CMS Searches with Multilepton Final States

DIS 2013

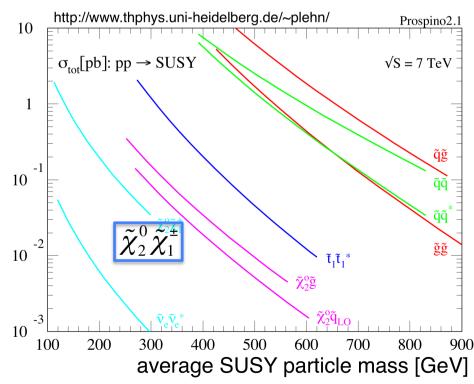
Peter Thomassen Rutgers University

for the CMS Collaboration

April 23, 2013

RUTGERS

Outline

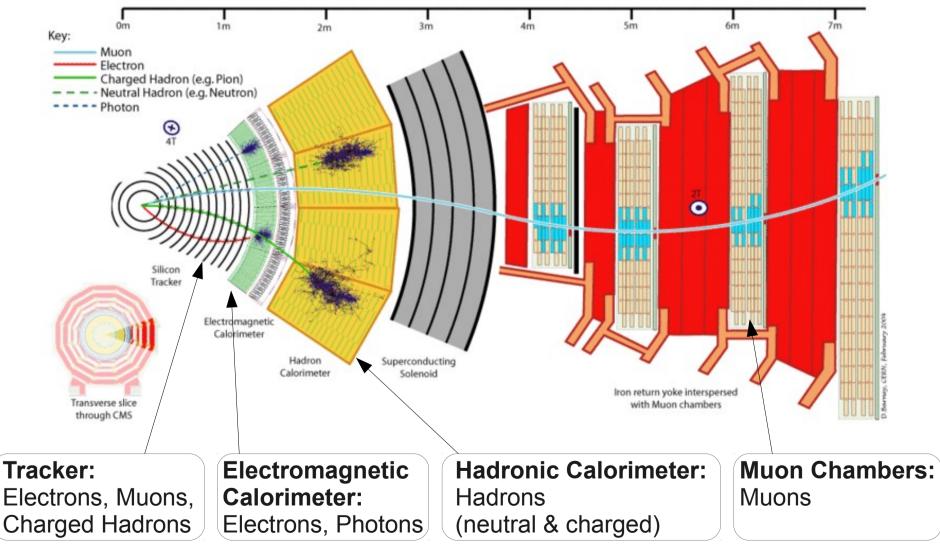


- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions

Introduction

- Definition of "multileptons" in CMS: 3 or more leptons
 → Involves many flavor and charge combinations
- There's a lot of interesting physics in multileptons:
 - SUSY
 - Exotic quarks
- Recent results focus on
 - Natural SUSY
 - R-parity violation
 - Electroweak SUSY

Peter Thomassen, Rutgers University


Outline

- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions

CMS Detector

Outline

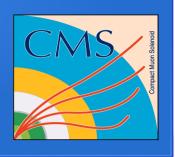
- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions

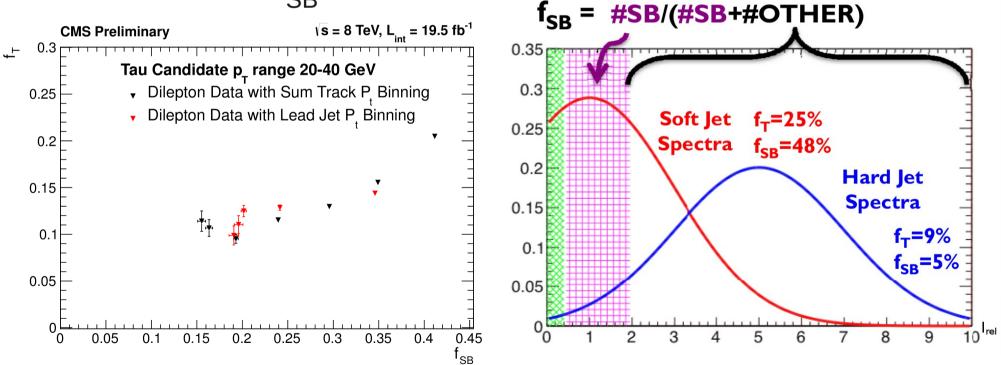
Signatures and Selection

- Vast diversity in possible signal signatures
 - \rightarrow look in a large number of exclusive channels
 - Are there <u>OSSF pairs</u> (e^+e^- , $\mu^+\mu^-$)?
 - Is there a <u>Z candidate</u> (OSSF mass on Z peak)?
 - Are there hadronic taus?
 - Are there <u>b-jets</u>?
 - What is the total MET, H_{T} and S_{T} of the event?
- Using 8 TeV events from dilepton triggers
- Require leading lepton $p_{\tau} \ge 20$ GeV, 10 GeV otherwise
- Also require dilepton mass \geq 12 GeV (to cut J/ Ψ , ...)

Outline

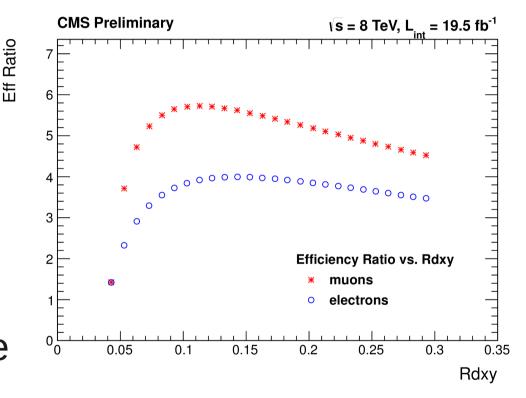
- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions


Background Predictions


- Uniform background determination across all search bins
- Use data-driven estimates as much as possible
 - Leptons from Standard Model backgrounds are estimated by calculating a fake rate in a control region which is applied to the search region
- MC simulation for tt

 , WZ, ZZ and rare processes; validation in control regions
- Apply data-driven corrections to simulation to improve MET resolution
- Next slides: more details on data-driven methods

Background Predictions: Tau Fake Rates

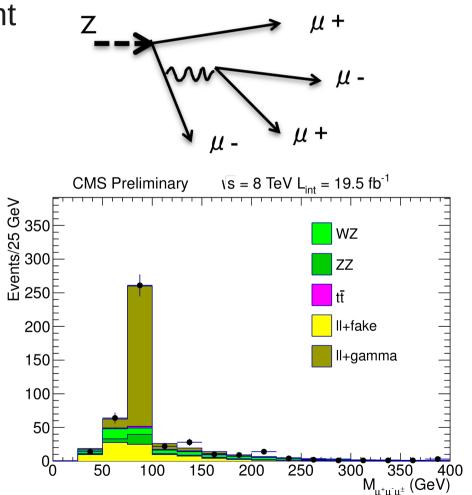

• Parametrize tau fake rate f_T by amount of jet activity in the event, using jet-dependent parameter f_{SB}

Background Predictions: Light Lepton Fake Rates

- Using CFO method, relating isolated tracks to the number of fake leptons
- Fake rate is a function of Rdxy (ratio of tracks with large impact parameter dxy to those with small dxy)

