Mixing and CP violation in the decay of $B_s \rightarrow J/\psi \Phi$ in ATLAS

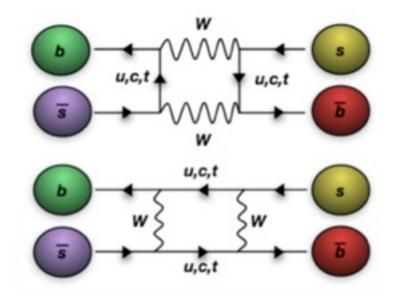
Alastair Dewhurst, on behalf of the ATLAS Collaboration

Motivation

• In the Standard Model CP violation is described by a single complex phase in the CKM matrix

$$\left| \frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} \right| \sim \frac{\left| \frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} \right|}{\lambda^2} \sim 1 \quad \beta_s \qquad \beta_s \equiv \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right)$$

• In the B_s system the Standard Model predicts Φ_s to be small:


$$\phi_s \simeq -2\beta_s = -0.0368 \pm 0.0018$$
 rad

Many new physics models predict large values of Φ_s whilst satisfying all existing constraints

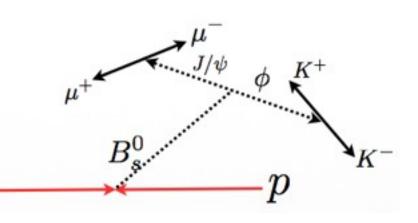
The neutral B_s system

- B_s mixing is described at the lowest order by box diagrams
- This leads to two mass eigenstates which have different lifetimes

 The standard model predicts these lifetimes will differ by ~O(10%)

 $\Delta \Gamma_s = \Gamma_L - \Gamma_H \qquad \Delta \Gamma_s = 0.087 \pm 0.021 \text{ ps}^{-1}$

• Physics beyond the Standard Model unlikely to affect $\Delta\Gamma_s$ as significantly as Φ_s but can test other theoretical predictions



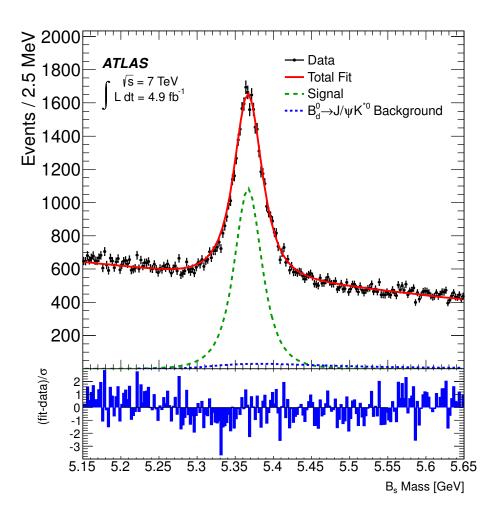
Alastair Dewhurst, 23rd April 2013

3

$B_s \rightarrow J/\psi \Phi decay$

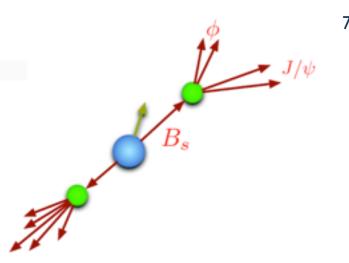
- Theoretically clean extraction of Φs is possible
- CP violation is induced through interference between mixing and decay terms

- The final state is an admixture of CP even and CP odd eigenstates that are described by 3 amplitudes A_0, A_{\perp} and A_{\parallel} .
- A fourth amplitude A_s describes non-resonant Bs $\rightarrow J/\psi$ K⁺K⁻ (f₀) decays
- CP states are separated using an angular analysis


Status of analysis

- Untagged analysis on 2011 data (4.7 fb⁻¹) published last year JHEP 12 (2012) 072
- Updated measurement presented using the same dataset but including flavour tagging.
- Analysis procedure:
 - J/ψ Triggers
 - Reconstruction of Bs candidates
 - Selection cuts
 - Tagging New!
 - Simultaneous fit of mass, lifetime, angular distribution and tagging Updated

Selection criteria


- Trigger selection based in di-muon and singlemuon triggers (pT threshold 4 GeV or higher)
- Offline selection based on:
 - J/ψ and ϕ invariant masses
 - Quality cut on vertex
 - No lifetime cut used
- Average number of primary interactions 5.6
- Wrong association to primary vertex is < 1% and effects are negligible.
- In total 131k Bs candidates within 5.15 < m(Bs)
 < 5.65 GeV used in the fit.

