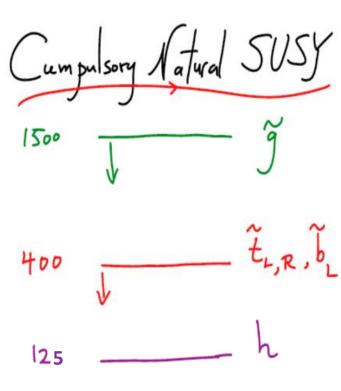
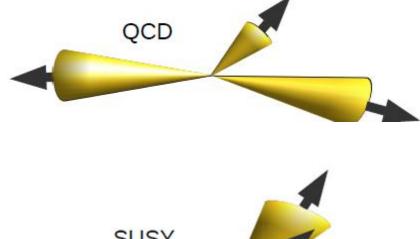


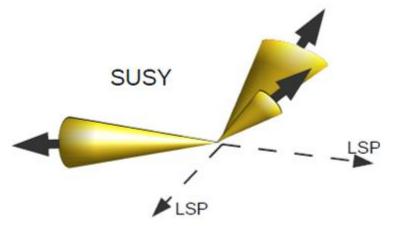
Search for Gluinos and Squarks in events with missing transverse momentum


DIS 2013: XXI. International workshop on Deep-Inelastic Scattering Robert Schöfbeck on behalf of the CMS Collaboration

Introduction

- Discovery of the Higgs has spurred the interest in the mechanism that stabilizes the electro-weak scale.
- If this mechanism is Supersymmetry, then
 it is "natural" to expect relatively light gluinos and squarks.
- 7 TeV inclusive searches have revealed no signs of supersymmetry
- Focus has shifted to more dedicated searches constraining the parameter space of "simplified models" (SMS)
- this talk: Limits on Gluino- and Squark-production in hadronic and same-sign di-lepton channels


α_T search - The idea



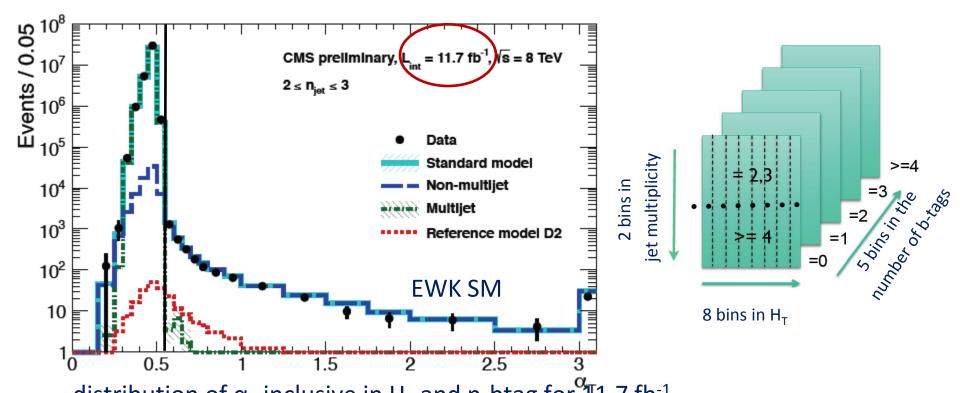
- Hadronic final states give largest branching, however QCD background is huge.
- The QCD multi-jet background is suppressed by the dimensionless variable α_{T}

$$\alpha_{T} = \frac{E_{T}^{jet2}}{\underbrace{M_{T}}_{\text{di-jet}}} = \frac{1}{2} \times \frac{1 - \left(\Delta H_{T} / H_{T}\right)}{\sqrt{1 - \left(H_{T}^{miss} / H_{T}\right)^{2}}}_{\text{multi-jet}}$$

 α_{T} uses jet- p_{T} s and angular information but not the missing energy.