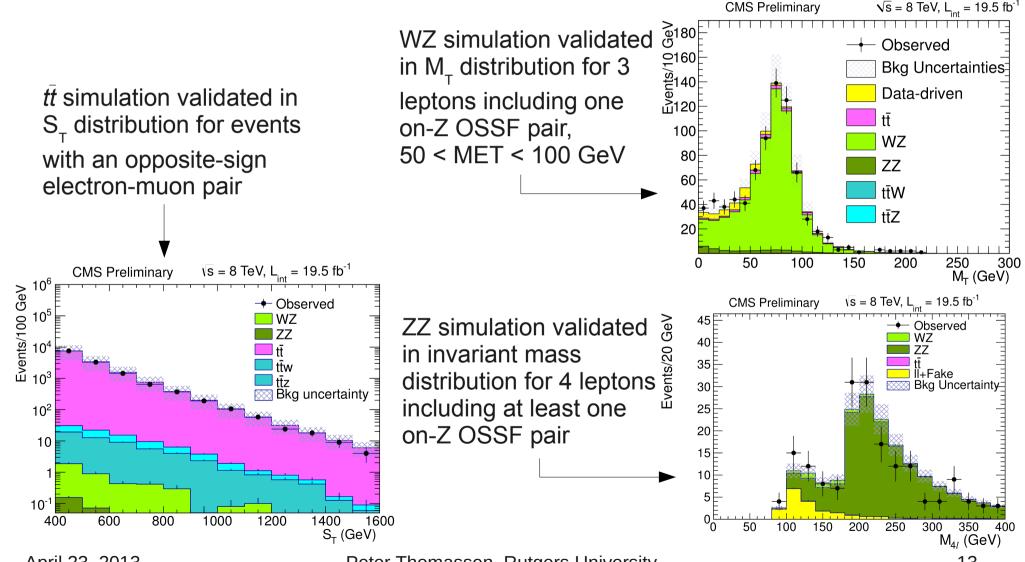
Method first used in 2010, has withstood the data

Background Predictions: Asymmetric Photon Conv.


- For internal conversions, di-lepton invariant mass is not in the Z window, but tri-lepton mass might $Z \xrightarrow{\mu} \mu^+$
- Conversion factor

 $C = \frac{N(\ell^+ \ell^- \ell^\pm)}{N(\ell^+ \ell^- \gamma)}$

Prediction matches data


<u>Control region</u>: 3 leptons including one OSSF off Z, (here: 3 muons), low MET/H₁

• Found by previous incarnation of Rutgers multilepton search hep-ph:arXiv:1110.1368 R.C. Gray et al.

Background Predictions: Simulation Validation

April 23, 2013

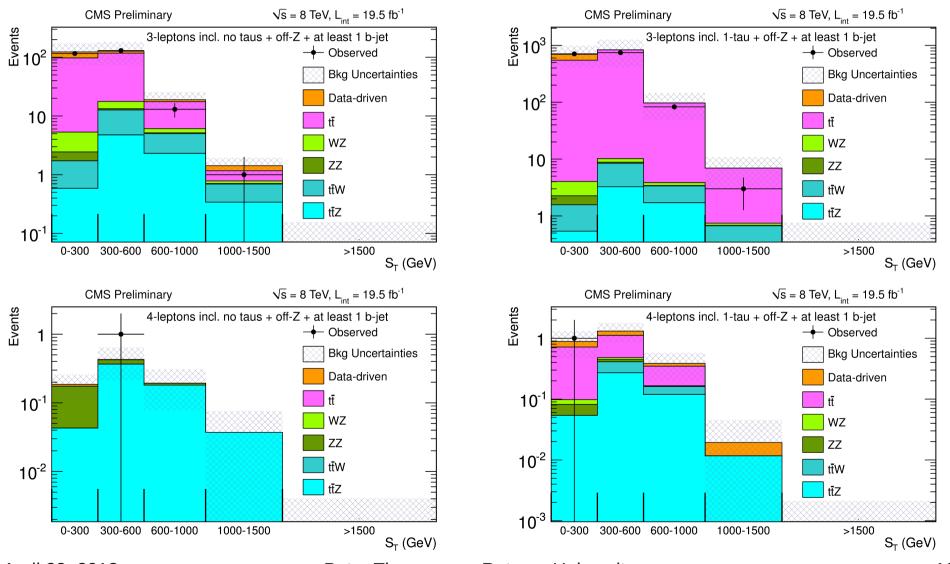
Peter Thomassen, Rutgers University

13

Outline

- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions

Results – S_{T} Tables


- Large amount of numbers due to large number of bins
- Below: Results binned in S_{-}

										1			
N_ℓ	$ $ N $_{\tau}$	0	$0 < S_T < 300$		$300 < S_T < 600$		0 6	$600 < S_T < 1000$		$1000 < S_T < 1500$		$S_T > 1500$	
		obs	exp		obs	exp	0	obs	exp	obs	exp	obs	exp
4	0	0	0.186 ± 0.0	74	1	0.43 ± 0.2	2	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
4	1	1	0.89 ± 0.4	2	0	1.31 ± 0.4	.8	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
3	0	116	123 ± 50		130	127 ± 54		13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
3	1	710	698 ± 287	7	746	837 ± 423	3 8	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
N_ℓ	$N_{ au}$	600 <	$S_T < 1000$	100	0 < S	$S_T < 1500$		S_T	> 1500		▲	with	b-tag and
		obs	exp	obs		exp	obs		exp				•
4	0	5	8.2 ± 2.6	2	0.9	96 ± 0.37	0	0.	113 ± 0.056				OSSF pair
4	1	2	3.8 ± 1.3	0	0.3	34 ± 0.16	0	0.	040 ± 0.033			requ	irement
3	0	165	174 ± 53	16	21	1.4 ± 8.4	5	2	2.18 ± 0.99				
3	1	276	249 ± 80	17	19	9.9 ± 6.8	0]	1.84 ± 0.83	-	— without t	his re	equirement

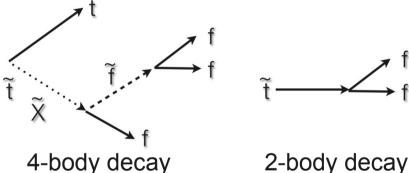
- MET/H_-binned results with full 2012 dataset are in the pipeline

Results – S_{T} Plots

April 23, 2013

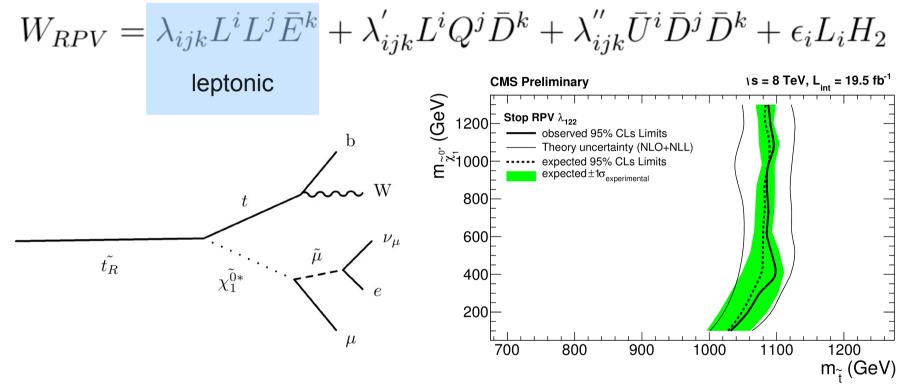
Peter Thomassen, Rutgers University

Outline


- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions

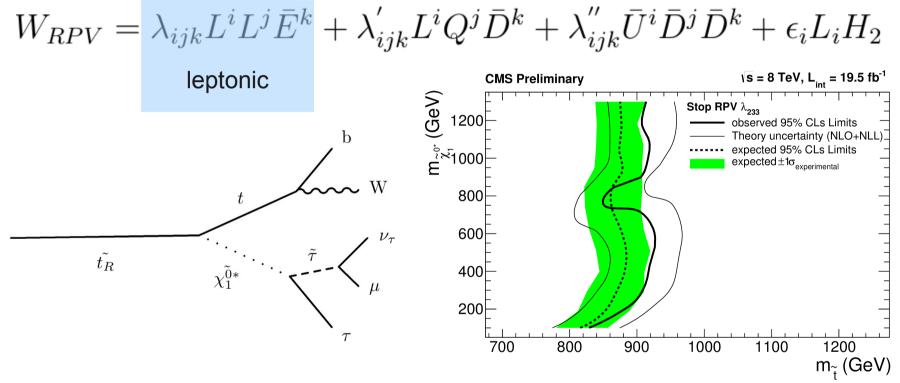
SUS-13-003: Stop RPV – RPV Review

$$W_{RPV} = \frac{\lambda_{ijk} L^i L^j \bar{E}^k}{\text{leptonic}} + \frac{\lambda'_{ijk} L^i Q^j \bar{D}^k}{\text{mixed}} + \frac{\lambda''_{ijk} \bar{U}^i \bar{D}^j \bar{D}^k}{\text{hadronic}} + \epsilon_i L_i H_2$$


