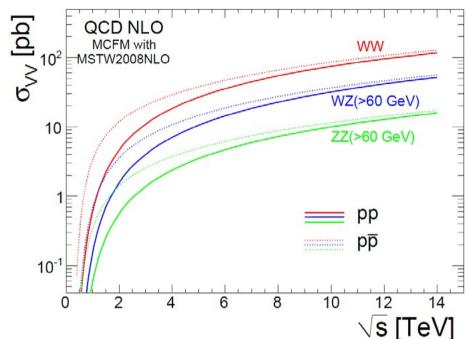


Production of Multiple Electroweak Bosons at CMS

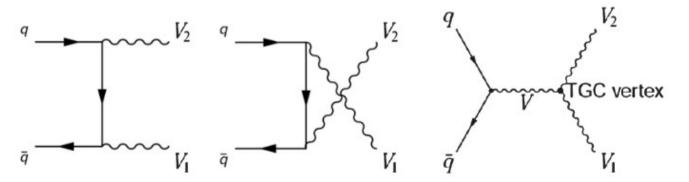
Daniele Trocino - Northeastern University

on behalf of the CMS Collaboration

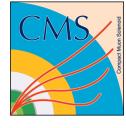
XXI International Workshop on Deep-Inelastic Scattering and Related Subjects


Marseilles (France) – April 23, 2013

Diboson Physics

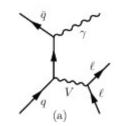


- Fundamental test of the Standard Model
 - Vector boson self-interactions probe the non-abelian gauge structure of the SM
- Importance for Higgs searches
 - Despite the relatively small cross section O(1-100 pb), diboson processes are irreducible background to many Higgs searches: H → WW, ZZ, Zγ

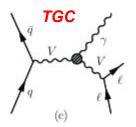

Probe for New Physics

- Diboson cross sections are sensitive to possible new particles (VV resonances)
- Anomalous triple and quadruple gauge couplings (aTGC, aQGC) modify diboson cross sections and kinematics

Overview of Diboson Physics at CMS


- Most diboson processes studied with full 2011 CMS data set at 7 TeV
- First results at 8 TeV for WW and ZZ

2011 Olvio data set at 7 TeV	Int. luminosity at		Limits on
ults at 8 TeV for WW and ZZ	7 TeV	8 TeV	TGC, QGC
$W\gamma o \ell \nu \gamma$	5.0 fb ⁻¹	-	WWγ
γ $\ell\ell\gamma$	5.0 fb ⁻¹	-	ΖΖγ, Ζγγ
$Z\gamma$ \nearrow $\ell\ell\gamma$ $\lor \nu \nu \gamma$	5.0 fb ⁻¹	-	ΖΖγ, Ζγγ
$WW + WZ \rightarrow \ell \nu jj$	5.0 fb ⁻¹	-	WWγ, WWZ
$WZ \rightarrow 3\ell \nu$	1.0 fb ⁻¹	-	WWZ
$WW \to 2\ell 2\nu$	4.9 fb ⁻¹	3.5 fb ⁻¹	WγW, WZW
77 48	5.0 fb ⁻¹	5.3 fb ⁻¹	ZZZ, ZγZ
$ZZ \stackrel{7}{\searrow} \frac{4\ell}{2\ell 2\nu}$	1.1 fb ⁻¹	-	ZZZ, ZγZ
Exclusive $\gamma\gamma \rightarrow WW \rightarrow e\mu 2\nu$	5.0 fb ⁻¹	-	γγWW

