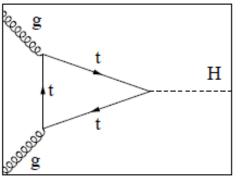
# Measurements of properties of the Higgs-like Particle at 125 GeV by the CMS collaboration

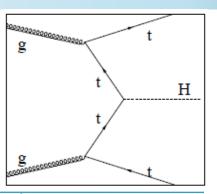
Sabino Meola

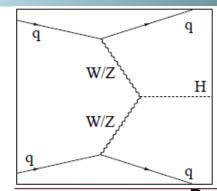
On behalf of the CMS collaboration

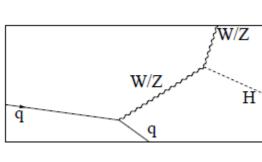


#### **Outline**



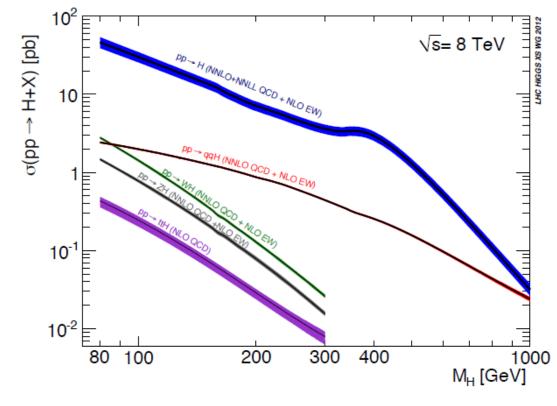


#### Higgs production and decays


- Combination: ingredients.
  - Summary of the 5 channels
  - What goes in the combination
- Combination: mass.
- Compatibility tests.
  - Signal strength
  - Couplings and Custodial symmetry
  - Test of spin-parity hypotheses


# **Higgs Production**





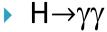






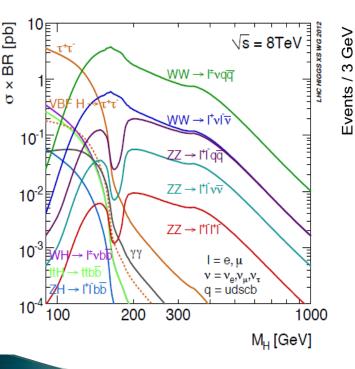

#### **Fermionic**

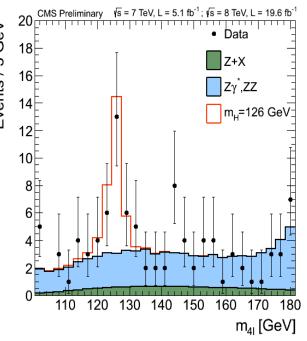
#### Bosonic

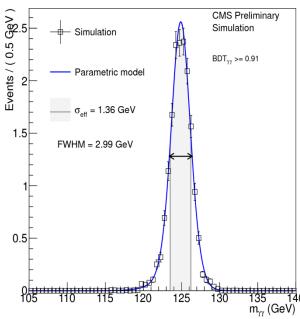



#### Higgs decays

CMS points sony pedia


- ► H $\rightarrow$ ZZ $\rightarrow$ 4l (l=e, $\mu$ )
  - Clean final state
  - Small cross section
  - Most accurate mass meas.

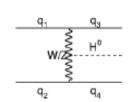

$$m_x = 125.7 \pm 0.4 \text{ GeV}$$

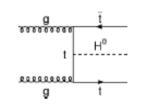



- 2 energetic photons in a narrow peak
- Good detector resolution

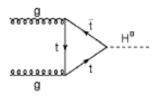
$$m_x = 125.4 \pm 0.8 \text{ GeV}$$

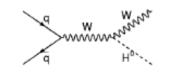





#### Ingredients


CMS


- High resolution final states  $\gamma\gamma$  and 4l.
- WW high sensitivity, poor mass res.





 $\blacktriangleright$  bb and ττ have large background.

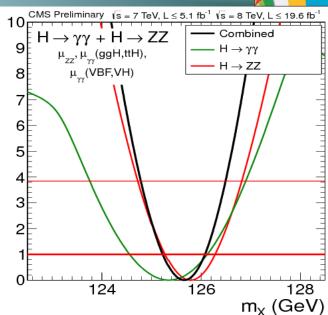


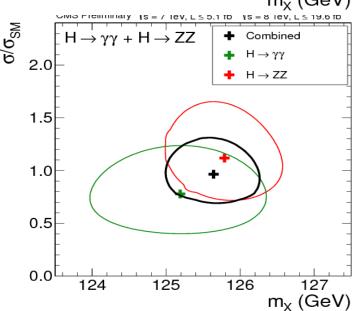


Evidence observed in 5 channels.
m<sub>u=125.7 GeV</sub>

| Decay         | Exp.                | Obs.         |
|---------------|---------------------|--------------|
| ZZ            | <b>7.1</b> <i>σ</i> | 6.7 $\sigma$ |
| γγ            | 3.9 $\sigma$        | 3.2 $\sigma$ |
| WW            | 5.3 $\sigma$        | 3.9 $\sigma$ |
| bb            | 2.2 $\sigma$        | 2.0 $\sigma$ |
| ττ            | 2.6 $\sigma$        | 2.8 $\sigma$ |
| ττ <b>+bb</b> | 3.4 $\sigma$        | 3.4 σ        |