- Three trilinear Yukawa couplings
- RPV couplings also violate lepton or baryon number conservation
- Focus on light stop pair production where the stop decays through off-shell bino

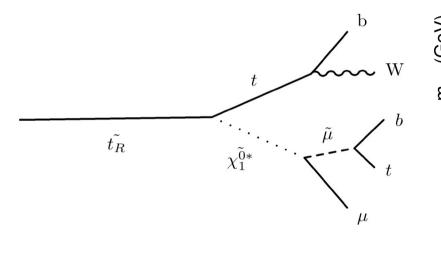
 Couplings chosen to have prompt decay, and to satisfy existing constraints (model by J. A. Evans, Y. Kats, arXiv:1209.0764 [hep-ph])

SUS-13-003: Stop RPV – LLE 122

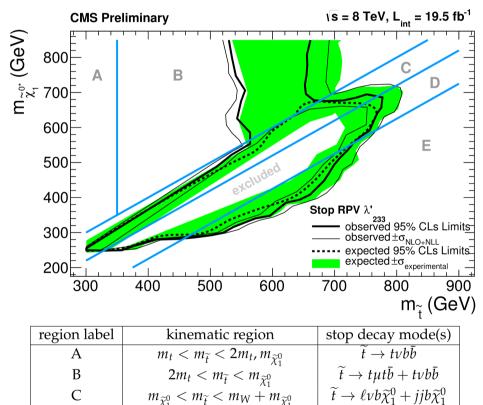


- Stop RPV model with LLE 122 coupling non-zero
- Excluding stop masses below 1050–1100 GeV; approximately independent of bino mass which decouples \rightarrow little structure

SUS-13-003: Stop RPV – LLE 233



- Stop RPV model with LLE 233 coupling non-zero
- Excluding stop masses below 850–900 GeV; feature around diagonal due to kinematic transition


SUS-13-003: Stop RPV – LQD 233

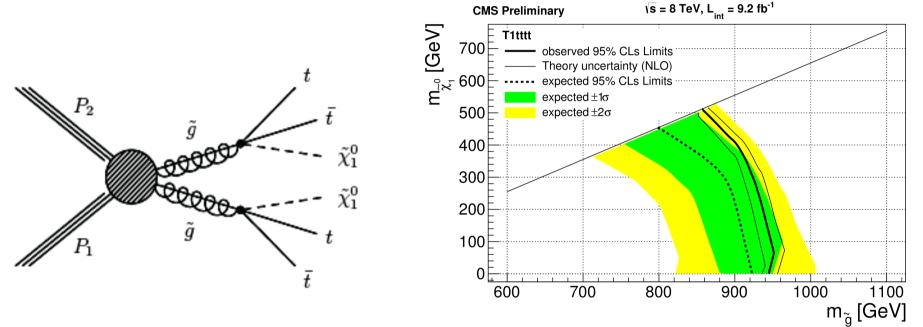
 $W_{RPV} = \lambda_{ijk} L^i L^j \bar{E}^k + \lambda'_{ijk} L^i Q^j \bar{D}^k + \lambda''_{ijk} \bar{U}^i \bar{D}^j \bar{D}^k + \epsilon_i L_i H_2$

- Stop RPV model with LQD 233 coupling non-zero
- Several kinematic regions with different acceptance

 $m_W + m_{\widetilde{\chi}^0_1} < m_{\widetilde{t}} < m_t + m_{\widetilde{\chi}^0_1}$

 $m_t + m_{\widetilde{\chi}^0_1} < m_{\widetilde{t}}$

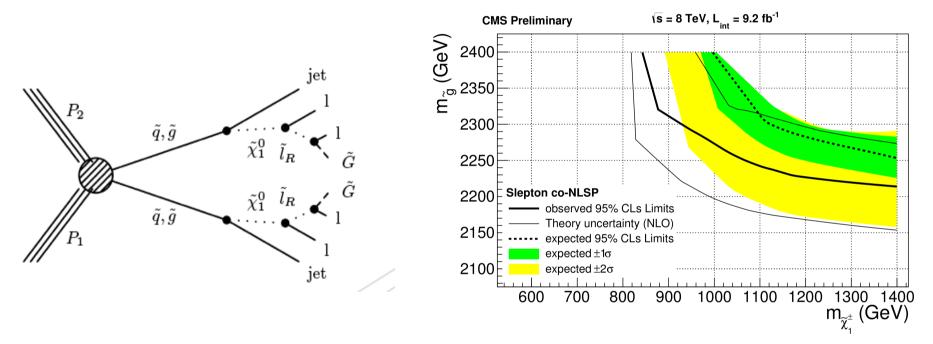
D


Ε

 $\widetilde{t} \to Wb\widetilde{\chi}_1^0$

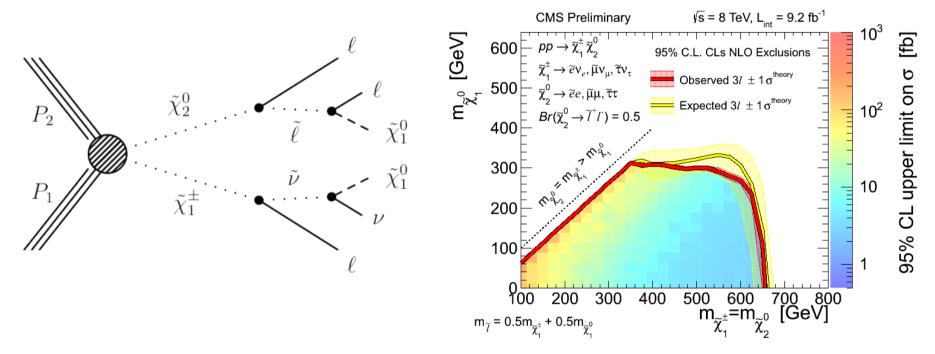
 $\widetilde{t} \to t \widetilde{\chi}_1^0$

SUS-12-026: T1tttt



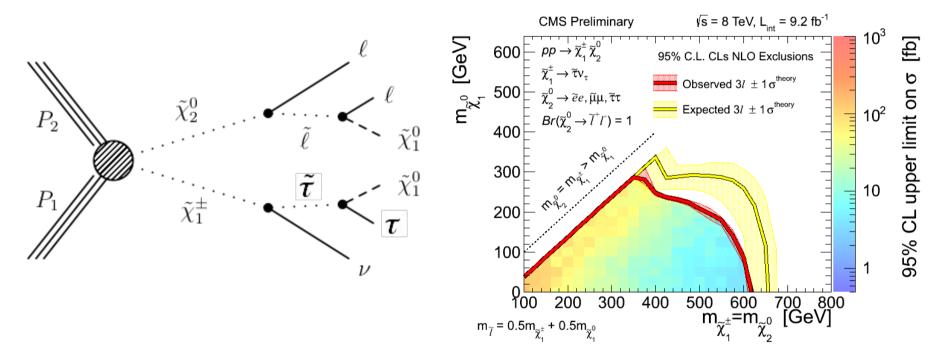
- Third generation stop production
- One of the CMS standard Simplified Models (SMS)