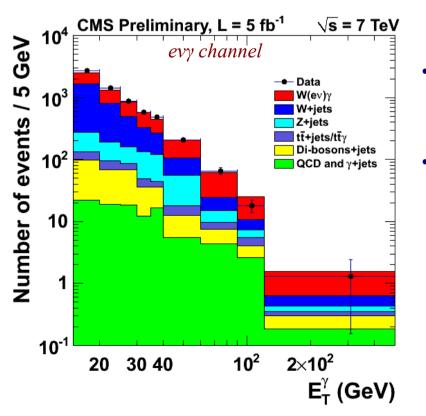

$W\gamma \to \ell \nu \gamma$	5.0
7 είγ	5.0
Ζη ζ θθη ννη	5.0
$WW + WZ \rightarrow \ell \nu j j$	5.0
$WZ \rightarrow 3\ell \nu$	1.0
$WW \to 2\ell 2\nu$	4.9
77 48	5.0
$ZZ \stackrel{\nearrow}{\searrow} \frac{4\ell}{2\ell 2\nu}$	1.1

$$W\gamma \rightarrow \ell \nu \gamma \ (\ell = e, \mu)$$

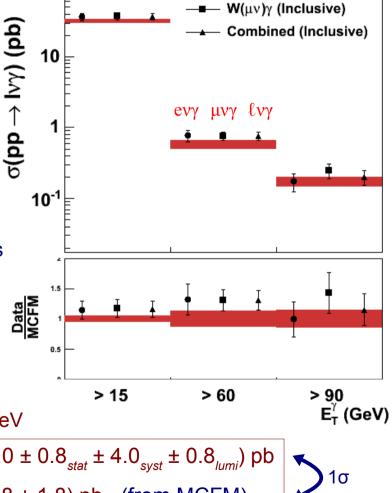
10²

MCFM (Inclusive)

W(ev)γ (Inclusive)


 $\sqrt{s} = 7 \text{ TeV}$

Signature and selection

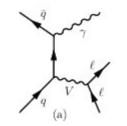

- \triangleright Exactly 1 isolated lepton: $p_{T} > 35$ GeV/c + trigger
- ➤ 1 isolated photon: p_{τ} > 15 GeV/c, $\Delta R(\gamma, \ell)$ > 0.7
- ➤ Large W transverse mass: $M_T(\ell, E_t^{\text{miss}}) > 70 \text{ GeV/c}^2$

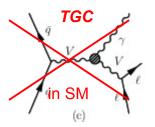
Main backgrounds

- ➤ W + jets, tt + jets: mis-identified jet
- > DY, diboson: mis-identified electron

- Cross sections for different $E_{\tau}(\gamma)$ thresholds
- Dominant systematic:
 → data-driven W+jets

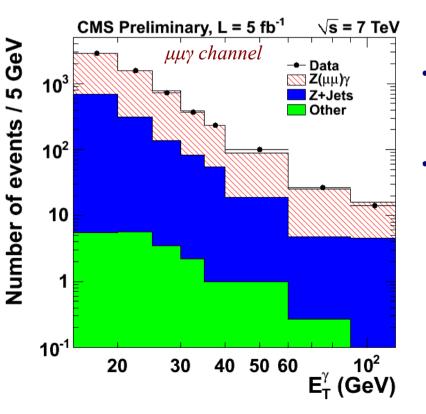
CMS Preliminary, L = 5 fb⁻¹


@ 7 TeV, $E_{T}(\gamma) > 15 \text{ GeV}$

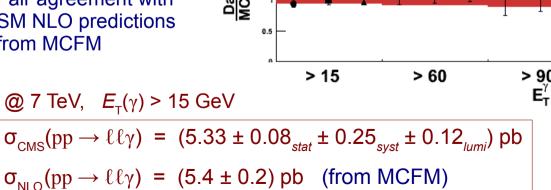

$$\sigma_{\text{CMS}}(pp \to \ell \nu \gamma) = (37.0 \pm 0.8_{stat} \pm 4.0_{syst} \pm 0.8_{lumi}) \text{ pb}$$

$$\sigma_{\text{NLO}}(pp \to \ell \nu \gamma) = (31.8 \pm 1.8) \text{ pb} \quad \text{(from MCFM)}$$