First single experiment evidence of couplings to fermions!


|          | ggH          | VBFH      | VH           | ttH       |
|----------|--------------|-----------|--------------|-----------|
| Н→γγ     | $\sqrt{}$    | $\sqrt{}$ | $\checkmark$ |           |
| H→ZZ(4I) | $\checkmark$ |           |              |           |
| H→WW     | $\sqrt{}$    | $\sqrt{}$ | $\sqrt{}$    |           |
| Η→ττ     | $\checkmark$ | $\sqrt{}$ | $\checkmark$ |           |
| H→bb     |              |           | $\checkmark$ | $\sqrt{}$ |


#### Mass of the observed state

CMS points and palaco

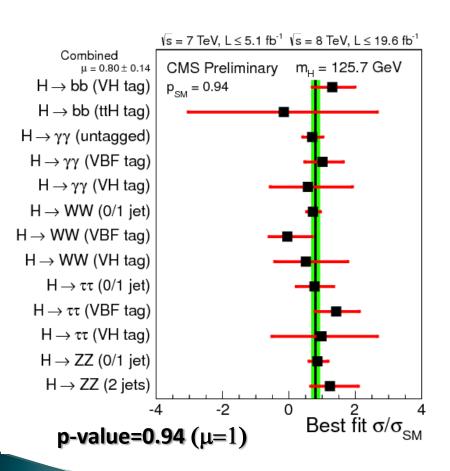
- ▶ Using high resolution channels,  $H \rightarrow ZZ \rightarrow 4l$  and  $H \rightarrow \gamma \gamma$ .
  - Small systematics from 4l (good control of the leptons scale and resolution)
  - Systematics on the extrapolation from the  $Z\rightarrow$ ee to  $H\rightarrow\gamma\gamma$
- Unique state assumption.
- Model-independent extraction.
  - $\mu = \sigma/\sigma_{SM}$  not tied to SM expectations

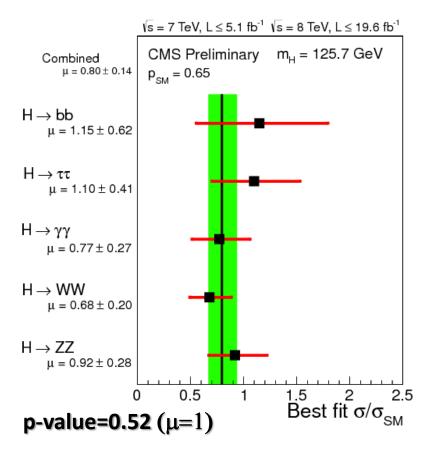
$$m_x = 125.7 \pm 0.3^{(stat)} \pm 0.3^{(syst)} \text{ GeV}$$
  
 $m_x = 125.7 \pm 0.4 \text{ GeV}$ 





Sabino Meola Higgs Properties - DIS April 23, 2013

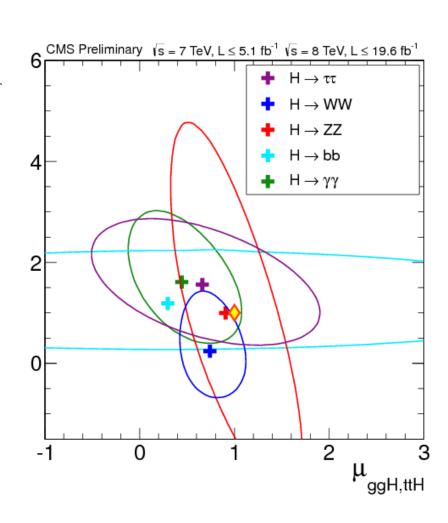

#### Signal strength




- Samples purity significantly different.
- Results consistent with SM within the errors.

#### Combined

$$\mu = 0.8 \pm 0.14$$






#### Signal strength: 2D



- $\mu_{ggH,tth}$  VS  $\mu_{VBF,VH}$  CL intervals for the 5 decay modes.
- Test the relative strengths of the couplings to the vector bosons and the top quark.
- Contamination properly taken into account in the fit.



# Couplings: method

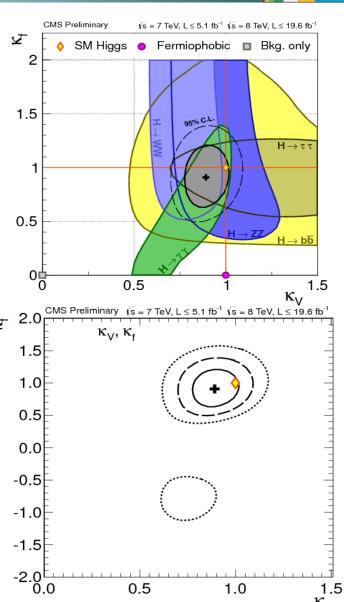


Event yields related to production cross-section, partial and total Higgs boson decay widths.

$$(\sigma \cdot BR)(x \to H \to ff) = \frac{\sigma \cdot \Gamma_{ff}}{\Gamma_{tot}}$$