SUS-12-026: Slepton co-NLSP



- LSP: Gravitino; NLSPs: sleptons; Higgsinos decoupled $m_{\tilde{\ell}_R} = 0.3 \ m_{\chi_1^{\pm}}, m_{\chi_1^0} = 0.5 \ m_{\chi_1^{\pm}}, m_{\tilde{\ell}_L} = 0.8 \ m_{\chi_1^{\pm}}, m_{\tilde{q}} = 0.8 \ m_{\tilde{g}}$
- squarks/gluinos from strong production decay to sleptons (through bino)

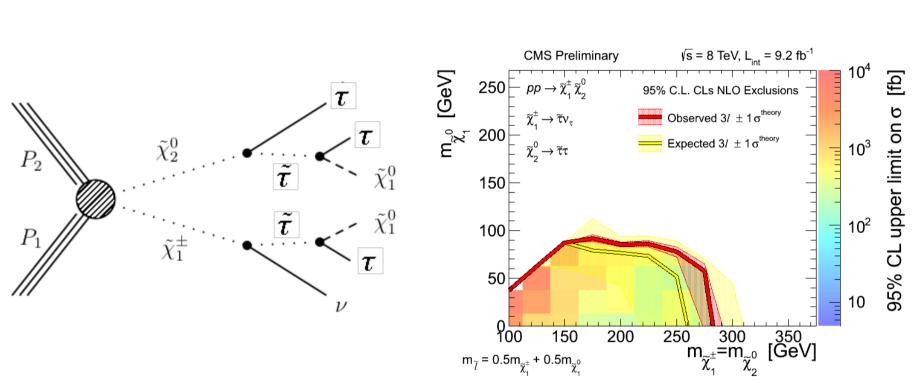
SUS-12-022: Weak Prod. TChiSlepSnu Democratic



- Democratic with respect to sleptons; neutralino BR: 50%
- Exclusion in the LSP mass vs. chargino mass plane
- Sleptons midway between LSP and chargino

April 23, 2013

SUS-12-022: Weak Prod. TChiSlepSnu Tau-enriched

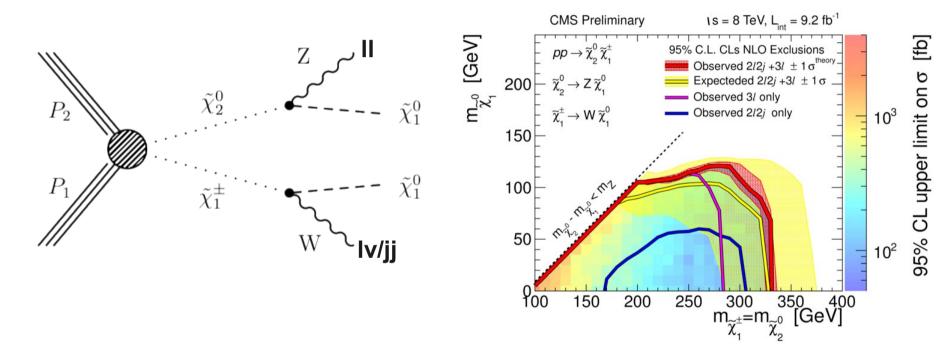


- Charginos decaying to staus (neutralino democratic)
- Exclusion in the LSP mass vs. chargino mass plane
- Sleptons midway between LSP and chargino

April 23, 2013

Peter Thomassen, Rutgers University

SUS-12-022: Weak Prod. TChiSlepSnu Tau-dominated

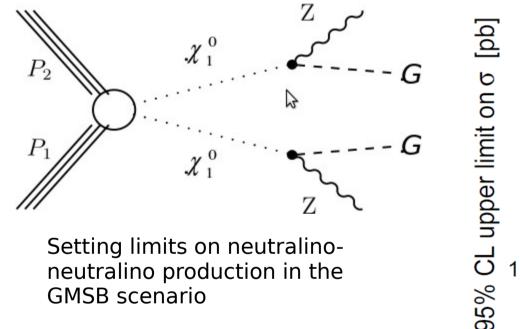


- Charginos and neutralinos decaying to staus
- Exclusion in the LSP mass vs. chargino mass plane
- Sleptons midway between LSP and chargino

April 23, 2013

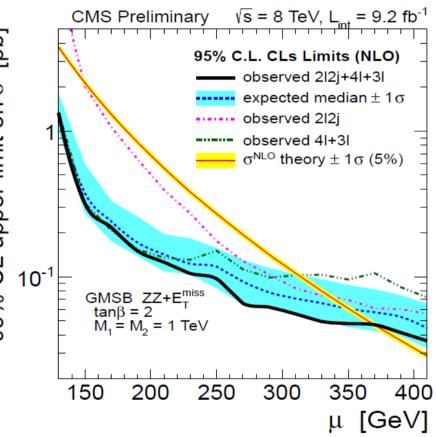
SUS-12-022: Weak Prod. TChiWZ Resonant Search

- Resonant production of trileptons, or dilepton + jets
- Exclusion in the LSP mass vs. chargino mass plane


SUS-12-022: Weak Prod. Non-Resonant Dilepton

Chargino-Chargino Production Slepton-Slepton Production P_2 P_2 $ilde{\chi}_1^0$ $ilde{\chi}_1^0$ P_1 $ilde{\chi}_1^0$ √s = 8 TeV, L_{int} = 9.2 fb⁻ CMS Preliminary √s = 8 TeV, L_m = 9.2 fb⁻ CMS Preliminary m_₀ [GeV] 95% CL upper limit on σ [fb] $m_{\widetilde{\chi}_1^0}$ [GeV] <u>þ</u> 350 II O Exclusions $pp \rightarrow \tilde{e}_{L} \tilde{e}_{L}, \tilde{\mu}, \tilde{\mu}$ 95% CL upper limit on σ 300 Observed $\pm 1\sigma$ 200 bserved + 1 a ee. III. TT Expecteded $\pm 1\sigma$ $Br(\tilde{l}_{,} \rightarrow l \tilde{\chi}^{0}) =$ Expecteded $\pm 1\sigma$ 250 150 200 10 150 100 100 10 50 50 100 200 $m_{\tilde{\chi}^{\pm}}^{400}$ (GeV) 150 250 300 250 300 350 100 150 200 m_{γ} [GeV] $m_{\tilde{l}} = 0.5 m_{\gamma^{\pm}} + 0.5 m_{\gamma^{0}}$ April 23, 2013 Peter Thomassen, Rutgers University

SUS-12-022: Weak Prod. Higgsino GMSB



Setting limits on neutralinoneutralino production in the **GMSB** scenario

Exclusion in terms of parameter μ that controls the chargino and LSP masses:

$$m_{\tilde{\chi}_1^{\pm}} \approx m_{\tilde{\chi}_1^0} \approx m_{\mu}$$

Phys. Rev. D 62 (2000) 077702 JHEP 05 (2012) 105

Z+2j where $Z \rightarrow 4I$

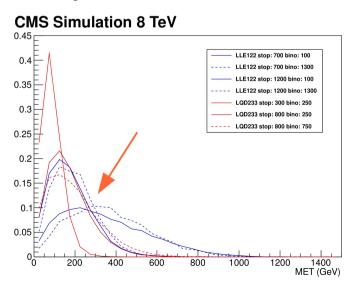
Outline

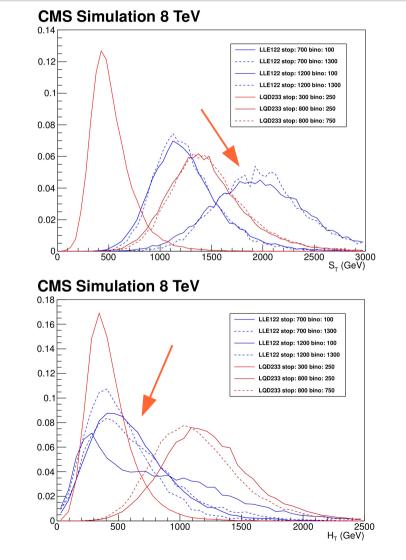
- Introduction
- Detector
- Signatures and Selection
- Background Predictions
- Results
- Interpretations
- Conclusions

Conclusions

- Search for multilepton events in 2012 CMS data at 8 TeV
- Highlights:
 - Multiple exclusive channels
 - Uniform background predictions (both data-driven and MC)
 - Three types of binning (S_{T} , MET/ H_{T} , MET/ M_{T}) for different types of signal
- Good agreement between data and background
 → Excluded regions of parameter space

Extra slides




Why S_{T} ?