$$Z\gamma \rightarrow \ell\ell\gamma \ (\ell = e, \mu)$$

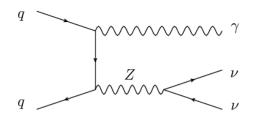


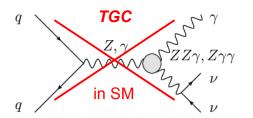
Signature and selection


- 2 isolated leptons: $p_{T} > 20 \text{ GeV/c} + \text{trigger}$
- 1 isolated photon: $p_{\tau} > 15 \text{ GeV/c}$, $\Delta R(\gamma, \ell) > 0.7$
- Z invariant mass: $M(\ell\ell) > 50 \text{ GeV/c}^2$

Main backgrounds

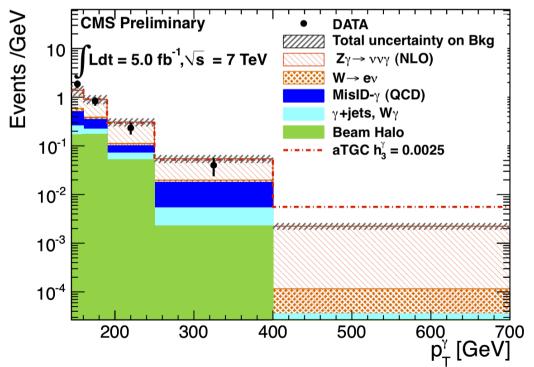
- Z + jets: mis-identified jet
- Diboson: mis-identified electron


- Cross sections for different $E_{\tau}(\gamma)$ thresholds
- Fair agreement with SM NLO predictions from MCFM



CMS Preliminary, L = 5 fb⁻¹ $\sqrt{s} = 7 \text{ TeV}$ MCFM (Inclusive) Z(ee)γ (Inclusive) 10 Z(μμ)γ (Inclusive) (dd) (¼I ← dd)ο Combined (Inclusive) eeγ μμη ℓ_ℓγ 10⁻² Data MCFM > 90 E_T (GeV) @ 7 TeV, $E_{T}(\gamma) > 15 \text{ GeV}$ $\sigma_{CMS}(pp \to \ell \ell \gamma) = (5.33 \pm 0.08_{stat} \pm 0.25_{svst} \pm 0.12_{lumi}) \text{ pb}$

$Z\gamma \rightarrow \nu\nu\gamma$



Signature and selection

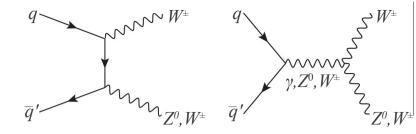
- ➤ 1 high- p_{T} , isolated photon: p_{T} > 145 GeV/c + trigger
- ► Large missing E_{τ} : $E_{\tau}^{\text{miss}} > 130 \text{ GeV}$

Main backgrounds

- bremsstrahlung from cosmic and beam-halo muons
 - → photon in time with beam crossing
 - → veto on cosmic and beam-halo muons
- multijets → isolation, shower shape consistent with a γ
- ightharpoonup W
 ightharpoonup ev
 ightharpoonup no tracker activity matched to the γ candidate

- Large systematic uncertainty
- Main systematics from background measurement
 - non-collision: beam halo, cosmics
 - collision: jet and track veto efficiency
- Very good agreement with SM NLO predictions

@ 7 TeV,
$$E_{T}(\gamma) > 145$$
 GeV, $|\eta(\gamma)| < 1.4$


$$\sigma_{\text{CMS}}(pp \rightarrow \nu\nu\gamma) \ = \ (21.3 \pm 4.2_{\textit{stat}} \pm 4.3_{\textit{syst}} \pm 0.5_{\textit{lumi}}) \ \text{fb}$$

$$\sigma_{_{NLO}}(pp \rightarrow \nu \nu \gamma) = (21.9 \pm 1.1) \, fb \quad (from BAUR)$$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12020