- Modified couplings described by scale factors:  $\kappa_i^2 = \frac{1}{\Gamma_i^{SM}}$  (arxiv:1209.0040)
  - $\circ$  8 independent parameters:  $\Gamma_{\rm ZZ}$ ,  $\Gamma_{\rm WW}$ ,  $\Gamma_{\tau\tau}$ ,  $\Gamma_{\rm bb}$ ,  $\Gamma_{\gamma\gamma}$ ,  $\Gamma_{\rm gg}$ ,  $\Gamma_{\rm tt}$ ,  $\Gamma_{\rm Tot}$
- Assume SM Higgs couplings, variations w.r.t SM trough  $\kappa_i$ . So for gg $\to$ H $\to$ γγ:

$$(\sigma \cdot BR)(gg \rightarrow H \rightarrow \gamma\gamma) = \sigma_{gg \rightarrow H}^{SM} \cdot BR_{gg \rightarrow H} \cdot \kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2$$


# Couplings: $\kappa_v$ , $\kappa_f$

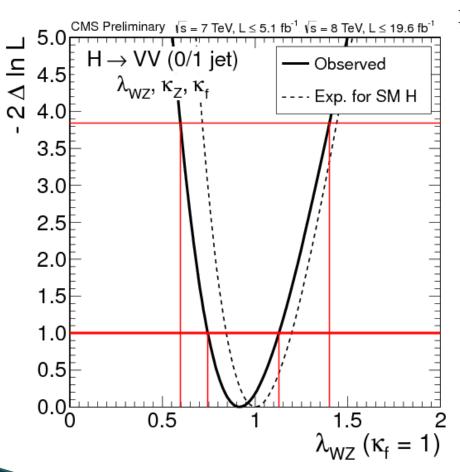


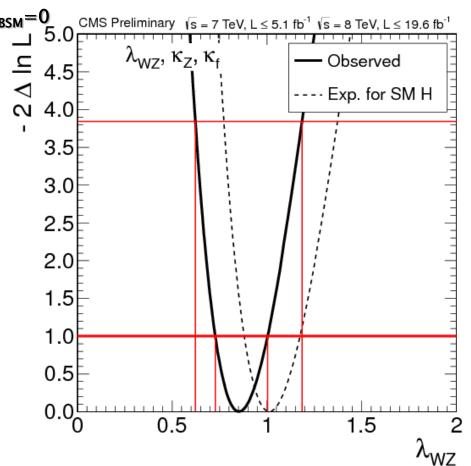
- Scale factors for couplings to vectors and fermions.
- At LO almost all  $\Gamma_{\rm ii}$  scale as  $\kappa_{_V}^{^2}$  or  $\kappa_{_f}^{^2}$

$$\Gamma_{\gamma\gamma} = |\alpha\kappa_{V} + \beta\kappa_{f}|^{2}$$

- Mass fixed to  $m_H=125.7$  GeV.
- No new Higgs decay allowed ( $\Gamma_{\rm BSM}$ =0).




April 23, 2013


Sabino Meola Higgs Properties - DIS

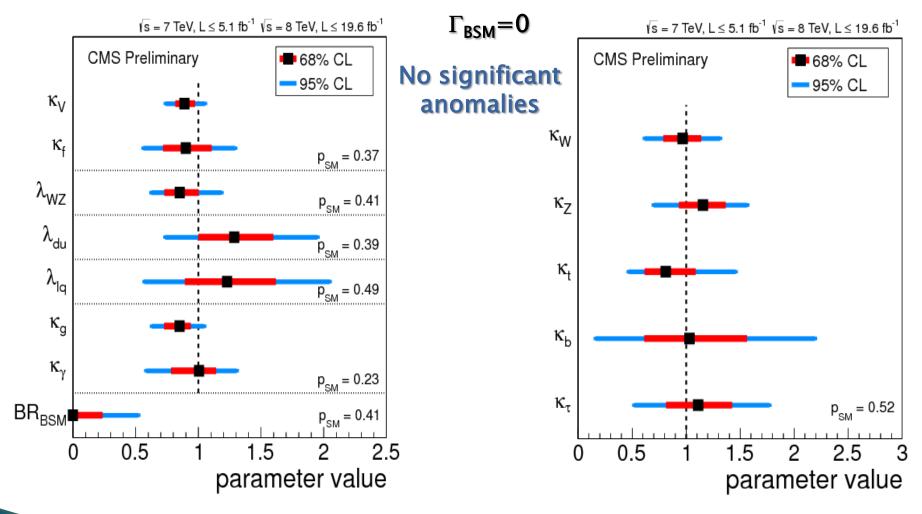
#### Test of Custodial Symmetry



- In SM, the ratio of couplings to W and Z bosons is protected from radiative corrections
  - Custodial symmetry tested by  $\lambda_{WZ} = \kappa_W / \kappa_Z$






Higgs Properties - DIS

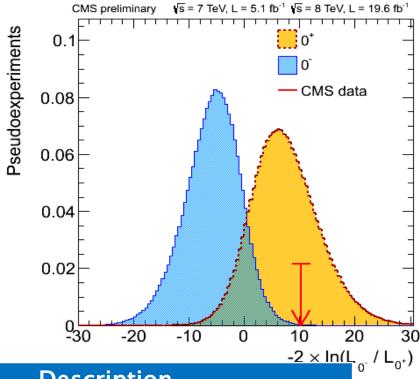
April 23, 2013

#### Couplings: summary



- Fermions universality tested by  $\lambda_{du} = \kappa_d / \kappa_u$  and  $\lambda_{lq} = \kappa_l / \kappa_q$ .
- ▶  $\kappa_{\gamma}$  and  $\kappa_{g}$  sensible to BSM physics in loops (H→γγ, gg→H).