S_T provides

 discrimination from
 background and is
 sensitive to the
 stop mass

Peter Thomassen, Rutgers University

Lepton Selection

- Muons: official POG recommendation
 - Muon is Global
 - Muon is PF
 - normalizedChi2 < 10</p>
 - At least one muon chamber hit in global fit
 - At least two muon stations
 - Dxy < 2 mm
 - dZ < 0.5
 - Number of pixel hits > 0
 - Number of tracker layers > 5
 - PFiso < 0.15 in 0.3 cone

- Electrons: official POG recommendation (loose)
 - cuts for barrel (endcap)
 - dEtaln < 0.007 (0.009)
 - dPhiln < 0.15 (0.10)
 - sigmalEtaleta < 0.01 (0.03)
 - H/E < 0.12 (0.10)
 - d0 < 0.02 (0.02)
 - dZ < 0.2 (0.2)
 - fabs(1/E 1/p) < 0.05 (0.05)
 - PFiso < 0.15 (0.15) in 0.3 cone
 - conversion rejection

- Taus: official HPS tau selection
 - ByDecayModeFinding
 - AgainstElectronMVA
 - AgainstMuonTight
 - ByLooseCombinedIsola tionDBSumPtCorr
 - pT > 20
 - eta < 2.3

- Light lepton $p_{_{\rm T}}$ must pass 20/10/10(/10) GeV threshold (for the first, second, ... lepton)

Other Selections

- Jets: official POG recommendation (loose)
 - Neutral Hadron Fraction < 0.99
 - Neutral EM Fraction < 0.99
 - Number Constituents > 1
 - Charged Hadron Fraction > 0
 - Charged Multiplicity > 0
 - Charged EM Fraction < 0.99
 - pT > 30
 - eta < 2.5
- MET filters applied
- Using PFMET

- b-tag
 - Combined Secondary Vertex Medium working point
- Cleaning of Objects:
 - Remove electrons within dR < 0.1 of muon
 - Remove taus within dR < 0.1 of muons or electrons
 - Remove jets within dR < 0.4 of muons, electrons, taus

Data Samples

Primary Dataset	Reco details	Luminosity (fb ⁻¹)
MuEG	Run2012A-recover-06Aug2012-v1	0.082
MuEG	Run2012A-13Jul2012-v1	0.809
MuEG	Run2012B-13Jul2012-v1	4.403
MuEG	Run2012C-24Aug2012-v1	0.495
MuEG	Run2012C-PromptReco-v2	6.584
MuEG	Run2012D-PromptReco-v1	7.718
DoubleMu	Run2012A-recover-06Aug2012-v1	0.082
DoubleMu	Run2012A-13Jul2012-v1	0.809
DoubleMu	Run2012B-13Jul2012-v4	4.403
DoubleMu	Run2012C-24Aug2012-v1	0.495
DoubleMu	Run2012C-PromptReco-v2	6.557
DoubleMu	Run2012D-PromptReco-v1	7.719
DoubleElectron	Run2012A-recover-06Aug2012-v1	0.082
DoubleElectron	Run2012A-13Jul2012-v1	0.809
DoubleElectron	Run2012B-13Jul2012-v1	4.403
DoubleElectron	Run2012C-24Aug2012-v1	0.495
DoubleElectron	Run2012C-PromptReco-v2	6.575
DoubleElectron	Run2012D-PromptReco-v1	7.727

Simulation Samples

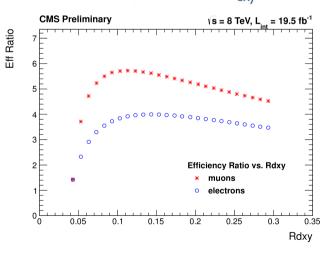
Simulation sample	N events	cross section (pb)
/DYJetsToLL_M-10To50filter_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	7,131,530	11050.0
/DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	30,459,503	3532.8
/TTJets_FullLeptMGDecays_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v2/AODSIM	12,119,013	23.08
/TTJets_SemiLeptMGDecays_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A_ext-v1/AODSIM	25,423,514	97.97
/TTGJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	71,598	2.166
/TTWJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	196,046	0.232
/TTZJets_8TeV-madgraph_v2/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	209,677	0.208
/TTWWJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	217,213	0.002
/TBZToLL_4F_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V7C-v1/AODSIM	148504	0.0217
/ZZZNoGstarJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	224,902	0.0192
/WWWJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	220,170	0.08217
/ZZJetsTo4L_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	4,804,781	0.1769
/WZJetsTo3LNu_TuneZ2_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	2,016,678	1.0575
/WWJetsTo2L2Nu_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	1,932,249	5.8123
/WJetsToLNu_TuneZ2Star_8TeV-madgraph-tarball/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	18,393,090	37509
/WWGJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	215,121	1.44
/WWZNoGstarJets_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	222,234	0.0633
/GluGluToHToTauTau_M-125_8TeV-powheg-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	967566	1.2466
/GluGluToHToWWTo2LAndTau2Nu_M-125_8TeV-powheg-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	299975	0.4437
/GluGluToHToZZTo4L_M-125_8TeV-powheg-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	995117	0.0053
/VBF_HToTauTau_M-125_8TeV-powheg-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	1000000	0.0992
/VBF_HToWWTo2LAndTau2Nu_M-125_8TeV-powheg-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	299687	0.0282
/VBF_HToZZTo4L_M-125_8TeV-powheg-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	49876	0.000423
/WH_ZH_TTH_HToTauTau_M-125_8TeV-pythia6-tauola/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	200000	0.0778
/WH_ZH_TTH_HToWW_M-125_8TeV-pythia6/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM	200408	0.254

Light Lepton Fake Rates

- Estimate number of "fake" leptons
- Use CFO method:
 - Define fake rate with respect to a proxy object
 - Parametrize by other object to describe how conversion factors change between data sets
- Here: Use isolated tracks (pions, kaons) as
 proxies for electrons/muons from jets
- Parametrize by Rdxy, sensitive to jet composition

Light Lepton Fake Rates

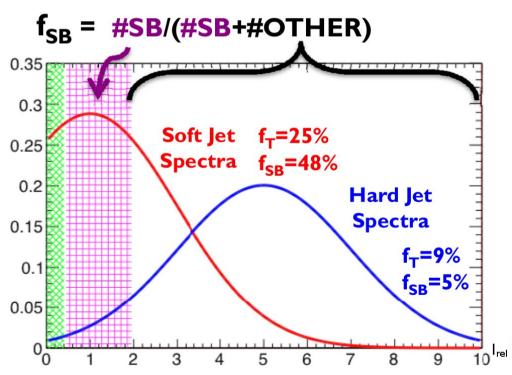
- CFO: Use isolated tracks (pions, kaons) as proxies for electrons/muons from jets
- Parametrize by Rdxy, sensitive to jet composition
- Measure the efficiency ratio in a Z+jets sample (low Rdxy) and a tt sample (high Rdxy)
- Interpolate between the two samples using a linear combination to get Rdxy dependence


$$f_{\mu} = \frac{N_{\mu}^{Iso}}{N_{T}^{Iso}} = \frac{N_{\mu}}{N_{T}} \times \frac{\epsilon_{Iso}^{\mu}}{\epsilon_{Iso}^{T}}$$

Non isolated leptons and tracks measured in seed to reduce dependence on control data.