Flavour tagging

- Opposite side tagging is used: Initial flavour of B_s is inferred from the other B meson produced.
- Initially an additional muon is looked for in the event.
 - Muon must originate near interaction point.

• Separation power can be enhanced by using a weighted sum of the charge of the tracks in a cone around muon: ∇^{N} tracks a^{i} , $(p^{i})^{K}$

$$Q_{\mu} = \frac{\sum_{i}^{N \operatorname{tracks}} q^{l} \cdot (p_{T}^{l})^{\kappa}}{\sum_{i}^{N \operatorname{tracks}} (p_{T}^{i})^{\kappa}} \qquad [\kappa = 1.$$

- If no muon can be found a B-jet is looked for next:
 - Weighted sum of tracks is used
 - Needs to be associated to same interaction point
 - Veto signal tracks and jets within $\Delta R < 0.5$ around signal momentum axis

Flavour tagging

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

• Two types of muons:

- Combined muon: combination of Inner Detector track and Muon spectrometer track.
- Segment Tagged muon: full Inner Detector track matched to track segment in the muon spectrometer.
- Flavour tagging methods are studied and calibrated on $B^+\!\to J/\psi\ K^+$ and $B^-\!\to J/\psi\ K^-$
- Tagging enters fit as tag probability.

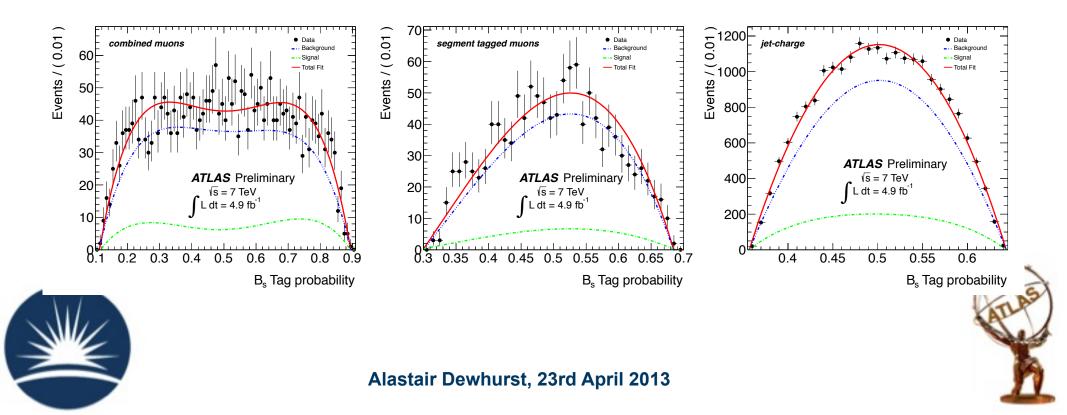
<u>Likelihood fit</u>

$$\ln \mathscr{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathscr{F}_s(m_i, t_i, \Omega_i) + f_s \cdot f_{B^0} \cdot \mathscr{F}_{B^0}(m_i, t_i, \Omega_i) + (1 - f_s \cdot (1 + f_{B^0})) \mathscr{F}_{bkg}(m_i, t_i, \Omega_i)) \}$$