Sabino Meola Higgs Properties - DIS

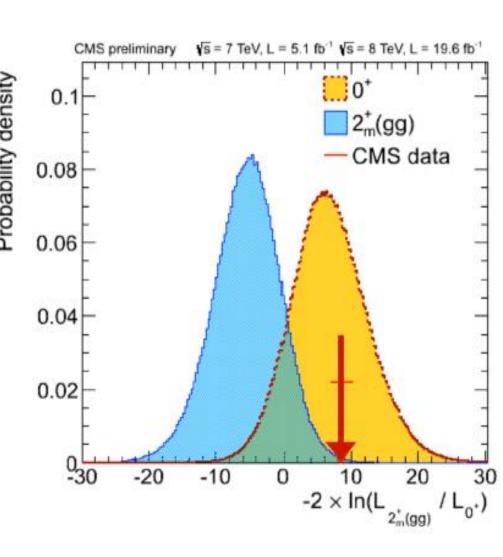
April 23, 2013

## Spin-parity

The newly observed particle is a boson and can't have spin 1 (decays to  $\gamma\gamma$  - Lang-Yang Theorem).

Tests in  $ZZ\rightarrow 4l^1$  and  $WW\rightarrow lvlv^2$  channels disfavor  $J^P=0^-$  (CLs 0.16%).  $^1$  CMS-PAS-HIG-13-002  $^2$  CMS-PAS-HIG-13-003




| J <sup>P</sup>     | Production | Description                             |  |  |
|--------------------|------------|-----------------------------------------|--|--|
| 0+                 | gg→X       | SM Higgs boson                          |  |  |
| 0-                 | gg→X       | pseudoscalar                            |  |  |
| 0+ <sub>h</sub>    | gg→X       | BSM scalar with higher dim. operators   |  |  |
| 2 <sup>+</sup> mgg | gg→X       | KK Graviton-like with minimal couplings |  |  |
| 2 <sup>+</sup> mqq | qq→X       | KK Graviton-like with minimal couplings |  |  |

Sabino Meola Higgs Properties - DIS April 23, 2013 13

#### Spin-parity: 0+ vs 2+



- Improved sensitivity on 0<sup>+</sup> vs 2<sup>+</sup><sub>mgg</sub> combining ZZ→4l and WW→lvlv channels only.
- Data consistent with  $J^P=0^+$  δ within 0.34 σ.
- Assuming Higgs boson, data disfavor J<sup>P</sup>=2<sup>+</sup> with a CLs of 0.6%.



Sabino Meola Higgs Properties - DIS April 23, 2013

#### Conclusions



- New boson mass updated:  $m_H = 125.7 \pm 0.4$  GeV.
- First evidence of coupling to fermions.
- Tests on couplings and event yields show no deviations from SM predictions:
  - Custodial symmetry
  - Couplings
  - Spin-parity
- ▶ Data consistent with SM J<sup>P</sup>=0<sup>+</sup> and disfavoring pseudo-scalar, vector, pseudo-vector and spin-2 resonances.

"I don't know anyone, beside scientists, who is thrilled when discovering that he is wrong, and disappointed when everything works as expected"

#### Backup



16

# Thank you

**CMS-PAS-HIG-13-001** 

**CMS-PAS-HIG-13-002** 

**CMS-PAS-HIG-13-003** 

CMS-PAS-HIG-13-004

**CMS-PAS-HIG-13-005** 

**CMS-PAS-HIG-12-045** 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIGhttps://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13005TWiki

## Mass from 41 and $\gamma\gamma$



- $\rightarrow$  H $\rightarrow$ ZZ $\rightarrow$ 4I
  - Mass estimation with m4l, KD and  $\sigma$ (m4l)
  - Very small systematics due the very good control of the leptons scale and resolution

$$m_r = 125.8 \pm 0.5^{(stat)} \pm 0.2^{(syst)} \text{ GeV}$$

- $\rightarrow$  H  $\rightarrow \gamma \gamma$ 
  - Systematics on the extrapolation from the Z $\rightarrow$ ee to H $\rightarrow\gamma\gamma$  (0.25% from e to  $\gamma$ , 0.4% from Z to H)

$$m_x = 125.4 \pm 0.5^{(stat)} \pm 0.6^{(syst)} \text{ GeV}$$

Combined

$$m_r = 125.7 \pm 0.3^{(stat)} \pm 0.3^{(syst)} \text{GeV}$$

#### Combination methodology



- The combination requires analysis of all channels accounting for statistical and systematic uncertainties (more details on the methodology at <sup>1,2</sup>).
- Test statistic defined as (profile likelihood ratio):