In well-measured dijet events:

 $\alpha_{T, \text{ di-jet}} < 0.5$


 $(H_T: scalar sum of jet-p_T, H_T^{miss}: neg. transversal vector sum of jet momenta)$

Robert Schöfbeck

α_T – The search

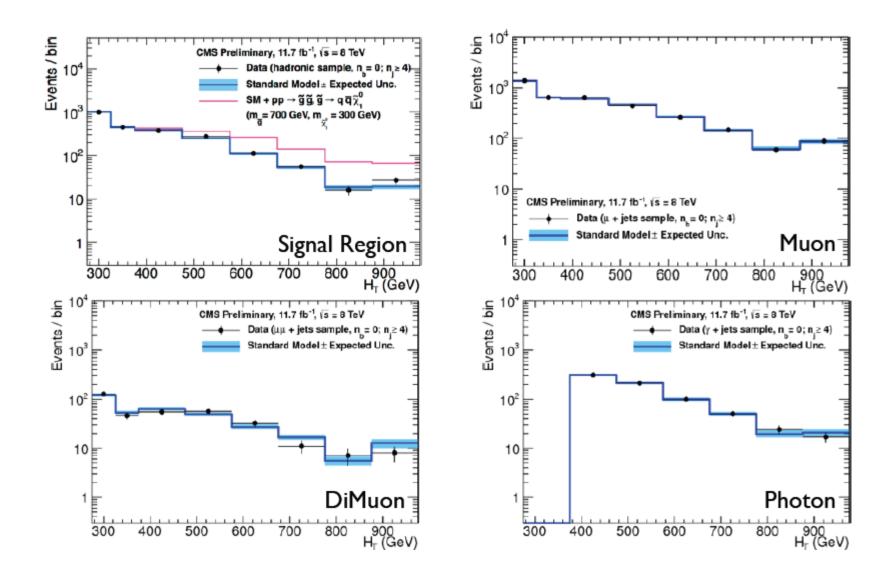
distribution of α_{T} inclusive in H_T and n-btag for $^{\alpha}$ I1.7 fb⁻¹.

- > The search is binned in jet- and b-jet multiplicity and in H_{T} .
 - sensitivity to b-enriched models
- Dedicated lepton- (>10 GeV) and photon (>25 GeV) vetoes
- $\alpha_{T} > 0.55$ requirement

 background estimation of remaining EWK processes is binned in the same way using translation factors

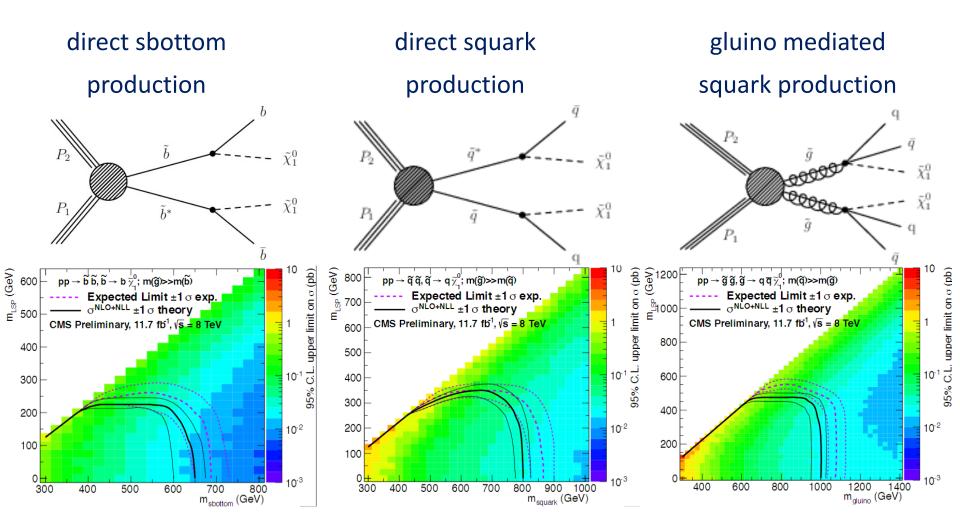
$$N_{
m pred}^{
m signal} = N_{
m obs}^{
m control} imes rac{N_{
m MC}^{
m signal}}{N_{
m MC}^{
m control}}$$

- single-μ
 W-Jets, TT-Jets, di-Boson, single top
- > single photon, di- μ Z \rightarrow v


 $Z \rightarrow vv$

- remaining biases and mis-modelling will largely cancel
- ➤ A series of closure tests developed to assign systematic uncertainties (~10-30%)
- ➤ A simultaneous fit across all bins and samples is used to obtain the results.