$WW + WZ \rightarrow \ell \nu j j \ (\ell = e, \mu)$

Signature and selection


- \triangleright Exactly 1 isolated lepton: $p_{\tau} > 25/30 \text{ GeV/c} (\mu/e) + \text{trigger}$
- \triangleright Exactly 2 jets: $p_{\tau} > 35$ GeV/c
- \triangleright Large missing E_{τ} : $E_{\tau}^{\text{miss}} > 25/30 \text{ GeV } (\mu/e)$
- ightharpoonup W transverse mass: $M_{\tau}(\ell, E_{t}^{\text{miss}}) > 30/35 \text{ GeV/c}^{2} (\mu/e)$
- ×6 branching ratio of fully leptonic decay
 - \rightarrow larger statistics at high $p_{\scriptscriptstyle T}$
- · Access to boson mass

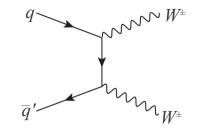
... but

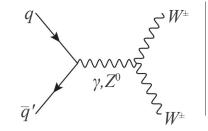
- Jet resolution does not allow to separate W and Z mass
 - → inclusive measurement of WW and WZ
- Large background
 - → signal and background yields determined with an unbinned likelihood fit to the dijet mass spectrum

Main backgrounds

 $ightharpoonup W(\ell v)$ + jets, top (tt, tW), DY + jets. multijets

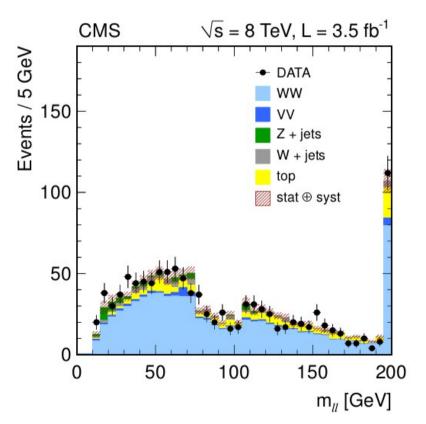
Inclusive WW + WZ cross section @ 7 TeV


$$\sigma_{CMS} = (68.9 \pm 8.7_{stat} \pm 9.7_{syst} \pm 1.5_{lumi}) \text{ pb}$$


$$\sigma_{NLO} = (65.6 \pm 2.2) \text{ fb} \quad \text{(from MCFM)}$$

CERN-PH-EP-2012-311, arXiv:1210.7544

$$WW \rightarrow \ell \nu \ell \nu \ (\ell = e, \mu)$$



Signature and selection

- ≥ 2 isolated leptons: p_{T} > 20 GeV/c + trigger
- ► Large missing E_T : $E_T^{\text{miss}} > 20/45$ GeV $(e\mu/ee, \mu\mu)$

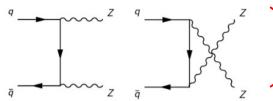
Main backgrounds

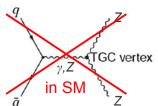
- $ightharpoonup Z^{(*)} + \text{jets} \rightarrow \text{veto } \ell^+\ell^- \text{ compatible with Z mass}$
- ightharpoonup top (tt, tW) \rightarrow veto high- p_{T} jets, top-tagged jets
- \triangleright WZ, ZZ \rightarrow veto events with a third lepton

- Measured cross sections slightly above NLO predictions
- Contribution from Higgs to WW production around 4% (not included in theoretical prediction)

Inclusive WW cross section:

$$\sigma_{\text{CMS}} \text{ [pb]} \qquad \qquad \sigma_{\text{NLO}} \text{ [pb]} \text{ (MCFM)}$$

