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Introduction

● Definition of “multileptons” in CMS: 3 or more leptons
→ Involves many flavor and charge combinations

● There's a lot of interesting physics in multileptons:
– SUSY

– Exotic quarks

● Recent results focus on
– Natural SUSY

– R-parity violation

– Electroweak SUSY
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CMS Detector

Tracker:
Electrons, Muons,
Charged Hadrons

Electromagnetic
Calorimeter:
Electrons, Photons

Hadronic Calorimeter:
Hadrons
(neutral & charged)

Muon Chambers:
Muons
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Signatures and Selection

● Vast diversity in possible signal signatures
→ look in a large number of exclusive channels
– Are there OSSF pairs (e+e-, µ+µ-)?
– Is there a Z candidate (OSSF mass on Z peak)?

– Are there hadronic taus?
– Are there b-jets?

– What is the total MET, H
T
 and S

T
 of the event?

● Using 8 TeV events from dilepton triggers

● Require leading lepton p
T
 ≥ 20 GeV, 10 GeV otherwise

● Also require dilepton mass ≥ 12 GeV (to cut J/Ψ, …)
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Background Predictions

● Uniform background determination across all
search bins

● Use data-driven estimates as much as possible
– Leptons from Standard Model backgrounds are estimated 

by calculating a fake rate in a control region which is 
applied to the search region

● MC simulation for tt, WZ, ZZ and rare processes;
validation in control regions

● Apply data-driven corrections to simulation to
improve MET resolution

● Next slides: more details on data-driven methods
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Background Predictions:
Tau Fake Rates
● Parametrize tau fake rate f

T
 by amount of jet 

activity in the event, using jet-dependent 
parameter f

SB
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Background Predictions:
Light Lepton Fake Rates

● Using CFO method,
relating isolated 
tracks to the number 
of fake leptons

● Fake rate is a function 
of Rdxy (ratio of tracks 
with large impact 
parameter dxy to those 
with small dxy)

● Method first used in 2010, has withstood the data



April 23, 2013 Peter Thomassen, Rutgers University 12

Background Predictions:
Asymmetric Photon Conv.
● For internal conversions, di-lepton invariant mass is not in the Z 

window, but tri-lepton mass might
● Conversion factor 

● Prediction matches data

Control region: 3 leptons
including one OSSF off Z,
(here: 3 muons), low MET/H

T

● Found by previous incarnation
of Rutgers multilepton search
hep-ph:arXiv:1110.1368 R.C. Gray et al.
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Background Predictions: 
Simulation Validation

WZ simulation validated 
in M

T
 distribution for 3 

leptons including one 
on-Z OSSF pair,
50 < MET < 100 GeV

ZZ simulation validated 
in invariant mass 
distribution for 4 leptons 
including at least one 
on-Z OSSF pair

tt simulation validated in 
S

T
 distribution for events 

with an opposite-sign 
electron-muon pair 
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Results – S
T
 Tables

● Large amount of numbers due to large number of bins

● Below: Results binned in S
T

● MET/H
T
-binned results with full 2012 dataset are in 

the pipeline

with b-tag and
off-Z OSSF pair
requirement

without this requirement
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Results – S
T
 Plots
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SUS-13-003:
Stop RPV – RPV Review

● Three trilinear Yukawa couplings
● RPV couplings also violate lepton or baryon number

conservation
● Focus on light stop pair 

production where the stop 
decays through off-shell bino

● Couplings chosen to have 
prompt decay, and to satisfy existing constraints
(model by J. A. Evans, Y. Kats, arXiv:1209.0764 [hep-ph])

leptonic mixed hadronic

4-body decay              2-body decay
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SUS-13-003:
Stop RPV – LLE 122

● Stop RPV model with LLE 122 coupling non-zero
● Excluding stop masses below 1050–1100 GeV; approximately

independent of bino mass which decouples → little structure

leptonic
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SUS-13-003:
Stop RPV – LLE 233

● Stop RPV model with LLE 233 coupling non-zero
● Excluding stop masses below 850–900 GeV;

feature around diagonal due to kinematic transition

leptonic
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SUS-13-003:
Stop RPV – LQD 233

● Stop RPV model with
LQD 233 coupling non-zero

● Several kinematic regions 
with different acceptance
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SUS-12-026:
T1tttt