Results



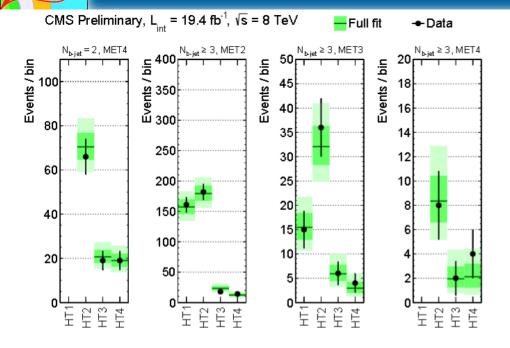
Interpretation

Hadronic search strategy using bins of H_T and E_T^{miss}

- ➤ Selection: NJets \geq 3, lepton veto
- ➤ N-btags (binned): =1, =2, ≥3
- E_T^{miss} (binned), HT (binned)

Protection against jet mismeasurement:

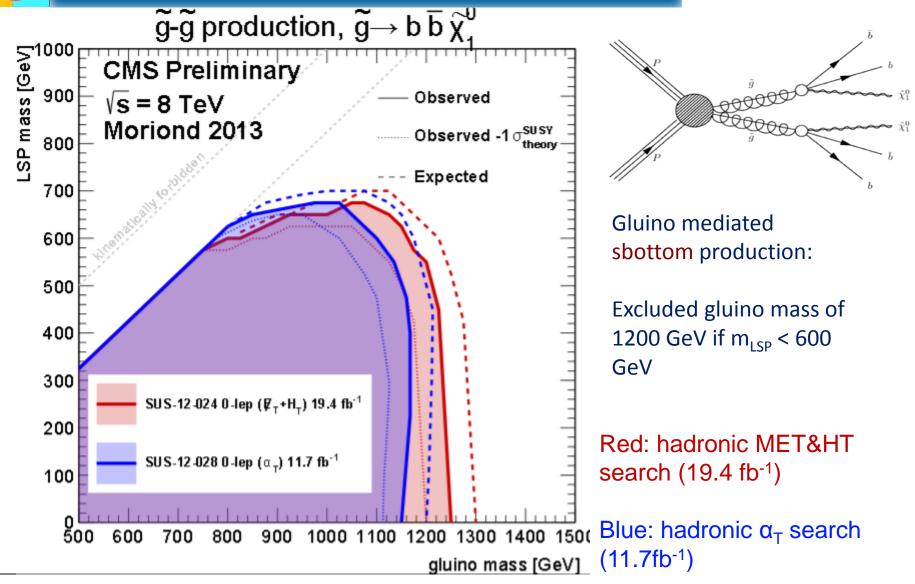
> $\Delta \phi = \min (\Delta \phi (jet_i, E_T^{miss}) / \sigma_i) > 4$


Control samples for background shapes

- $Z \rightarrow \mu\mu/ee$ for $Z \rightarrow \nu\nu$
- 1-lepton control sample for top and W
- Inverted $\Delta \phi$ cut for QCD

Bin	H _T (GeV)	E _T ^{miss} (GeV)
1	400 - 500 (HT1)	125 – 150 (MET1)
2	500 – 800 (HT2)	150 – 250 (MET2)
3	800 – 1000 (HT3)	250 – 350 (MET3)
4	> 1000 (HT4)	> 350 (MET4)

hadronic search using missing energy


 observed yields well aligned with background-only hypothesis! fit all 165 observables
 simultaneously in signal- and control regions.
 Left: most sensitive signal regions
 Below: predicted and observed yields