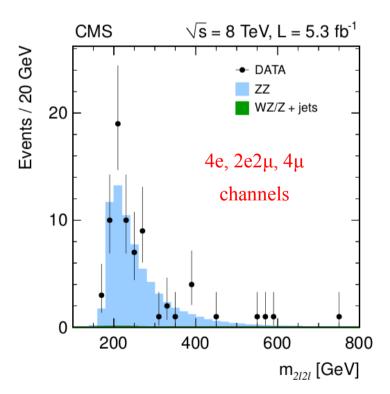

$$7 \text{ TeV} \qquad 52.4 \pm 2.0_{\textit{stat}} \pm 4.5_{\textit{syst}} \pm 1.2_{\textit{lumi}} \qquad 47.0 \pm 2.0$$

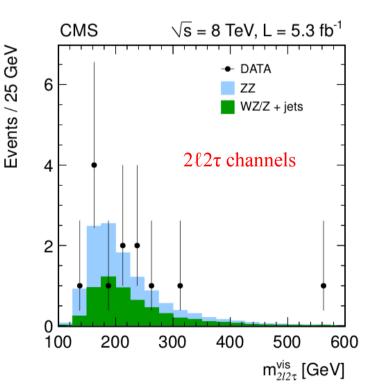

$$8 \text{ TeV} \qquad 69.9 \pm 2.8_{\textit{stat}} \pm 5.6_{\textit{syst}} \pm 3.1_{\textit{lumi}} \qquad 57.3^{+2.4}_{+1.6}$$

CERN-PH-EP-2012-376, Phys. Lett. B 721 (2013) 190-211

$ZZ \rightarrow 2\ell 2\ell' \ (\ell=e,\mu/\ell'=e,\mu,\tau)$

Signature and selection

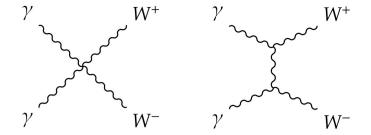

- \triangleright 4 isolated leptons: $p_{\tau} > 20/10/7/5$ GeV/c + trigger
- > Two on-shell Z candidates: $60 < M_{_{H}} < 120 \text{ GeV/c}^2$


Main backgrounds

- Very clean signature, small background
- \triangleright WZ + jets, Z + jets, tt, Z + bb

Inclusive ZZ cross section, $60 < M_7 < 120 \text{ GeV/c}^2$

	σ_{CMS} [pb]	$\sigma_{_{NLO}}$ [pb]
7 TeV	$6.24^{+0.86}_{-0.80}$ $^{+0.41}_{stat}$ $\pm 0.14_{lumi}$	6.3 ± 0.4
8 TeV	$8.4 \pm 1.0_{stat} \pm 0.7_{syst} \pm 0.4_{lumi}$	7.7 ± 0.4



- Good agreement with NLO predictions in all channels
- Results dominated by statistical uncertainties

CERN-PH-EP-2012-376, Phys. Lett. B 721 (2013) 190-211

Exclusive $\gamma\gamma \to WW \to ev\mu\nu$

- Process $pp \rightarrow p^{(*)} \gamma \gamma p^{(*)} \rightarrow p^{(*)} W^+ W^- p^{(*)}$
- Both exclusive ("elastic") and quasi-exclusive (single/double dissociation) production considered
- Only opposite-flavour (eμ) final states analyzed
 10 times more background in ee/μμ channels
 - $\gamma\gamma \rightarrow \mu\mu$ used for efficiency measurements
 - 2 events observed, with an expectation of
 (2.2 ± 0.5) signal + (0.84 ± 0.23) background events
- This is translated into a cross section measurement and upper limit:

Signature and selection

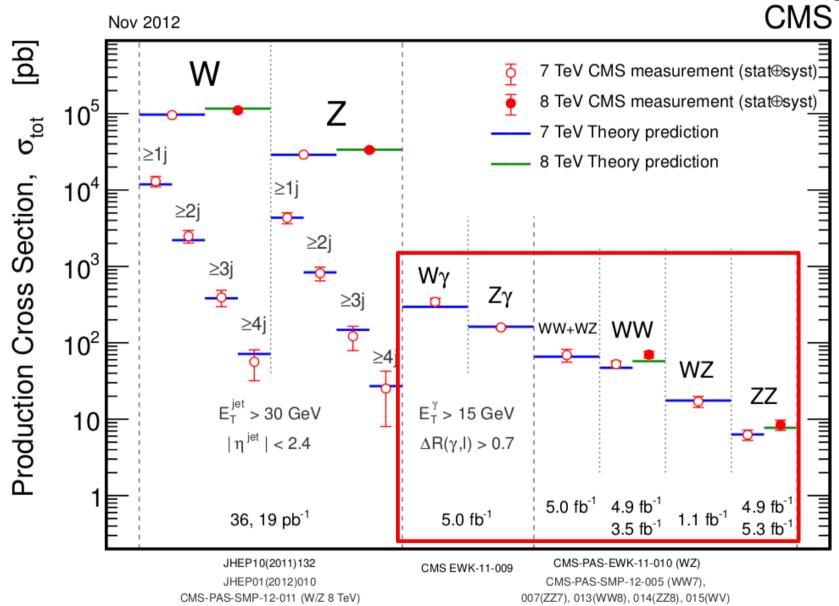
- > 2 isolated leptons $e^{\pm}\mu^{\mp}$: p_{τ} > 20 GeV/c + trigger
- ightharpoonup Dilepton p_{τ} : $p_{\tau}(e\mu) > 30 \text{ GeV/c}$
- Dilepton mass: M(eμ) > 20 GeV/c²
- eμ vertex with no extra tracks

Main backgrounds

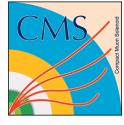
ightharpoonup Inclusive WW, W + jets, $\tau\tau$ + jets, DY + jets

Exclusive pp
$$\to p^{(*)}WWp^{(*)} \to p^{(*)}e\mu p^{(*)}$$
 @ 7 TeV

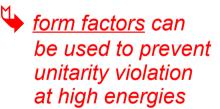
$$\sigma_{CMS} = 2.1^{+3.1}_{-1.9} \text{ (stat+syst) fb,} < 8.4 \text{ fb at } 95\% \text{ CL}$$


$$\sigma_{SM} = (3.8 \pm 0.9) \text{ fb} \text{ (from CalcHEP)}$$

http://cms-physics.web.cern.ch/cms-physics/public/FSQ-12-010-pas.pdf


Summary of Diboson Cross Sections

Triple and Quartic Gauge Couplings

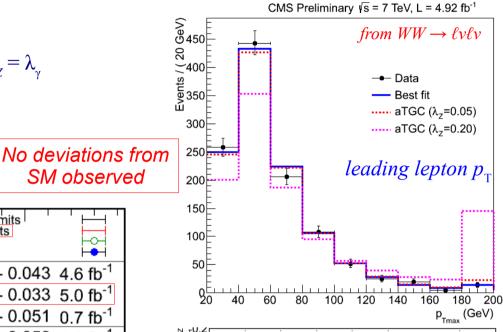

- The SM predicts exact values for vector boson couplings
- Non-SM couplings are signatures of New Physics
- aTGC and aQGC can be modelled with an effective Lagrangian e.g.

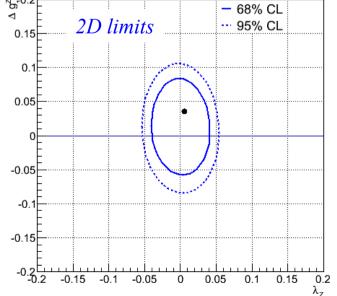
$$\mathcal{L}/g_{WWV} = ig_1^V [W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}] + i\kappa^V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W_{\lambda\mu}^{\dagger} W^{\mu}_{\nu} V^{\nu\lambda}$$