● Third generation stop production
● One of the CMS standard Simplified Models (SMS)
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SUS-12-026:
Slepton co-NLSP

● LSP: Gravitino; NLSPs: sleptons; Higgsinos decoupled

● squarks/gluinos from strong production decay to
sleptons (through bino)
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SUS-12-022: Weak Prod.
TChiSlepSnu Democratic

● Democratic with respect to sleptons; neutralino BR: 50%
● Exclusion in the LSP mass vs. chargino mass plane
● Sleptons midway between LSP and chargino
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SUS-12-022: Weak Prod.
TChiSlepSnu Tau-enriched

● Charginos decaying to staus (neutralino democratic)
● Exclusion in the LSP mass vs. chargino mass plane
● Sleptons midway between LSP and chargino
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SUS-12-022: Weak Prod.
TChiSlepSnu Tau-dominated

● Charginos and neutralinos decaying to staus
● Exclusion in the LSP mass vs. chargino mass plane
● Sleptons midway between LSP and chargino
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SUS-12-022: Weak Prod.
TChiWZ Resonant Search

● Resonant production of trileptons, or dilepton + jets
● Exclusion in the LSP mass vs. chargino mass plane

ll

lν/jj 
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SUS-12-022: Weak Prod.
Non-Resonant Dilepton

Chargino-Chargino Production Slepton-Slepton Production
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SUS-12-022: Weak Prod.
Higgsino GMSB

Setting limits on neutralino-
neutralino production in the 
GMSB scenario

Exclusion in terms of parameter 
μ that controls the chargino and 
LSP masses:

Phys. Rev. D 62 (2000) 077702
JHEP 05 (2012) 105

Z+2j where Z → 4l
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Conclusions

● Search for multilepton events in
2012 CMS data at 8 TeV

● Highlights:
– Multiple exclusive channels

– Uniform background predictions
(both data-driven and MC)

– Three types of binning (S
T
, MET/H

T
, MET/M

T
)

for different types of signal

● Good agreement between data and background
→ Excluded regions of parameter space
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Extra slides
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Why S
T
?

● S
T
 provides 

discrimination from 
background and is 
sensitive to the 
stop mass
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Lepton Selection
● Muons: official POG 

recommendation
– Muon is Global

– Muon is PF
– normalizedChi2 < 10

– At least one muon chamber 
hit in global fit

– At least two muon stations

– Dxy < 2 mm
– dZ < 0.5

– Number of pixel hits > 0

– Number of tracker layers > 5
– PFiso < 0.15 in 0.3 cone

● Electrons: official POG 
recommendation (loose)
– cuts for barrel (endcap)

– dEtaIn < 0.007 (0.009)

– dPhiIn < 0.15 (0.10)
– sigmaIEtaIeta < 0.01 (0.03)
– H/E < 0.12 (0.10)

– d0 < 0.02 (0.02)

– dZ < 0.2 (0.2)

– fabs(1/E - 1/p) < 0.05 (0.05)

– PFiso < 0.15 (0.15) in 0.3 cone

– conversion rejection

● Taus: official HPS tau 
selection
– ByDecayModeFinding
– AgainstElectronMVA
– AgainstMuonTight
– ByLooseCombinedIsola

tionDBSumPtCorr
– pT > 20
– eta < 2.3

● Light lepton p
T
 must pass 20/10/10(/10) GeV threshold

(for the first, second, … lepton)
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Other Selections

● MET filters applied
● Using PFMET

● Jets: official POG 
recommendation (loose)
– Neutral Hadron Fraction < 0.99

– Neutral EM Fraction < 0.99

– Number Constituents > 1
– Charged Hadron Fraction > 0
– Charged Multiplicity > 0
– Charged EM Fraction < 0.99
– pT > 30
– eta < 2.5

● b-tag
– Combined Secondary Vertex Medium 

working point

● Cleaning of Objects:
– Remove electrons within dR < 0.1 of muon

– Remove taus within dR < 0.1 of muons or 
electrons

– Remove jets within dR < 0.4 of muons, 
electrons, taus
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Data Samples
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Simulation Samples
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Light Lepton Fake Rates

● Estimate number of “fake” leptons
● Use CFO method:

– Define fake rate with respect to a proxy object
– Parametrize by other object to describe how 

conversion factors change between data sets

● Here: Use isolated tracks (pions, kaons) as 
proxies for electrons/muons from jets

● Parametrize by Rdxy, sensitive to jet 
composition
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Light Lepton Fake Rates

● CFO: Use isolated tracks (pions, kaons) as proxies for 
electrons/muons from jets

● Parametrize by Rdxy, sensitive to jet composition
● Measure the 

efficiency ratio in a 
Z+jets sample (low 
Rdxy) and a tt 
sample (high Rdxy)

● Interpolate between 
the  two samples 
using a linear 
combination to get 
Rdxy dependence
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Tau Fake Rates

● Parametrize tau fake rate by amount of jet activity 
in the event (naturally accounts for pileup effects)

● Use f
SB

 to characterize 

jet spectra through
isolation shape: f

SB
→0

as jets become  harder

● Use f
SB

 as a parameter 

for tau fake rate f
T
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Asymmetric Photon 
Conversions
● External conversions taken care of by electron 

selection
● Internal conversions: Final state lepton from Z 

decay radiates a photon, which produces another 
OSSF lepton pair

● Often asymmetric in p
T

→ one lepton escapes detection

→ Invariant tri-lepton mass consistent with a Z
● Not properly simulated
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MET Resolution

● Apply smearing to simulation depending on pileup and jet activity
● Goal:

– Match MET resolution in MC and data

– Get systematic due to smearing

● Model the MET shape with Rayleigh distributions for different 
bins of N

vert
 and H

T

● The width of the Rayleigh distribution changes as a function of 
N

vert
 and H

T
 → fit in each of those bins and determine width



April 23, 2013 Peter Thomassen, Rutgers University 43

Results – MET/H
T
 Tables
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Results – MET/H
T
 Tables
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Results – MET/H
T
 Tables
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Results – MET/H
T
 Tables
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Limit Setting Procedure

● We compute LHC-style CL
s
 limits using LandS, 

as recommended for CMS analyses
● To do so, we determine the most sensitive 

channels for each grid points (based on the 
expected limit of each single channel)

● We use as many channels as are required to 
cover 90% of the signal, up to 42 channels
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SUS-13-003:
Stop RPV

● Naturally, in a multilepton analysis, we look at RPV 
couplings that produce leptons

●

leptonic mixed

Coupling LLE 122 LLE 233 LQD 233

decay products
per stop ℓ ℓ ν t ℓ τ ν t

τ τ ν t
ν b b t
ℓ b t t

stop mass 700–1250 GeV
stepsize: 50 GeV

700–1250 GeV
stepsize: 50 GeV

300–1000 GeV
stepsize: 50 GeV

bino mass 100–1300 GeV
stepsize: 100 GeV

100–1300 GeV
stepsize: 100 GeV

200–850 GeV
stepsize: 50 GeV

Number of events 10k 20k 40k
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SUS-13-003:
Stop RPV – LLE 122

● Stop RPV model with LLE 122 coupling non-zero
● Excluding stop masses below 1050–1100 GeV; approximately

independent of bino mass which decouples → little structure

leptonic
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SUS-13-003:
Stop RPV – LLE 233
● Four-body decay above

diagonal, two-body below
● In transition region, top is 

off-shell → low p
T
 leptons 

reduce sensitivity
● Additionally, a fluctuation

in observation becomes
relevant:

3 leptons (no tau),
OSSF pair above Z,
1000 < S

T
 < 1500 GeV
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SUS-13-003:
Stop RPV – LQD 233

● The model produces one bino per stop
● Bino decays to νbb or μtb

→expect more structure
    due to presence of
    massive particles

mixed
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SUS-13-003:
Stop RPV – LQD 233

● In each kinematic region,
the BR to leptons and the
cross-section change as
the stop mass increases
→ acceptance varies
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SUS-13-003:
Stop RPV – LQD 233

● Stop RPV model with
LQD 233 coupling non-zero

● Several kinematic regions 
with different acceptance
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SUS-13-003:
Stop RPV – LQD 233

● Stop RPV model with
LQD 233 coupling non-zero

● Several kinematic regions 
with different acceptance
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