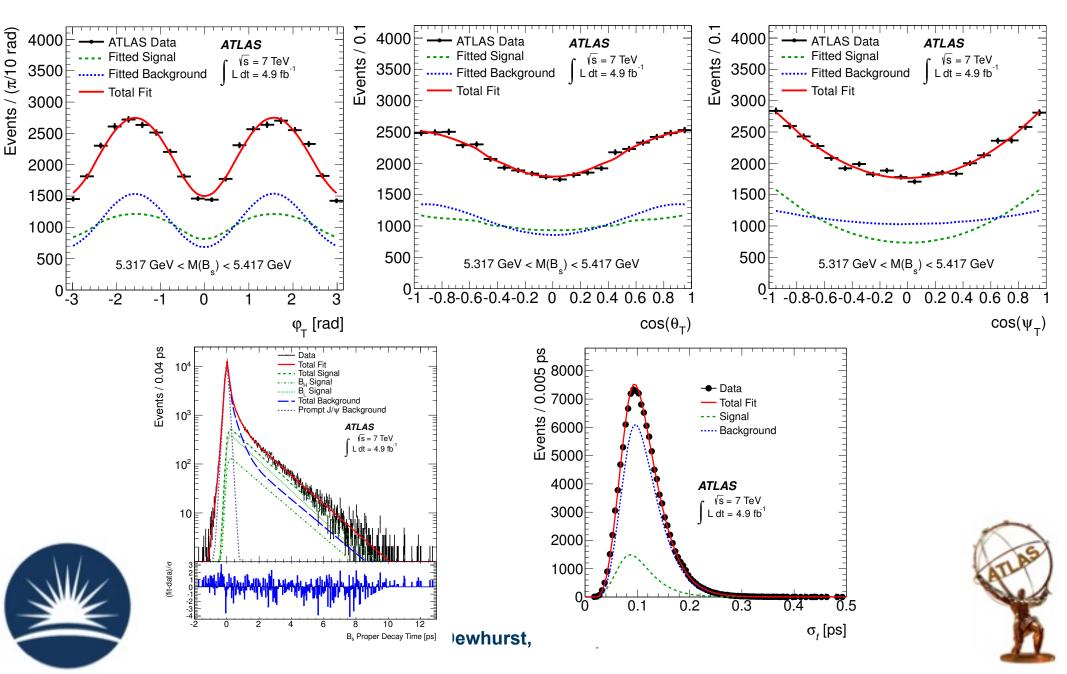
 $\mathscr{F}_{s}(m_{i},t_{i},\Omega_{i},P(B|Q)) = P_{s}(m_{i}|\sigma_{m_{i}}) \cdot P_{s}(\sigma_{m_{i}}) \cdot P_{s}(\Omega_{i},t_{i},P(B|Q)|\sigma_{t_{i}}) \cdot P_{s}(\sigma_{t_{i}}) \cdot P_{s}(P(B|Q)) \cdot A(\Omega_{i},p_{Ti}) \cdot P_{s}(p_{Ti})$ 9 physics variables to describe $B_{s} \rightarrow J/\psi\Phi$ and S-wave component: $\Delta\Gamma$, Φ s, Γ s, $|A_{0}(0)|^{2}$, $|A_{11}(0)|^{2}$, δ_{11} , δ_{\perp} , $|As(0)|^{2}$ and δ s

The background due to $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow J/\psi K\pi$ (non resonant), described by the parameter f_Bo , constrained by known branching fractions and acceptance (11% of signal amplitude)

The prompt and non-prompt combinatorial background described with empirical angular distribution. (No K- π discrimination.)


Muon time dependent trigger efficiency

Alastair Dewhurst, 23rd April 2013


9

Tagging in the fit

- Tag probability for signal and background is different so must be taken into account in the fit.
- Discrete parts (corresponding to single tracks) are treated separately
- Description of tag-probability PDFs affect the result by less than 10% of statistical uncertainty.