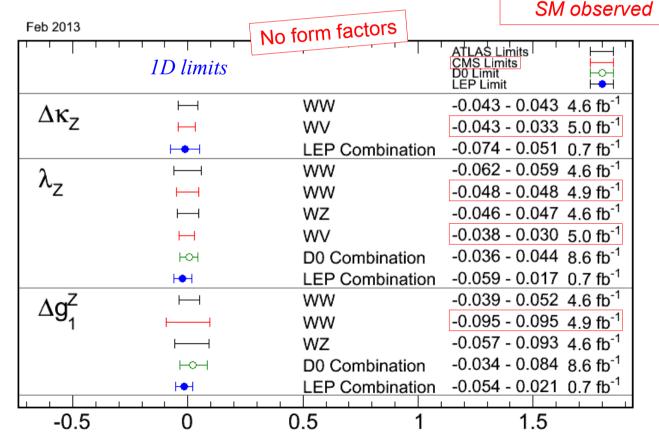
coupling	parameters	channels
$WW\gamma$	$\lambda_{_{\gamma}}$ $\Delta\kappa_{_{\gamma}}$	WW, Wγ
WWZ	$\lambda_{\rm Z} \Delta \kappa_{\rm Z} \Delta g_{\rm 1}^{\rm Z}$	WW, WZ
Ζγγ	$h_3^{\gamma} h_4^{\gamma}$	$Z\gamma$
ZZγ	$h_3^{Z} h_4^{Z}$	$\mathbf{Z}\gamma$
$Z\gamma Z$	f_4^Z h_5^Z	ZZ
ZZZ	$f_4^{\mathrm{Z}} f_5^{\mathrm{Z}}$	ZZ
$\gamma\gamma WW$	a_0^{W}/Λ $a_{\mathrm{C}}^{\mathrm{W}}/\Lambda$	$\gamma\gamma \to WW$

- Anomalous couplings modify the diboson kinematic spectra
 - diboson invariant mass M^{VV} , boson transverse momentum $p_{_{\mathrm{T}}}{}^{\mathrm{V}}$, etc.
- In absence of deviations from the SM expectations, upper limits on aTGC/aQGC parameters can be set using the profile-likelihood formalism and CL_s method
 - systematics are included as nuisance parameters

Charged aTGCs

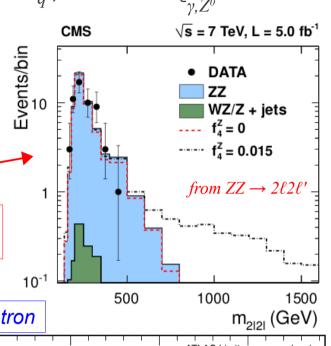

- Vertex WWV (V = γ , Z) probed via WW, WZ, W γ production
- Limits on parameters

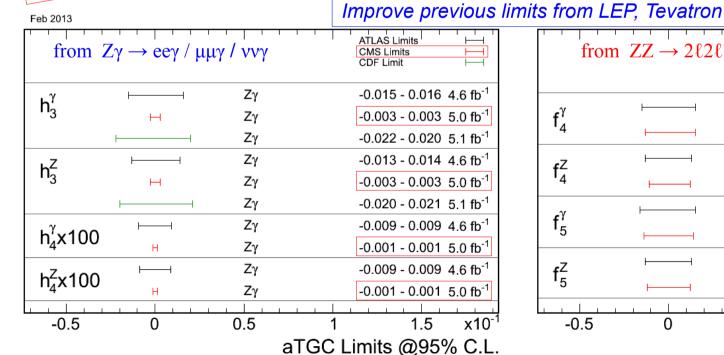

(1)
$$\Delta g_1^Z$$
, (2) $\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_{\gamma} \cdot \tan^2 \theta_{W}$, (3) $\lambda = \lambda_Z = \lambda_{\gamma}$

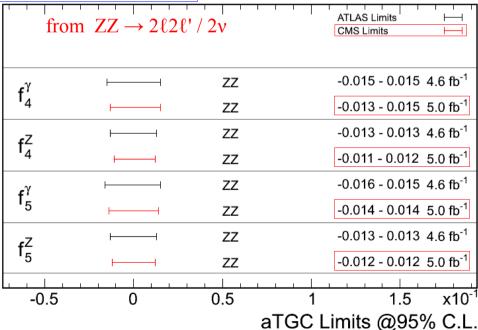

• 95% CL limits set by using variables such as leading-lepton p_{τ} or boson p_{τ}

q γ, Z^0, W^{\pm} q q γ, Z^0, W^{\pm}

aTGC Limits @95% C.L.