Heavy Flavor produces displaced vertices and non-isolated tracks with large dxy

 $R_{dxy} = N(|dxy| > 0.02 cm)/N(|dxy| < 0.02 cm)$


A sample of pure b-jets has Rdxy~30% A sample of pure uds jets has Rdxy~3% Ratio of lepton to track isolation efficiencies. Parameterize in di-jet data as a function of R_{dxy}

Tau Fake Rates

- Parametrize tau fake rate by amount of jet activity in the event (naturally accounts for pileup effects)
- Use f_{SB} to characterize jet spectra through isolation shape: $f_{SB} \rightarrow 0$ as jets become harder
- Use $f_{_{\rm SB}}$ as a parameter for tau fake rate $f_{_{\rm T}}$

Asymmetric Photon Conversions

- External conversions taken care of by electron selection
- Internal conversions: Final state lepton from Z decay radiates a photon, which produces another OSSF lepton pair
- Often asymmetric in p_{τ}
 - \rightarrow one lepton escapes detection
 - \rightarrow Invariant tri-lepton mass consistent with a Z
- Not properly simulated

MET Resolution

- Apply smearing to simulation depending on pileup and jet activity
- Goal:
 - Match MET resolution in MC and data
 - Get systematic due to smearing
- Model the MET shape with Rayleigh distributions for different bins of $\rm N_{vert}$ and $\rm H_{T}$
- The width of the Rayleigh distribution changes as a function of N_{vert} and H_T \rightarrow fit in each of those bins and determine width

$$f_{MET}(x) = \frac{1}{\sigma^2} x \exp(-\frac{x^2}{2\sigma^2}); x \ge 0$$
$$\sigma^2 = \sigma_0^2 + \sigma_{vert}^2 N_{vert} + \sigma_{HT}^2 \lfloor \frac{H_T}{30} \rfloor$$

Peter Thomassen, Rutgers University

Results – MET/H_T Tables

Selection		MET	N(τ)=0, NbJet=0		$N(\tau)$	=1, NbJet=0	$N(\tau)=0, NbJet \ge 1$		$N(\tau) = 1, NbJet \ge 1$	
			obs	expect	obs	expect	obs	expect	obs	expect
4 Lepton Results $H_T > 200$										
OSSF0	NA	$(100,\infty)$	0	0.007 ± 0.01	0	0.001 ± 0.01	0	0 ± 0.01	0	0 ± 0.009
OSSF0	$\mathbf{N}\mathbf{A}$	(50, 100)	0	0 ± 0.01	0	0.007 ± 0.01	0	$0.01~\pm~0.02$	0	0.008 ± 0.01
OSSF0	$\mathbf{N}\mathbf{A}$	(0, 50)	0	$1e-05 \pm 0.009$	0	$0.01~\pm~0.01$	0	0 ± 0.009	0	0 ± 0.009
OSSF1	off-Z	$(100,\infty)$	0	0.0005 ± 0.009	1	0.09 ± 0.03	0	$0.06~\pm~0.04$	0	0.05 ± 0.03
OSSF1	on-Z	$(100,\infty)$	0	0.03 ± 0.02	0	$0.27~\pm~0.07$	0	$0.19~\pm~0.11$	0	0.17 ± 0.09
OSSF1	off-Z	(50, 100)	0	0.03 ± 0.03	1	0.13 ± 0.07	0	$0.02~\pm~0.02$	0	0.07 ± 0.04
OSSF1	on-Z	(50, 100)	0	0.08 ± 0.04	1	$0.29~\pm~0.08$	0	0.1 ± 0.06	1	0.12 ± 0.08
OSSF1	off-Z	(0, 50)	0	0.007 ± 0.01	0	0.12 ± 0.06	0	0.001 ± 0.01	0	0.04 ± 0.03
OSSF1	on-Z	(0, 50)	0	0.1 ± 0.04	0	0.5 ± 0.12	0	0.02 ± 0.02	0	0.23 ± 0.11
OSSF2	off-Z	$(100,\infty)$	0	0.004 ± 0.01	0	0 ± 0	0	0.008 ± 0.01	0	0 ± 0
OSSF2	on-Z	$(100,\infty)$	0	0.05 ± 0.05	0	0 ± 0	0	0.13 ± 0.08	0	0 ± 0
OSSF2	off-Z	(50, 100)	0	0.01 ± 0.01	0	0 ± 0	0	$0.01~\pm~0.02$	0	0 ± 0
OSSF2	on-Z	(50, 100)	0	0.39 ± 0.1	0	0 ± 0	0	$0.16~\pm~0.07$	0	0 ± 0
OSSF2	off-Z	(0, 50)	0	0.11 ± 0.03	0	0 ± 0	0	$0.05~\pm~0.03$	0	0 ± 0
OSSF2	on-Z	(0, 50)	2	3.3 ± 0.7	0	0 ± 0	1	$0.37~\pm~0.09$	0	0 ± 0

Table 1: Results for 4 leptons with $H_T > 200$ GeV. * denotes channels used as controls.

Results – MET/H_{$_{T}$} Tables

Selection		MET	N (*	τ)=0, NbJet=0	$N(\tau)$	=1, NbJet=0	$N(\tau$	$)=0, NbJet\geq 1$	$N(\tau)$	$=1, \text{NbJet} \ge 1$
			obs	expect	obs	expect	obs	expect	obs	expect
4 Lepton Results $H_T < 200$										
OSSF0	NA	$(100,\infty)$	0	0.0005 ± 0.009	0	0.5 ± 0.5	0	0 ± 0.009	0	0.04 ± 0.03
OSSF0	$\mathbf{N}\mathbf{A}$	(50, 100)	0	0.0005 ± 0.009	1	$0.17~\pm~0.1$	0	0 ± 0.009	0	$0.11~\pm~0.07$
OSSF0	NA	(0, 50)	0	0.005 ± 0.01	1	$0.15~\pm~0.07$	0	0.001 ± 0.009	0	0.09 ± 0.05
OSSF1	off-Z	$(100, \infty)$	0	0.02 ± 0.01	2	$0.18~\pm~0.06$	0	0.007 ± 0.01	0	0.07 ± 0.04
OSSF1	on-Z	$(100,\infty)$	0	0.18 ± 0.06	1	1 ± 0.18	1	$0.15~\pm~0.08$	0	$0.1~\pm~0.05$
OSSF1	off-Z	(50, 100)	0	0.05 ± 0.02	1	$0.9~\pm~0.3$	0	0.02 ± 0.02	0	0.34 ± 0.19
OSSF1	on-Z	(50, 100)	1	0.47 ± 0.13	5	$3.7~\pm~0.6$	1	0.15 ± 0.09	0	$0.23~\pm~0.08$
OSSF1	off-Z	(0, 50)	1	0.16 ± 0.05	7	3.6 ± 1.1	0	0.04 ± 0.03	0	0.22 ± 0.1
OSSF1	on-Z	(0, 50)	1	1.3 ± 0.36	16	18 ± 5.2	0	$0.16~\pm~0.09$	2	0.6 ± 0.22
OSSF2	off-Z	$(100, \infty)$	0	0.01 ± 0.01	0	0 ± 0	0	$0.01~\pm~0.02$	0	0 ± 0
OSSF2	on-Z	$(100,\infty)$	0	0.14 ± 0.07	0	0 ± 0	0	0.26 ± 0.14	0	0 ± 0
OSSF2	off-Z	(50, 100)	2	0.05 ± 0.04	0	0 ± 0	0	$0.01~\pm~0.02$	0	0 ± 0
OSSF2	on-Z	(50, 100)	1	1.2 ± 0.8	0	0 ± 0	0	$0.21~\pm~0.09$	0	0 ± 0
OSSF2	off-Z	(0, 50)	3	3.7 ± 1	0	0 ± 0	1	0.11 ± 0.04	0	0 ± 0
OSSF2	on-Z	(0, 50)	76*	$73~\pm~16$	0	0 ± 0	3	1.3 ± 0.31	0	0 ± 0

Table 2: Results for 4 leptons with $H_T < 200$ GeV. * denotes channels used as controls.

