Introduction	Jets	Theoretical frameworks	Results	Summary

Multi-jet production Measurement of multi-jet cross sections in proton-proton collisions at 7 TeV center-of-mass energy

Gina Greco, Jacek Grela

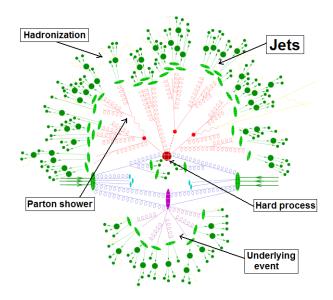
University of Pisa, Jagiellonian University

HASCO, 23.07.2012

Introduction	Jets	Theoretical frameworks	Results	Summary
Outline				

- Introduction
 - Dataset and aims
- 2 Jets
 - Jet reconstruction and selection
 - Calibration and uncertainties
- Theoretical frameworks
 - LO MC simulations and NLO fixed-order calculations
- Results
 - Total and differential cross sections: data vs theory
- Summary

In troduction	Jets	Theoretical frameworks	Results	Summary
Dataset and	aims			


Dataset

- pp collisions at the LHC collected with the ATLAS detector
- 7 TeV center-of-mass energy
- Total integrated luminosity of 2.4 pb^{-1}
- Multi-jet events (2-6) were preselected
- $0.5 \cdot 10^6$ events

What are the aims?

- Evaluating how robust leading-order perturbative QCD (LO pQCD) calculations are in representing high jet-multiplicity events.
- Testing next-to-leading order perturbative QCD (NLO pQCD) calculations.

Jets primer

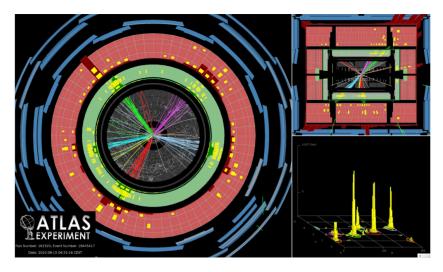
Jet reconstruction and selection

Reconstruction

- Input: Topological clusters of calorimeter energy deposits
- Apply anti-k_T algorithm

Distance between protojets:

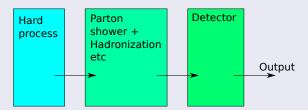
$$d_{ij} = min(E_t^{-2}, i, E_t^{-2}, j)(\Delta y_{ij}^2 + \Delta \phi_{ij}^2)/R^2$$


with cone parameter R = 0.4 (LO) or R = 0.6 (NLO).

Selection criteria

- all jets in |y| < 2.8,
- all jets $p_T > 60 \, GeV$, at least one jet with $p_T^{lead} > 80 \, GeV$,
- cleaning cuts, pile-up reduction,

For conditions listed above we reach 100% efficiency in the trigger.


Multi-jet event example

Introduction	Jets	Theoretica frameworks	Results	Summary
Jet correctior				

Correction

Various detector effects (trigger inefficiency, detector resolution etc.) give rise to distortions in jet identification and event counting.

For correction we use MC simulations (GEANT4). We study how the detector affects the outgoing particles and, therefore, the jets. By comparing jets of particles and jets of topoclusters we compute corrections and apply them to the data.

Jet energy - calibration and uncertainties

Calibration

We need to calibrate p_T jet energy correctly. It is needed because of different response of the calorimeters to hadrons. Again, MC simulations are helpful.

Uncertainty

The major sources of uncertainty in the jet p_T are:

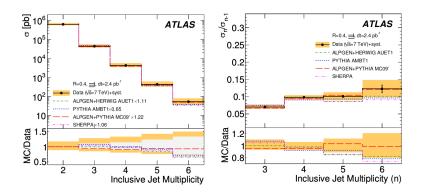
- estimation of the uncertainty for isolated jets (biggest)
- presence of nearby calorimeter deposits
- flavor composition (big for 5,6-jets and below $p_T = 200 \text{ GeV}$)

It is the dominant uncertainty component for most results given here!

Theoretical frameworks

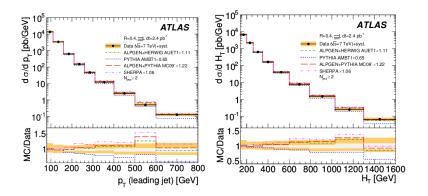
Leading order (LO) MC simulations

- ALPGEN+HERWIG AUET1
 - PS: HERWIG
 - PDF: CTEQ6L1
 - ME: up to $2 \rightarrow 6$
- PYTHIA AMBT1
 - PS: built-in
 - PDF: MRST2007
 - ME: $2 \rightarrow 2$
- ALPGEN+PYTHIA MC09'
 - PS: PYTHIA
 - PDF: CTEQ6L1
 - ME: up to $2 \rightarrow 6$
- SHERPA
 - PS: built-in
 - PDF: built-in
 - ME: up to $2 \rightarrow 6$

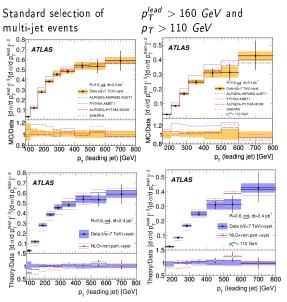

Next-to-leading order (NLO)

- NLOJet++
 - PS: none
 - PDF: MSTW 2008 NLO
 - ME: 2 \rightarrow n
 - comparison feasible by multiplicative term

$$C = \frac{\sigma_{UE}^{particle}}{\sigma_{no UE}^{parton}},$$


calculated with the LO MC simulations.

Total cross section vs. jet multiplicity (LO)


- Why ratio?
- Grey and orange error bands
- Good agreement

Differential cross section vs. p_T and H_T (LO)

- $H_T = \sum_i p_{T,i}$ (used in top-quark physics)
- PYTHIA has problems (steeper slope)

Differential cross section ratio vs. p_T (LO & NLO)

- Ratio of the inclusive three-jet to two-jet differential cross section
- Reduced experimental and theoretical uncertainties in the ratio
- PYTHIA does not describe the data
- ALPGEN and SHERPA in agreement with data
- NLO QCD describes the data well except in first bin

Introduction	Jets	Theoretical frameworks	Results	Summary
Summary				

- First study of multi-jet events in pp collisions at 7 *TeV* using the ATLAS detector
- Study of jet multiplicities and differential cross sections up to 6-jet events
- Measurements up to 0.8 TeV in p_T and up to 1.6 TeV in H_T
- All models reproduce the main features of the multi-jet data
- $\bullet~$ MC models based on 2 \rightarrow 2 calculations show some deviations from the data
- $\bullet~$ MC models based on 2 \rightarrow n calculations do a better job in describing the data
- Ratio of the inclusive three-jet to two-jet differential cross section:
 - ALPGEN and SHERPA describe well the measurements
 - NLO QCD calculations give a good description except in lowest p_T bin

Introduction	Jets	Theoretical frameworks	Results	Summary
End				

These two are the lecturers, think about it before asking questions!