Observed number of events							
$N_{b-jet} \ge 3$	HT1	HT2	HT3	HT4	HT1-4		
MET2	161	182	18	14	375		
MET3	15	36	6	4	61		
MET4	_	8	2	4	14		
MET2-4	176	226	26	22	450		
SM background predictions from fit							
	SM bac	ckground pr	edictions fr	om fit			
$N_{b-jet} \ge 3$	SM bac HT1	HT2	HT3	om fit HT4	HT1-4		
$\frac{N_{\rm b-jet} \ge 3}{\rm MET2}$	1				HT1-4 372 ⁺¹⁹ ₋₁₈		
/	HT1	HT2	HT3	HT4			
MET2	HT1 157 ⁺¹³ ₋₁₂	HT2 179 ⁺¹³ ₋₁₂	HT3 23.2 ^{+3.8} -3.4	HT4 12.3 ^{+2.7} -2.3	$372 \ ^{+19}_{-18}$		

CMS

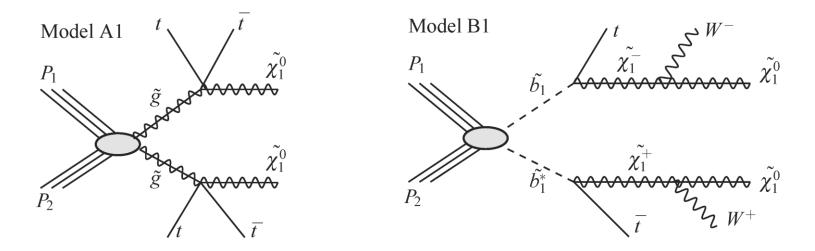
gluino mediated sbottom production

Robert Schöfbeck

CMS

DIS 2013

Slide 10



- Same-sign lepton events are very rare in the SM
- Predicted naturally in many SUSY scenarios, among them
 - gluino mediated stop production
 - > sbottom production with a $\tilde{b} \rightarrow \tilde{\chi}^{+}$, t decay

No need for tight kinematical cuts

 \rightarrow sensitivity to small mass splittings!

background estimation

Event selection:

	P_T	η
electrons	$P_T > 20 \text{ GeV}$	$ \eta < 1.442 \text{ or } 1.566 < \eta < 2.4$
muons	$P_T > 20 \text{ GeV}$	$ \eta < 2.4$
jets	$P_T > 40 \text{ GeV}$	$ \eta < 2.4$
b-tagged jets	$P_T > 40 \text{ GeV}$	$ \eta < 2.4$

Background estimation:

Charge mis-ID for electrons: strong bremstrahlung in tracker leading to charge-flip.

Data driven technique using the Z-peak and

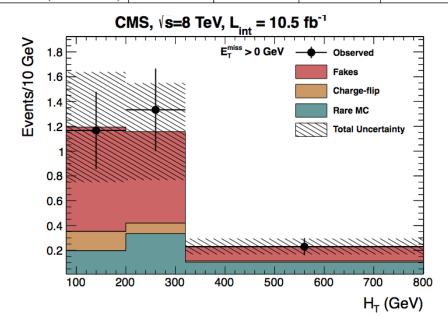
measuring the ratio of SS and OS dilepton pairs.

