Dihadron production in semi-inclusive DIS from transversely polarized protons

S. Gliske
for the Hermes Collaboration

High Energy Physics Division

Argonne National Laboratory

XXI International Workshop on
Deep-Inelastic Scattering and Related Subjects
Parc Chanot, Marseille, France

$$
24 \text { April, } 2013
$$

SIDIS Meson Production

- SIDIS cross section can be written $\sigma^{e p \rightarrow e h X}=\sum_{q} D F \otimes \sigma^{e q \rightarrow e q} \otimes F F$
- Access integrals of DFs and FFs through azimuthal asymmetries in $\phi_{h}, \phi_{S}, \phi_{R}$

Fragmentation Functions (FF)

quark	
Unpol.	Pol.
D_{1}	H_{1}^{\perp}

Lund/Artru String Fragmentation Model

$\ell=1$

- Favored fragmentation modeled as the breaking of a gluon flux tube.
- Assume flux tube breaks into $q \bar{q}$ pair with vacuum quantum numbers.
- Expect mesons overlapping with $\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ states to prefer "quark left".
- $|0,0\rangle=$ pseudo-scalar mesons; $|1,0\rangle=$ long. pol. vector mesons.
- Expect mesons overlapping with $\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ states to prefer "quark right".
- $|1, \pm 1\rangle=$ transversely polarized vector mesons.
- For the two ρ_{T} 's, "the Collins function" should have opposite sign to that for π

Gluon Radiation Fragmentation Model

- Disfavored frag. model: assume produced diquark forms the observed meson
- Assume additional final state interaction to set pseudo-scalar quantum numbers
- Assume no additional interactions in dihadron production.
- Exists common sub-diagram between this model and the Lund/Artru model.
- Keeping track of quark polarization states, sub-diagram for disfavored $|1,1\rangle$ diquark production identical to sub-diagram for favored $\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ diquark production.

- Implies that the disfavored Collins function for transverse vector mesons also has opposite sign as the favored pseudo-scalar Collins function
- Thus fav. = disfav. for Vector Mesons
- Data suggests fav. \approx-disfav. for pseudo-scalar mesons.

HERMES Collins Moments for Pions

- Results published in Jan 2010 A. Airapetian et al, Phys. Lett. B 693 (2010) 11-16. arXiv: 1006.4221 (hep-ex)
- Significant π^{-}asymmetry implies $H_{1}^{\perp, \text {,disf }} \approx-H_{1}^{\perp, f a v}$
- Pions have small, but non-zero asymmetry

Vector Meson Expectation

Species	Type	Sign
ρ^{+}	fav.	-
ρ^{0}	mix	≈ 0 or -
ρ^{-}	disfav.	-

Fragmentation Functions and Spin/Polarization

- Leading twist Fragmentation functions are related to number densities
- Amplitudes squared rather than amplitudes
- Difficult to relate Artru/Lund prediction with published notation and cross section.

- Propose new convention for fragmentation functions
- Functions entirely identified by the polarization states of the quarks, χ and χ^{\prime}
- Any final-state polarization, i.e. $\left|\ell_{1}, m_{1}\right\rangle\left|\ell_{2}, m_{2}\right\rangle$, contained within partial wave expansion of fragmentation functions
- Exists exactly two fragmentation functions
- D_{1}, the unpolarized fragmentation function ($\chi=\chi^{\prime}$)
- H_{1}^{\perp}, the polarized (Collins) fragmentation function $\left(\chi \neq \chi^{\prime}\right)$
- New partial waves analysis proposed, using direct sum basis $|\ell, m\rangle$ rather than the direct product basis $\left|\ell_{1}, m_{1}\right\rangle\left|\ell_{2}, m_{2}\right\rangle$.

$$
H_{1}^{\perp}=\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell, m}(\cos \vartheta) e^{i m\left(\phi_{R}-\phi_{k}\right)} H_{1}^{\perp|\ell, m\rangle}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|\right)
$$

Where is "the Collins function?"