Results – MET/H_{$_{T}$} Tables

Selection		MET	$N(\tau)$ =	=0, NbJet=0	$N(\tau)$ =	=1, NbJet=0	$N(\tau)$ =	=0, NbJet ≥ 1	$N(\tau)$ =	=1, NbJet ≥ 1
			$^{\rm obs}$	expect	obs	expect	obs	expect	obs	expect
3 Lepton Results $H_T > 200$										
OSSF0	NA	$(100,\infty)$	1	1.9 ± 1.2	15	7.7 ± 3.6	1	2.9 ± 1.5	27	21 ± 11
OSSF0	NA	(50, 100)	1	1.4 ± 0.8	13	$17~\pm~7.4$	1	4.2 ± 1.7	41	37 ± 19
OSSF0	NA	(0, 50)	2	1 ± 0.8	13	$10~\pm~3.4$	0	$1.9~\pm~0.8$	32	21 ± 11
OSSF1	above-Z	$(100,\infty)$	2	2.2 ± 0.9	2	4 ± 2.4	3	2.8 ± 1.3	11	6.8 ± 3.7
OSSF1	below-Z	$(100,\infty)$	2	3.5 ± 0.8	8	7.6 ± 3.4	3	3.4 ± 1.6	12	8.3 ± 4.3
OSSF1	on-Z	$(100,\infty)$	17	$30~\pm~5.3$	4	$7.9~\pm~2.2$	5	6.3 ± 1.9	8	5.4 ± 2.8
OSSF1	above-Z	(50, 100)	1	1.9 ± 0.49	10	3.7 ± 2.3	4	3.1 ± 1.2	17	12 ± 6.6
OSSF1	below-Z	(50, 100)	4	4.5 ± 0.9	11	$6.4~\pm~2.4$	3	$5~\pm~2.1$	9	$9.4~\pm~5.3$
OSSF1	on-Z	(50, 100)	39	$38~\pm~6.2$	34	$26~\pm~5.4$	10	$9.6~\pm~2.7$	12	$9.5~\pm~3.9$
OSSF1	above-Z	(0, 50)	3	3.2 ± 0.42	19	18 ± 4.5	0	$2.7~\pm~0.8$	6	9.9 ± 4.6
OSSF1	below-Z	(0, 50)	9	$11~\pm~1.2$	57	43 ± 10	2	4.7 ± 1.4	11	13 ± 5.3
OSSF1	on-Z	(0, 50)	58	63 ± 8.7	256	$271~\pm~66$	12	14 ± 2.6	39	34 ± 7.9

Table 3: Results for 3 leptons with $H_T > 200$ GeV. * denotes channels used as controls.

Results – MET/H_T Tables

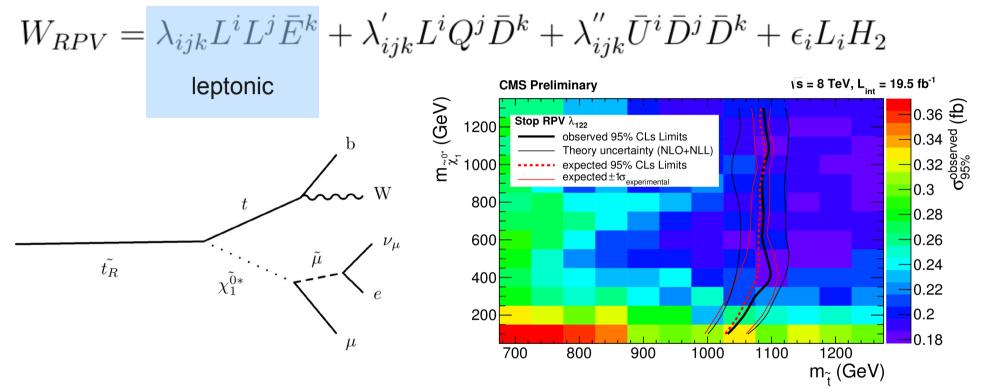
Selection		MET	$N(\tau) =$	0, NbJet=0	$N(\tau)$	=1, NbJet=0	$N(\tau)=$	=0, NbJet ≥ 1	$N(\tau)$ =	=1, NbJet≥1
			$^{\rm obs}$	expect	obs	expect	obs	expect	obs	expect
3 Lepton Results $H_T < 200$										
OSSF0	$\mathbf{N}\mathbf{A}$	$(100,\infty)$	3	4.5 ± 2.3	45	44 ± 22	8	5.1 ± 2.7	41	$44~\pm~23$
OSSF0	$\mathbf{N}\mathbf{A}$	(50, 100)	16	17 ± 7.5	186	$190~\pm~63$	16	$11~\pm~4.9$	131	$119~\pm~67$
OSSF0	NA	(0, 50)	23	$27~\pm~6.7$	429	$457~\pm~100$	17	8.9 ± 3.6	109	115 ± 52
OSSF1	above-Z	$(100,\infty)$	11	5.5 ± 1.2	10	15 ± 8	4	3.1 ± 1.6	10	18 ± 8.2
OSSF1	below-Z	$(100,\infty)$	6	10 ± 3.9	20	23 ± 10	7	7.8 ± 4.1	23	$21~\pm~11$
OSSF1	on-Z	$(100,\infty)$	65	75 ± 11	22	$22~\pm~5.9$	7	5.2 ± 1.9	8	11 ± 5.5
OSSF1	above-Z	(50, 100)	21	$20~\pm~4.2$	78	53 ± 17	5	10 ± 4.8	35	39 ± 20
OSSF1	below-Z	(50, 100)	66	56 ± 13	167	$149~\pm~34$	26	$20~\pm~9.7$	72	56 ± 27
OSSF1	on-Z	(50, 100)	351*	368 ± 57	533	457 ± 100	29	18 ± 4.6	40	37 ± 15
OSSF1	above-Z	(0, 50)	83	$101~\pm~9.8$	841	$845~\pm~204$	10	$10~\pm~3.7$	65	40 ± 15
OSSF1	below-Z	(0, 50)	258	$282~\pm~29$	4820	4113 ± 1018	16	21 ± 6	111	$107~\pm~27$
OSSF1	on-Z	(0, 50)	1888*	$2104~\pm~196$	24303	22663 ± 5643	65*	$69~\pm~8.8$	426	$414~\pm~99$

Table 4: Results for 3 leptons with $H_T < 200$ GeV. * denotes channels used as controls.