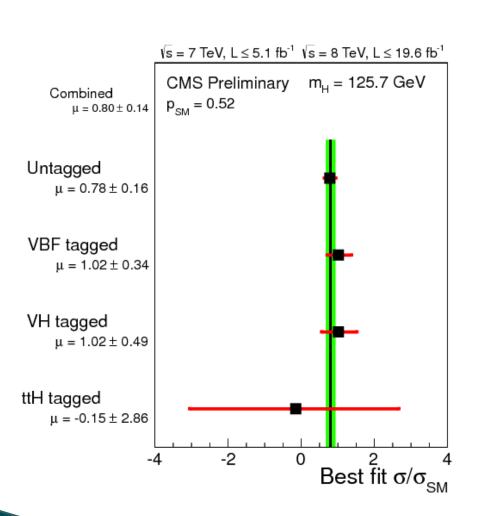
$$q_0 = -2 \ln \frac{\mathcal{L}(\text{obs} \mid b, \, \hat{\theta}_0)}{\mathcal{L}(\text{obs} \mid \hat{\mu} \cdot s + b, \, \hat{\theta})}$$

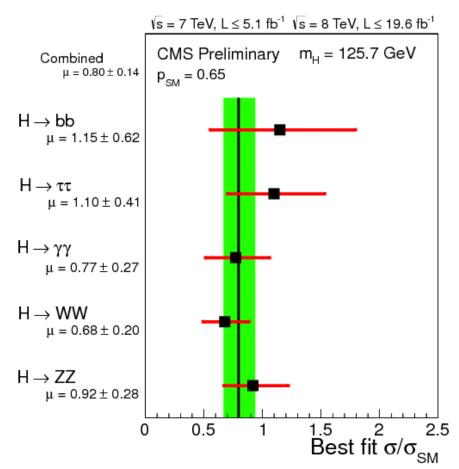
Signal model parameter derived scanning the profile likelihood ratio: best-fit parameters are those that maximize the likelihood.

$$q(a) = -2 \ln \frac{\mathcal{L}(\text{obs} | s(a) + b, \, \hat{\theta}_a)}{\mathcal{L}(\text{obs} | s(\hat{a}) + b, \, \hat{\theta})}.$$

The p-value is the probability to obtain a  $q_0$  at least as large as the one observed:  $p_0 = P(q_0 \ge q_0^{obs} \mid \mathbf{b}).$ 

<sup>1</sup> arXiv:1202.1488


<sup>2</sup> CMS NOTE 2011/005

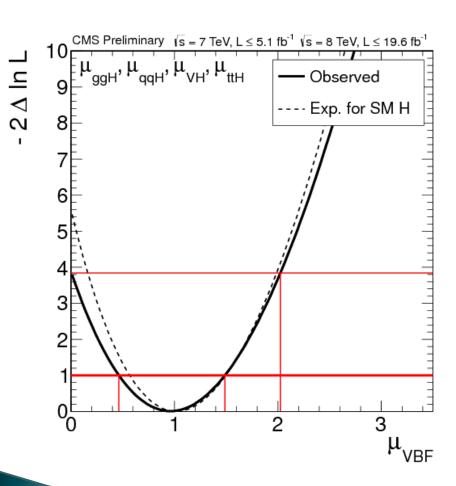

Sabino Meola Higgs Properties - DIS April 23, 2013 18

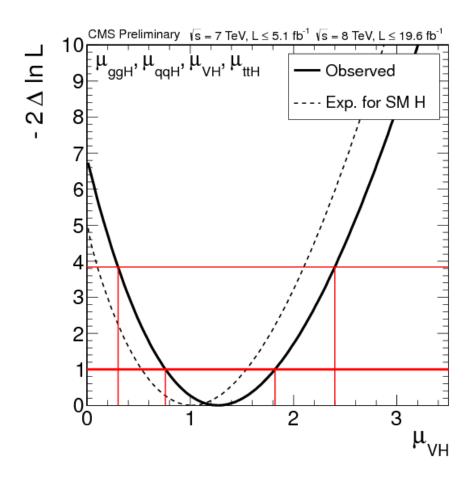
## Signal strength



All sub-combinations compatible with SM Higgs hypothesis.







Sabino Meola Higgs Properties - DIS April 23, 2013 19

#### EWK production mechanism



 $\blacktriangleright$   $\mu_{VH}$  VS  $\mu_{VBF}$  comparison probes EWK production mechanism