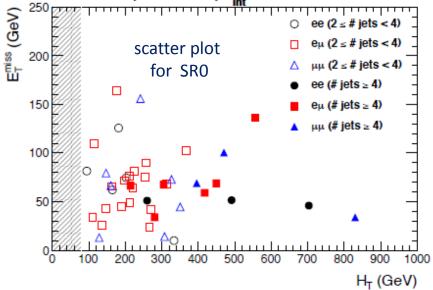
- > 0.016% (barrel/barrel) 0.2% (endcap/endcap) $\frac{2}{9}^{250}$
- Single- and double-lepton fakes:
 Measured using "tight-to-loose" methods

in data control regions (50% sys. uncertainty)

ttW, ttZ (+ small diboson contribution)

 \rightarrow MC based prediction

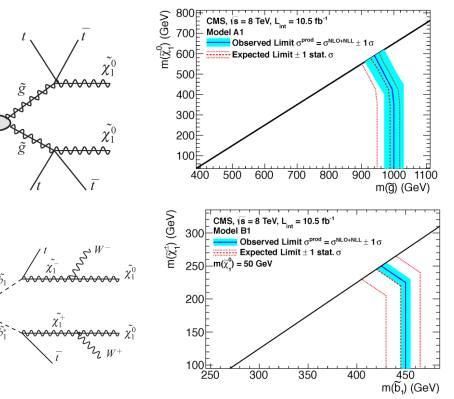

low-H_T E_T^{miss} control region $H_{T} > 200 \text{ GeV}, \text{ NJet} \ge 2, E_{T}^{\text{miss}} > 50 \text{ GeV}$ √s= 8 TeV, L_{int}=10.5 fb⁻¹ CMS Observed Charge-flip Rare MC Double-Fakes Single-Fakes 150 **Total Uncertainty** 100 50 μμ eμ Total ee


same-sign leptons

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥ 2	≥ 2	≥ 2	≥ 4	≥ 4	≥ 4	≥ 4	≥ 3	≥ 4
No. of btags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
Lepton charges	+ + /	++/	++	+ + /	+ + /	++/	++/	++/	++/
$E_T^{ m miss}$	$>0 \mathrm{GeV}$	>30 GeV	$>30~{\rm GeV}$	>120 GeV	>50 GeV	>50 GeV	>120 GeV	>50 GeV	>0 GeV
H_T	> 80 GeV	>80 GeV	> 80 GeV	$>200~{\rm GeV}$	$>200~{\rm GeV}$	$>320~{\rm GeV}$	$>320~{ m GeV}$	>200 GeV	$>320~{ m GeV}$
Fake BG	25 ± 13	19 ± 10	9.6 ± 5.0	0.99 ± 0.69	4.5 ± 2.9	2.9 ± 1.7	0.7 ± 0.5	0.71 ± 0.47	4.4 ± 2.6
Charge-flip BG	3.4 ± 0.7	2.7 ± 0.5	1.4 ± 0.3	0.04 ± 0.01	0.21 ± 0.05	0.14 ± 0.03	0.04 ± 0.01	0.03 ± 0.01	0.21 ± 0.05
Rare SM BG	11.8 ± 5.9	10.5 ± 5.3	6.7 ± 3.4	1.2 ± 0.7	3.4 ± 1.8	2.7 ± 1.5	1.0 ± 0.6	0.44 ± 0.39	3.5 ± 1.9
Total BG	40 ± 14	32 ± 11	17.7 ± 6.1	2.2 ± 1.0	8.1 ± 3.4	5.7 ± 2.4	1.7 ± 0.7	1.2 ± 0.6	8.1 ± 3.3
Event yield	43	38	14	1	10	7	1	1	9
$N_{UL} \ (13\% \ {\rm unc.})$	27.2	26.0	9.9	3.6	10.8	8.6	3.6	3.7	9.6
N_{UL} (20% unc.)	28.2	27.2	10.2	3.6	11.2	8.9	3.7	3.8	9.9
N_{UL} (30% unc.)	30.4	29.6	10.7	3.8	12.0	9.6	3.9	4.0	10.5