Limit Setting Procedure

- We compute LHC-style CL_s limits using LandS, as recommended for CMS analyses
- To do so, we determine the most sensitive channels for each grid points (based on the expected limit of each single channel)
- We use as many channels as are required to cover 90% of the signal, up to 42 channels

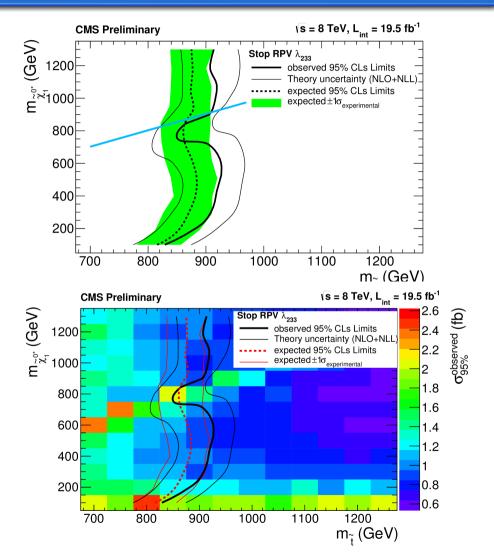
SUS-13-003: Stop RPV



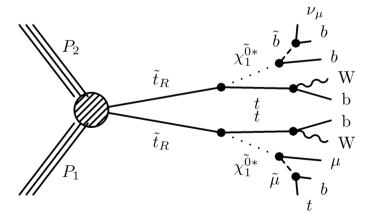
• Naturally, in a multilepton analysis, we look at RPV couplings that produce leptons

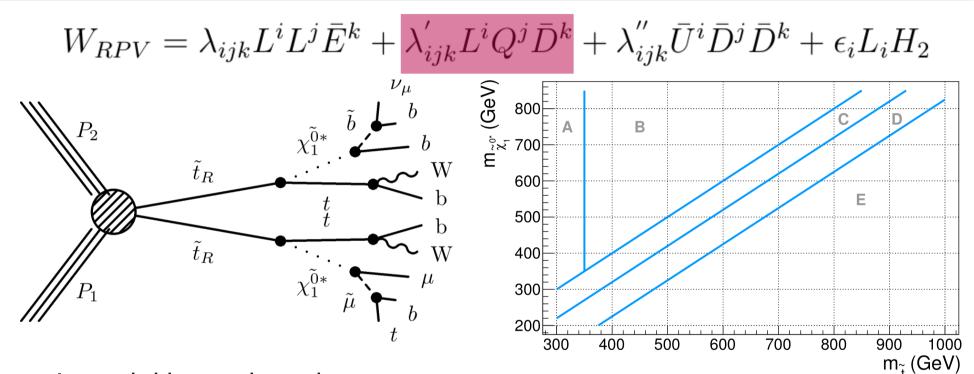
•
$$W_{RPV} = \frac{\lambda_{ijk}L^iL^j\bar{E}^k}{\text{leptonic}} + \frac{\lambda'_{ijk}L^iQ^j\bar{D}^k}{\text{mixed}} + \frac{\lambda''_{ijk}\bar{U}^i\bar{D}^j\bar{D}^k}{\epsilon_iL_iH_2}$$

Coupling	LLE 122	LLE 233	LQD 233
decay products	ℓℓ∨t	ℓт∨t	vbbt
per stop		тт∨t	ℓbtt
stop mass	700–1250 GeV	700–1250 GeV	300–1000 GeV
	stepsize: 50 GeV	stepsize: 50 GeV	stepsize: 50 GeV
bino mass	100–1300 GeV	100–1300 GeV	200–850 GeV
	stepsize: 100 GeV	stepsize: 100 GeV	stepsize: 50 GeV
Number of events	10k	20k	40k



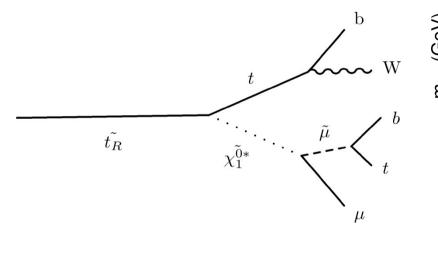
- Stop RPV model with LLE 122 coupling non-zero
- Excluding stop masses below 1050–1100 GeV; approximately independent of bino mass which decouples \rightarrow little structure


- Four-body decay above diagonal, two-body below
- In transition region, top is off-shell \rightarrow low p_{τ} leptons reduce sensitivity
- Additionally, a fluctuation in observation becomes relevant:
 - 3 leptons (no tau), OSSF pair above Z, 1000 < S_{τ} < 1500 GeV

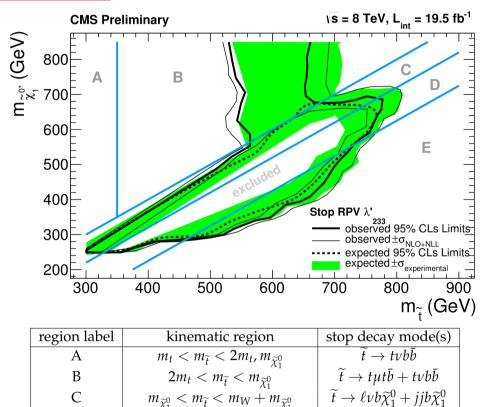


$$\begin{split} W_{RPV} &= \lambda_{ijk} L^i L^j \bar{E}^k + \frac{\lambda_{ijk}' L^i Q^j \bar{D}^k}{\text{mixed}} + \lambda_{ijk}'' \bar{U}^i \bar{D}^j \bar{D}^k + \epsilon_i L_i H_2 \end{split}$$

- The model produces one bino per stop
- Bino decays to vbb or µtb → expect more structure due to presence of massive particles


 In each kinematic region, the BR to leptons and the cross-section change as the stop mass increases
 → acceptance varies

region label	kinematic region	stop decay mode(s)
A	$m_t < m_{\widetilde{t}} < 2m_t$, $m_{\widetilde{\chi}^0_1}$	$\widetilde{t} ightarrow t u b ar{b}$
В	$2m_t < m_{\widetilde{t}} < m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t \mu t ar{b} + t u b ar{b}$
C	$m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_W + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow \ell u b \widetilde{\chi}_1^0 + j j b \widetilde{\chi}_1^0$
D	$m_W + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_t + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} o Wb\widetilde{\chi}_1^0$
E	$m_t + m_{\tilde{\chi}_1^0} < m_{\tilde{t}}$	$\widetilde{t} ightarrow t \widetilde{\chi}_1^0$


Peter Thomassen, Rutgers University

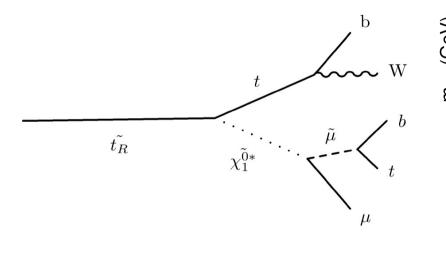
 $W_{RPV} = \lambda_{ijk} L^i L^j \bar{E}^k + \lambda'_{ijk} L^i Q^j \bar{D}^k + \lambda''_{ijk} \bar{U}^i \bar{D}^j \bar{D}^k + \epsilon_i L_i H_2$

- Stop RPV model with LQD 233 coupling non-zero
- Several kinematic regions with different acceptance

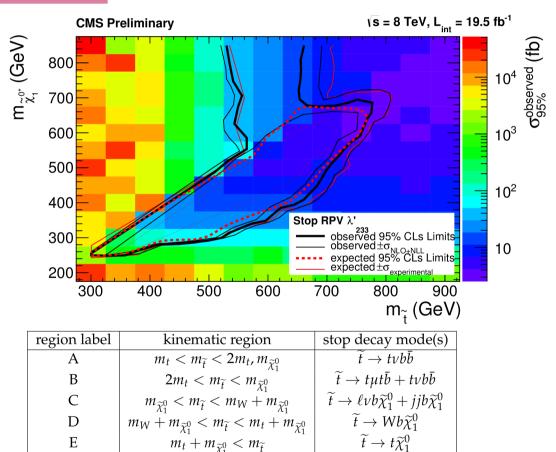
 $m_W + m_{\widetilde{\chi}^0_1} < m_{\widetilde{t}} < m_t + m_{\widetilde{\chi}^0_1}$

 $m_t + m_{\widetilde{\chi}^0_1} < m_{\widetilde{t}}$

D


Ε

 $\widetilde{t} \to Wb\widetilde{\chi}_1^0$


 $\widetilde{t} \to t \widetilde{\chi}_1^0$

 $W_{RPV} = \lambda_{ijk} L^i L^j \bar{E}^k + \lambda'_{ijk} L^i Q^j \bar{D}^k + \lambda''_{ijk} \bar{U}^i \bar{D}^j \bar{D}^k + \epsilon_i L_i H_2$

- Stop RPV model with LQD 233 coupling non-zero
- Several kinematic regions with different acceptance