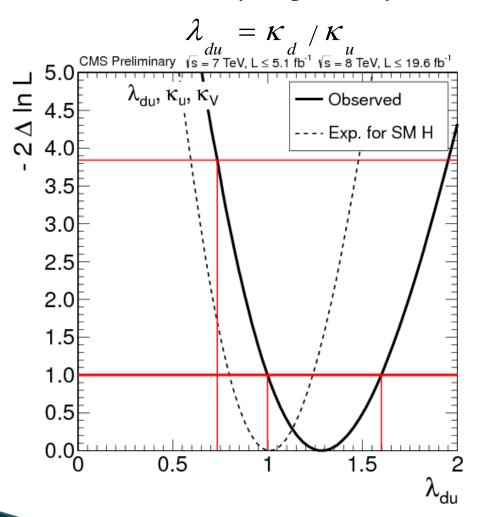


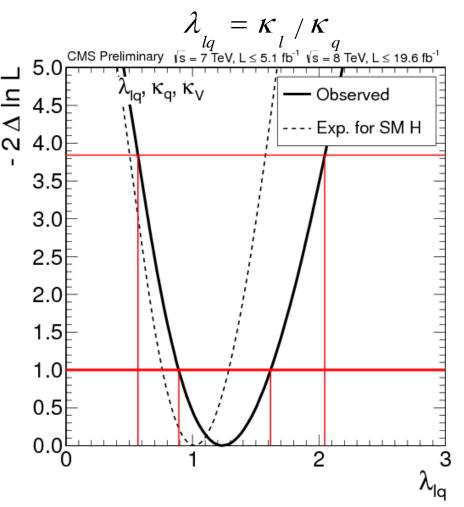


Higgs Properties - DIS

April 23, 2013

Sabino Meola


20


#### Fermion universality

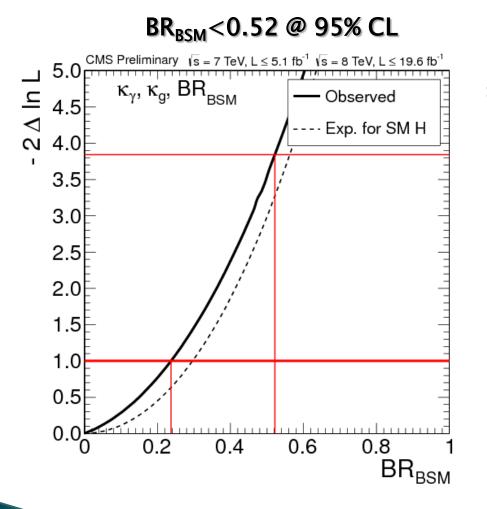


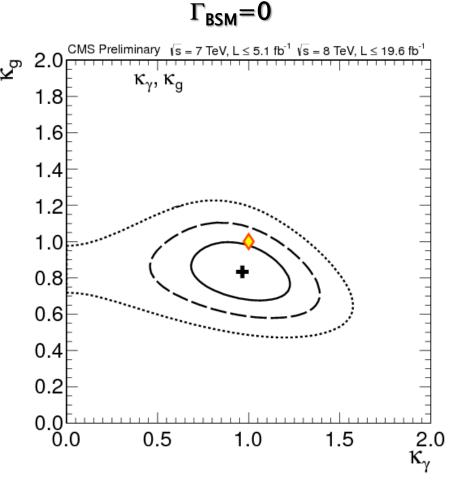
21

- ▶ In MSSM couplings to up/down fermions are modified.
- In 2HDMs couplings to leptons and quark altered.






Sabino Meola Higgs Properties - DIS April 23, 2013


#### New physics in loops and decays

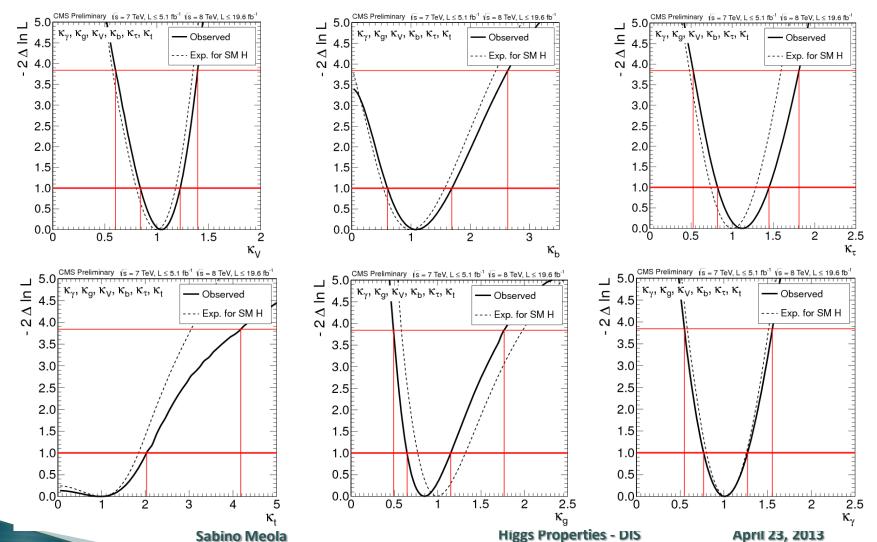


22

- New physics can appear in loops  $(H\rightarrow \gamma\gamma, gg\rightarrow H)$ .
- $ightharpoonup \kappa_{\gamma}$  and  $\kappa_{g}$  sensible to BSM physics.



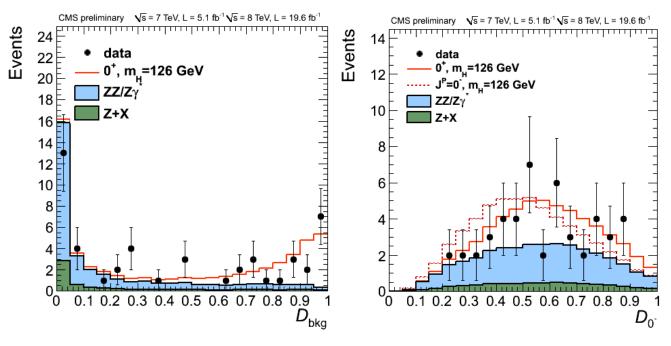



April 23, 2013

Sabino Meola Higgs Properties - DIS

#### C6 model




- Custodial symmetry and BR<sub>BSM</sub>=0 assumed.
- ▶ Fit 6 scale factors individually, profiling the others.