CMS, √s = 8 TeV, L_{...} = 10.5 fb⁻¹

Robert Schöfbeck


DIS 2013

same-sign leptons

No excess beyond SM found Model A1 Limits quite insensitive to m_{LSP} >Exclude 1TeV gluino and 450 GeV sbottom ($\rightarrow \tilde{\chi}^+$ t) \widetilde{g} - \widetilde{g} production, \widetilde{g} \rightarrow t $\overline{t} \widetilde{\chi}_{1}^{0}$ LSP mass [GeV] **CMS Preliminary** SUS-12-024 0-lep (∉_T+H_T) 19.4 fb Model B1 SUS-13-007 1-lep (n_{iets}≥6) 19.4 fb⁻¹ √s = 8 TeV SUS-12-017 2-lep (SS+b) 10.5 fb ⁻¹ Moriond 2013 JS-12-026 (MultiLepton) 9.2 fb ⁻¹ Observed 600 Observed -1 of theon Expected 500 400 300 200 100 n 900 1000 1100 1200 1300 1400 1500 500 600 700 800 gluino mass [GeV]

 Combination of all CMS limits on gluino mediated stop production excludes m_{gl}< 1.3 TeV (Model A1)

Conclusions

- Presented several new results on Gluino and Squark production with up to 20fb⁻¹ of 8TeV data and using shape based analysis with many signal regions.
- Nothing found so far!
- Severly constrained many well motivated SUSY scenarios

Links: All CMS SUSY results:

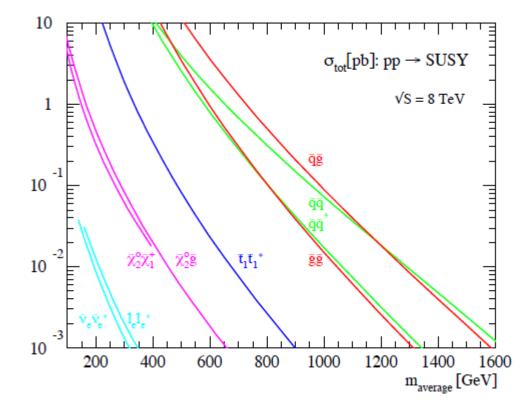
<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS</u> hadronic searches

> https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12028 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12024

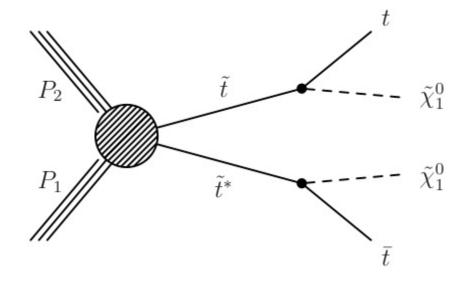
same-sign + b

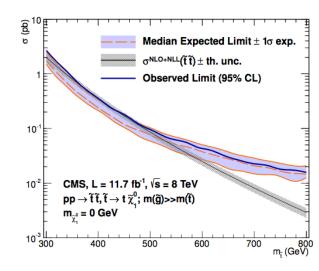
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12017

Backup

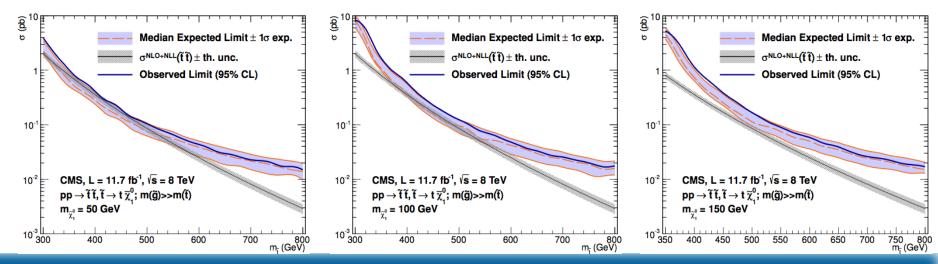

Robert Schöfbeck

Slide 16





Robert Schöfbeck


α_T limits on stop production

Search regions: Njet \geq 4 and Nbjet = 1 or Nbjet = 2

Robert Schöfbeck

CMS

DIS 2013

Slide 18