchmark Standard Model total cross sections at the 7 TeV LHC.

-> Complementary information for PDF discussions.

arXiv:1206.7024

Physics at the LHC -- From Standard Model measurements to Searches for New Physics.

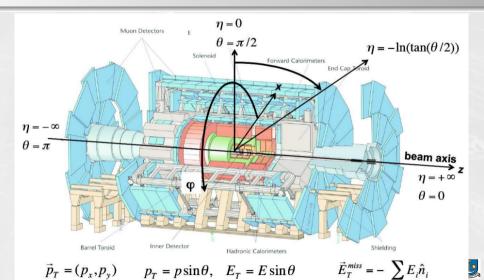
-> Listed as one of the 2010-2011 major ATLAS results. Its implication on NNLO cross section was discussed.

SUMMARY

Understanding the performance of the leptons in the ATLAS detector by using an SM process, is a necessary benchmark in order to explore new physics scenarios.

The cross section measurement constrains NNLO cross section calculations.

The observed W charge asymmetry provides important information about the PDF of the protons. Thanks to Elzbieta for her valuable feedback and suggestions!!


REFERENCES

The ATLAS Collaboration, Measurement of the W $\rightarrow \ell \nu$ and $Z/\gamma^* \rightarrow \ell \ell$ production cross sections in proton-proton collisions at $\sqrt{s}=7$ TeV with the ATLAS detector, JHEP 1012 (2010) 060, arXiv:1010.2130.

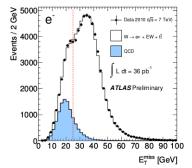
COLLIDER KINEMATICS

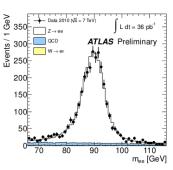
 $W \to \ell
u$ and $Z/\gamma^{\star} \to \ell \ell$ cross-section measurements

24TH JULY 2012

OBJECT DEFINITION

- Muon
 - $p_{T} > 20 \text{ GeV}$
 - |n| < 2.4
 - Combined muons: Track in Inner Detector and Muon System
 - Vertex cuts
 - Relative track isolation


- ELECTRON
 - E_T > 20 GeV
 - Central: |η| < 2.47
 - Excluding calorimeter transition region 1.37 < |n| < 1.52
 - Forward: $2.5 < |\eta| < 4.9$
 - Identification cuts
 - Shower shapes (central, forward)
 - Track quality and cluster-track matching, E/p (central)
 - Transition Radiation ($|\eta| < 2$)


MISSING TRANSVERSE ENERGY

$$\vec{E}_T^{miss} = -\sum_{\text{obstage}} E_i \hat{n}_i - \vec{p}_T^{\mu} + E_{loss}^{\mu} \hat{p}_T^{\mu}$$

QCD BACKGROUND ESTIMATION

- $W \to e \nu$: template fit to $E_{\rm T}^{\rm miss}$. Template derived from data with inverted electron ID and isolation.
 - $Z \to ee$: template fit to $m_{\ell\ell}$ to a sample with looser electron ID, extrapolated to the signal region.
- $W
 ightarrow \mu
 u$: matrix method using track isolation.
- $Z
 ightarrow \mu \mu$: ABCD method with track isolation in $m_{\mu\mu}$ side-band.