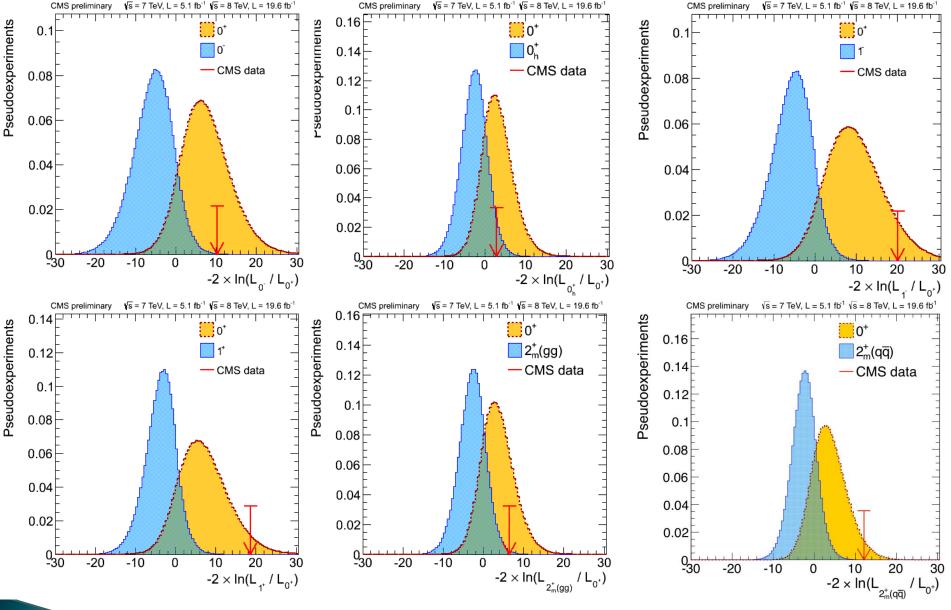


#### Spin-parity in 41



- Using kinematic distributions to distinguish different signal models
  - D<sub>JP</sub> distinguishes SM Higgs from other J<sup>P</sup> hypotheses
  - D<sub>BKG</sub> distinguishes signal from background
- Test compatibility of data with distinct models (Neyman-Pearson hypothesis testing with null Hypothesis always SM Higgs)




Sabino Meola Higgs Properties - DIS April 23, 2013 24

## Spin-parity in 41

Sabino Meola



25



**Higgs Properties - DIS** 

April 23, 2013

#### Spin-parity:method



26

A CLs is defined as the ratio of the probabilities to find values of the test statistic q equal or larger than the observed in data:

$$CL_s^{\text{obs.}} = P(q \ge q^{\text{obs.}} | 2_m^+(gg)) / P(q \ge q^{\text{obs.}} | 0^+)$$

Some to quantify the expected result.

Table 4: Results of the hypothesis test between the  $J^P = 0^+$  and  $2_{\rm m}^+({\rm gg})$  signal hypotheses for  $m_{\rm H} = 125.7$  GeV. Tail probabilities P are converted into significance Z (in  $\sigma$ ) using the one-sided Gaussian tail convention of Eq. 3. The  $2_{\rm m}^+({\rm gg})$  signal hypothesis is disfavoured by the data with a CL<sub>s</sub> value of 0.60%.

| Pre-fit model ( $\mu_i = 1$ )                                                                                  | $ZZ 	o 4\ell$ | $WW \to \ell \nu \ell \nu$         | Combined     |
|----------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|--------------|
| Separation                                                                                                     | 81.6%         | 87.1%                              | 92.4%        |
| $P(q \le q_{2_{m}^{+}(gg)}^{exp.}   0^{+})$<br>$P(q \ge q_{0_{m}^{+}}^{exp.}   2_{m}^{+}(gg))$                 | $1.8\sigma$   | $1.9\sigma$                        | $2.6\sigma$  |
| $P(q \ge q_{0+}^{\exp(1)}   2_{\rm m}^{+}(gg))$                                                                | $1.8\sigma$   | $2.5\sigma$                        | $3.0\sigma$  |
| $1 - CL_s^{exp.}$                                                                                              | 93.2%         | 98.6%                              | 99.8%        |
| Post-fit model ( $\mu_i$ profiled)                                                                             | $ZZ 	o 4\ell$ | $WW \rightarrow \ell \nu \ell \nu$ | Combined     |
| Separation                                                                                                     | 80.7%         | 80.9%                              | 88.8%        |
| $P(q \le q_{2_{ m m}^{ m exp.}}^{ m exp.}    0^{+}  ) \ P(q \ge q_{0^{+}}^{ m exp.}    2_{ m m}^{+}( m gg)  )$ | $1.6\sigma$   | $1.6\sigma$                        | $2.3\sigma$  |
| $P(q \ge q_{0+}^{\text{exp.}}   2_{\text{m}}^{+}(gg))$                                                         | $1.8\sigma$   | $1.7\sigma$                        | $2.5\sigma$  |
| $1 - CL_s^{exp.}$                                                                                              | 93.1%         | 91.9%                              | 98.8%        |
| $P(q \le q^{\text{obs.}} \mid 0^+)$                                                                            | $-0.90\sigma$ | $0.44\sigma$                       | -0.34σ       |
| $P(q \ge q^{\text{obs.}} \mid 2_{\text{m}}^{+}(gg))$                                                           | $2.81\sigma$  | $1.32\sigma$                       | $2.84\sigma$ |
| $1 - CL_s^{obs.}$                                                                                              | 98.6%         | 86.0%                              | 99.4%        |