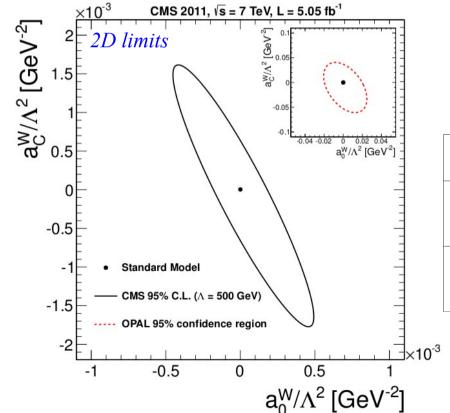


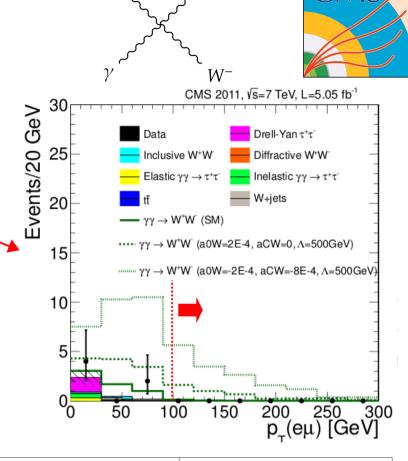

No form factors


Neutral aTGCs

- Vertices: ZVγ and ZVZ
 - Channels: $Z\gamma \rightarrow ee\gamma / \mu\mu\gamma / \nu\nu\gamma$ and $ZZ \rightarrow 2\ell 2\ell'$
- Parameters: h_3^V and h_4^V , and f_4^V and f_5^V
- 95% CL limits set by using photon p_{T} and 4ℓ invariant mass

No deviations from SM observed





aQGCs

- Vertex $\gamma\gamma WW$ probed via exclusive $\gamma\gamma \to WW$ production
- Limits on parameters a_0^W/Λ and a_C^W/Λ
- 95% CL limits set by using the dilepton p_{T} tail
 - $p_{\tau}(e\mu) > 100 \text{ GeV/c}$
- No events observed → set upper limits on aQGCs

 W^+

1D limits	a_0^W/Λ	$a_{\rm c}^{W}/\Lambda$
Form factor $(\Lambda = 500 \text{ GeV})$	[-1.7; 1.7] ×10 ⁻⁴ LEP: [-0.020; 0.020]	[-6.0; 6.0] ×10 ⁻⁴ LEP: [-0.053; 0.037]
No form factor	[-2.8; 2.8] ×10 ⁻⁶	[-10.2; 10.2] ×10 ⁻⁶

Improve previous limits from LEP by orders of magnitude

Summary

- Most important diboson processes were measured at CMS with full 2011 dataset at 7 TeV (5 fb⁻¹); WW and ZZ also at 8 TeV with first 5 fb⁻¹ of 2012 dataset
 - Measured cross sections are in good agreement with NLO SM predictions
- Anomalous TGC searches showed no apparent deviation from SM
 - Upper limits set on aTGC parameters
 - Charged aTGC limits are in the same ballpark as previous measurements (LEP, Tevatron)
 - Neutral aTGC limits improve results from previous experiments
- First measurement of QGCs at a hadron collider
 - Measured in exclusive γγ → WW production
 - Upper limits on aQGC parameters are set, greatly improving previous results from LEP