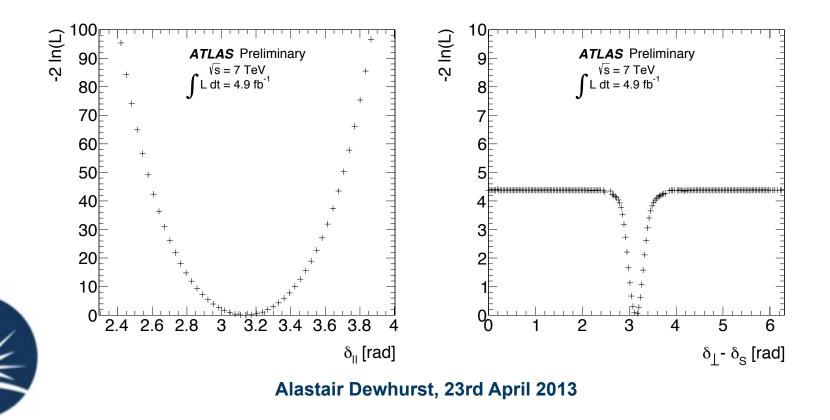
Fit projections

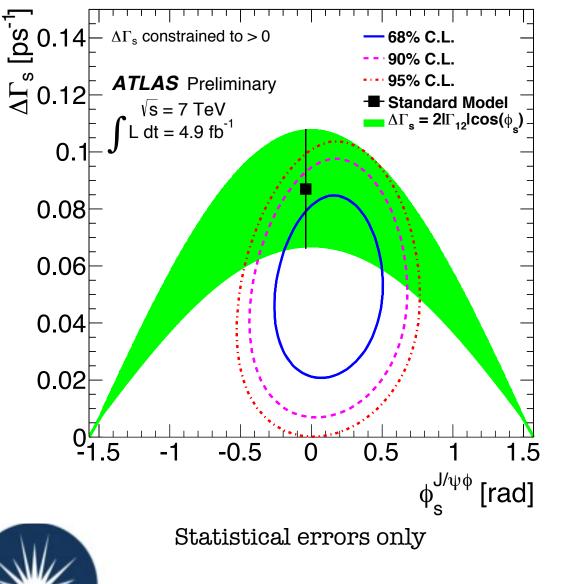
П

<u>Results</u>

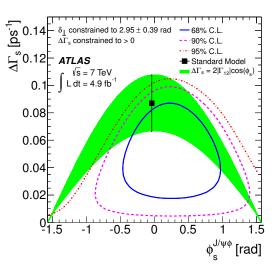
Parameter	Value	Statistical uncertainty	Systematic uncertainty		
$\phi_s(rad)$	0.12	0.25	0.11		
$\Delta \Gamma_s(ps^{-1})$	0.053	0.021	0.009		
$\Gamma_s(ps^{-1})$	0.677	0.007	0.003		
$ A_{ }(0) ^2$	0.220	0.008	0.009		
$ A_0(0) ^2$	0.529	0.006	0.011		
$ A_S ^2$	0.024	0.014	0.028		
δ_{\perp}	3.89	0.46	0.13		
δ_{\parallel}	[3.	04-3.23]	0.09		
$\delta_{\perp} - \delta_{S}$	[3.	02-3.25]	0.04		

- 22670 ± 150 signal Bs events.
- Consistent with untagged analysis.
- Φs consistent with standard model prediction.
- S-wave amplitude consistent with 0.


	\$	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ	δ_{\perp}	$\delta_{\perp} - \delta_{S}$
ϕ_s	1.000	0.107	0.026	0.010	0.002	0.029	0.021	-0.043	-0.003
ΔΓ		1.000	-0.617	0.105	0.103	0.069	0.006	-0.017	0.001
Γ_s		4.110.116	1.000	-0.093	-0.063	0.034	-0.003	0.001	-0.009
$ A_{ }(0) ^2$				1.000	-0.316	0.077	0.008	0.005	-0.010
$ A_0(0) ^2$					1.000	0.283	- 0.003	-0.016	-0.025
$ A_{S}(0) ^{2}$						1.000	-0.011	-0.054	-0.098
δ							1.000	0.038	0.007
δ_{\perp}								1.000	0.081
$\delta_{\perp} - \delta_{S}$									1.000


Strong phases

- Strong phases $\delta_{||}$ and δ_{\perp} δ_s given as $I\sigma$ confidence regions.
- δ_{\perp} δ_s has ID likelihood has unusual behaviour.
- $\delta_{||}$ ID likelihood is gaussian however systematic studies showed non gaussian pull plot distributions.