Sabino Meola Higgs Properties - DIS April 23, 2013

#### Analyses summary



27

Table 1: Summary of the information on the analyses included in this combination. All final states are exclusive. Notations used are: (jj)<sub>VBE</sub> stands for a jet pair consistent with the VBF topology (VBF-tag); SF are same flavour dileptons, i.e., ee or μμ pairs; DF are different flavour dileptons, i.e., eμ pairs. The column "Prod. tag" indicates which production mechanism is targeted by an analysis; it does not imply 100% purity (e.g., analyses targeting VBF are expected to have 20%-50% of their signal events coming from gluon-gluon fusion). The main contribution in the untagged and inclusive categories is always gluon-gluon fusion.

| Analyses                                                    |                                                             | No. of                                                                                                             | mH       | Lumi(fb <sup>-1</sup> ) |                 | Red.  |          |
|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|-------------------------|-----------------|-------|----------|
| H de cay                                                    | Prod. tag                                                   | Exclusive final states                                                                                             | channels | resolution              | $7\mathrm{TeV}$ | 8 TeV |          |
|                                                             | untagged                                                    | γγ (4 diphoton classes)                                                                                            | 4 + 4    | 12%                     | 5.1             | 19.6  |          |
| γγ VBF-tag<br>VH-tag                                        | $\gamma \gamma + (jj)_{VBF}$ (t wo dijet classes for 8 TeV) | 1 + 2                                                                                                              | <1.5%    | 5.1                     | 19.6            | [6.3] |          |
|                                                             | $\gamma\gamma + (e, \mu, MET)$                              | 3                                                                                                                  | <1.5%    |                         | 19.6            |       |          |
| $ZZ \rightarrow 4\ell$ $N_{jet} \leq 2$<br>$N_{jet} \geq 2$ | 4 e, 4a, 2/2a                                               | 3 + 3                                                                                                              | 1-2%     | 5.1                     | 19.6            | [64]  |          |
|                                                             | $N_{\rm jet} \ge 2$                                         | 11, 4, 212                                                                                                         | 3 + 3    | 1-4.70                  | 27.00           | 10.40 | Fra self |
| $WW \rightarrow \ell \nu \ell \nu$ VBF-tag<br>WH-tag        | 0,/1-jets                                                   | (DF or SF dileptons) × (0 or 1 jets).                                                                              | 4 + 4    | 2.0%                    | 4.9             | 19.5  | [6.5]    |
|                                                             | VBF-tag                                                     | $\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)                                                    | 1 + 2    | 2.0%                    | 4.9             | 12.1  | [6.6]    |
|                                                             | W.H. tag                                                    | 3/3v (same-sign SF and otherwise)                                                                                  | 2 + 2    |                         | 4.9             | 19.5  | [67]     |
|                                                             | 0/1-jet                                                     | (eτ <sub>k</sub> , pτ <sub>k</sub> , ep, pp)× (low or high p <sup>2</sup> <sub>3</sub> )                           | 16 + 16  |                         |                 |       |          |
| 1-jet                                                       |                                                             | ηη. ( / / / / / / / / / / / / / / / / / /                                                                          | 1 + 1    | 1.5%                    | 4.9             | 19.6  | [68]     |
| TT VBF-tag                                                  | VBF-tag                                                     | $(a \tau_k, \mu \tau_k, a \mu, \mu \mu, \tau_k \tau_k) + (jj)_{VBF}$                                               | 5 + 5    |                         |                 |       |          |
|                                                             | ZH-tag                                                      | (ee, pp) × (TpTp, ettp, ptTp ep)                                                                                   | 8 + 8    |                         | 5.0             | 19.5  | [69]     |
| WH-to                                                       | W.H-tag                                                     | դրր, դրր, որդ, ոդդ,                                                                                                | 4 + 4    |                         | 27.20           | 1.0   | for self |
|                                                             | VH-tag                                                      | $(\nu \nu, ee, \mu \mu, e\nu, \mu \nu \text{ with } 2 \text{ b-jets}) \times (low or high p_T(V) or loose, b-tag)$ | 10 + 13  | 10%                     | 5.0             | 12.1  | [70]     |
| bb                                                          | tt H-t ag                                                   | (ℓ with 4,5 or ≥6 jets) × (3 or ≥ 4 b-tags);                                                                       | 6 + 6    |                         | 5.0             | 5.1   | [71]     |
| 0.0                                                         | or me mg                                                    | (ℓ with 6 jets with 2 b-tags); (ℓℓ with 2 or ≥3 b-tagged jets)                                                     | 3 + 3    |                         | 270             | 16.1  | [2, 1]   |