$Φ_s - ΔΓ contour plot$

- Uncertainty of Φs improves ~40%
- $\delta \perp$ constraint removed
- $\Delta\Gamma$ central value and uncertainty unchanged

Previous untagged measurement

<u>Systematics</u>

	<i>ø</i> s	$\Delta \Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_{S}$
	(rad)	(ps^{-1})	(ps^{-1})				(rad)	(rad)	(rad)
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B_d^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.10	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.002	0.05	$< 10^{-2}$	$< 10^{-2}$
Models:									
default fit	$< 10^{-2}$	0.002	$< 10^{-3}$	0.003	0.002	0.006	0.07	0.01	0.01
signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.03	0.04	0.01
background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.11	0.009	0.003	0.009	0.011	0.028	0.13	0.09	0.04

Uncertainties of fit model derived in pseudo-experiment studies
Uncertainty in the calibration
Effect of residual misalignment studied in signal MC
Uncertainty in the calibration
Uncertainty in the relative

of the tag probability

Uncertainty in the relative fraction of B_d background

- ATLAS updated the Bs $\rightarrow J/\psi \Phi$ analysis of 2011 data with tagging
- Two types of tagging used:
 - Muon cone charge tagging
 - Jet charge tagging
- Improvement in the measured precision of Φs:

 $\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.)} \text{ rad}$ $\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ ps}^{-1}$ $\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1}$

Time dependence

1	$ A_0 ^2(t)$	=	$ A_0 ^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \pm in \phi_s \sin(\Delta m t)],$
2	$ A_{\parallel}(t) ^2$	=	$ A_{\parallel} ^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \pm \sin\phi_s \sin(\Delta m t)],$
3	$ A_{\perp}(t) ^2$	=	$ A_{\perp} ^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$
4	$\Im(A_{\parallel}(t)A_{\perp}(t))$	=	$ \begin{array}{c} A_{\parallel} A_{\perp} e^{-\Gamma_{s}t}[-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\$
5	$\Re(A_0(t)A_{\parallel}(t))$	=	$\begin{aligned} A_0 A_{\parallel} e^{-\Gamma_s t}\cos(\delta_{\parallel}-\delta_0)[\cosh\left(\frac{\Delta\Gamma}{2}t\right)-\cos\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)\\ (\pm)\sin\phi_s\sin(\Delta m t)], \end{aligned}$
6	$\Im(A_0(t) A_{\perp}(t))$	=	$ A_0 A_{\perp} e^{-\Gamma_s t}[-\cos(\delta_{\perp}-\delta_0)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)$ $\mp\cos(\delta_{\perp}-\delta_0)\cos\phi_s\sin(\Delta mt)\pm\sin(\delta_{\perp}-\delta_0)\cos(\Delta mt)],$
7	$ A_s(t) ^2$	=	$ A_s ^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t) \right],$
8	$\Re(A_s^*(t)A_{\parallel}(t))$	=	$ A_s A_{\parallel} e^{-\Gamma_s t}[-\sin(\delta_{\parallel}-\delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)\bigoplus\sin(\delta_{\parallel}-\delta_s)\cos\phi_s\sin(\Delta m t)$ $(\pm)\cos(\delta_{\parallel}-\delta_s)\cos(\Delta m t)],$
9	$\Im(A_s^*(t)A_{\perp}(t))$	=	$\frac{ A_s A_{\perp} e^{-\Gamma_s t}\sin(\delta_{\perp}-\delta_s)[\cosh\left(\frac{\Delta\Gamma}{2}t\right)+\cos\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)}{\mp\sin\phi_s\sin(\Delta m t)],}$
10	$\Re(A^*_s(t)A_0(t))$	=	$ A_s A_0 e^{-\Gamma_s t}[-\sin(\delta_0-\delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right)$ $\implies \sin(\delta_0-\delta_s)\cos\phi_s\sin(\Delta m t) \implies \cos(\delta_0-\delta_s)\cos(\Delta m t)].$