- Consider direct sum vs. direct product basis

$$
\begin{aligned}
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} & =\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes\left(\frac{1}{2} \otimes \frac{1}{2}\right) \\
& =(1 \oplus 0) \otimes(1 \oplus 0) \\
& =2 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0
\end{aligned}
$$

- The three $\ell=1$ cannot be separated experimentally
- Longitudinal vector meson state $|1,0\rangle|1,0\rangle$ is a mixture of $|2,0\rangle$ and $|0,0\rangle$
- Cannot access, due to $\ell=0$ multiplicity
- Transverse vector meson states $|1, \pm 1\rangle|1, \pm 1\rangle$ are exactly $|2, \pm 2\rangle$
- Models predict dihadron $H_{1}^{\perp|2, \pm 2\rangle}$ has opposite sign as pseudo-scalar H_{1}^{\perp}.
- Cross section has direct access to $H_{1}^{\perp|2, \pm 2\rangle}$
- Note: the usual IFF, related to $H_{1}^{\perp|1,1\rangle}$ is not pure $s p$, but also includes $p p$ interference.
- Using symmetry, can calculate cross section for any polarized final state from the scalar final state cross section

Dihadron Twist-2 and Twist-3 Cross Section

$$
\begin{aligned}
& d \sigma_{U U}=\frac{\alpha^{2} M_{h} P_{h \perp}}{2 \pi x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right) \\
& \times \sum_{\ell=0}^{2}\left\{A(x, y) \sum_{m=0}^{\ell}\left[P_{\ell, m} \cos \left(m\left(\phi_{h}-\phi_{R}\right)\right)\left(F_{U U, T}^{P}{ }^{F^{\prime}, m} \cos \left(m\left(\phi_{h}-\phi_{R}\right)\right)+\epsilon F_{U U, L}^{P}{ }_{\ell, m}^{\cos \left(m\left(\phi_{h}-\phi_{R}\right)\right)}\right)\right]\right. \\
& +B(x, y) \sum_{m=-\ell}^{\ell} P_{\ell, m} \cos \left((2-m) \phi_{h}+m \phi_{R}\right) F_{U U}^{P}{ }_{\ell, m}^{\cos \left((2-m) \phi_{h}+m \phi_{R}\right)} \\
& \left.+V(x, y) \sum_{m=-\ell}^{\ell} P_{\ell, m} \cos \left((1-m) \phi_{h}+m \phi_{R}\right) F_{U U}^{P_{\ell, m} \cos \left((1-m) \phi_{h}+m \phi_{R}\right)}\right\}, \\
& d \sigma_{U T}=\frac{\alpha^{2} M_{h} P_{h \perp}}{2 \pi x y Q^{2}}\left(1+\frac{\gamma^{2}}{2 x}\right)\left|S_{\perp}\right| \sum_{\ell=0}^{2} \sum_{m=-\ell}^{\ell}\left\{A(x, y)\left[P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)\right)\right. \\
& \left.\times\left(\begin{array}{c}
F_{U T, T} \\
P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right) \\
\\
\epsilon F_{U T, L} P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)
\end{array}\right)\right] \\
& +B(x, y)\left[P_{\ell, m} \sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right) F_{U T}^{P} \stackrel{P_{\ell, m}}{\sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right)}\right. \\
& \left.+P_{\ell, m} \sin \left((3-m) \phi_{h}+m \phi_{R}-\phi_{S}\right) F_{U T}^{P} \stackrel{m}{\operatorname{lin}\left((3-m) \phi_{h}+m \phi_{R}-\phi_{S}\right)}\right] \\
& +V(x, y)\left[P_{\ell, m} \sin \left(-m \phi_{h}+m \phi_{R}+\phi_{S}\right) F_{U T}^{P_{\ell, m} \sin \left(-m \phi_{h}+m \phi_{R}+\phi_{S}\right)}\right. \\
& \left.\left.+P_{\ell, m} \sin \left((2-m) \phi_{h}+m \phi_{R}-\phi_{S}\right) F_{U T}^{P_{\ell, m} \sin \left((2-m) \phi_{h}+m \phi_{R}-\phi_{S}\right)}\right]\right\} .
\end{aligned}
$$

Structure Functions, Unpolarized

$$
\begin{aligned}
& F_{U U, L}^{P_{\ell, m} \cos \left(m \phi_{h}-m \phi_{R}\right)}=0, \\
& F_{U U, T}^{P_{\ell, m} \cos \left(m \phi_{h}-m \phi_{R}\right)}= \begin{cases}\mathcal{J}\left[f_{1} D_{1}^{|\ell, 0\rangle}\right] & m=0 \\
\mathcal{J}\left[2 \cos \left(m \phi_{h}-m \phi_{k}\right) f_{1}\left(D_{1}^{|\ell, m\rangle}+D_{1}^{|\ell,-m\rangle}\right)\right] & m>0,\end{cases} \\
& F_{U U}^{P_{\ell, m} \cos \left((2-m) \phi_{h}+m \phi_{R}\right)}=-\mathcal{J}\left[\frac{\left|\boldsymbol{p}_{T}\right|\left|\boldsymbol{k}_{T}\right|}{M M_{h}} \cos \left((m-2) \phi_{h}+\phi_{p}+(1-m) \phi_{k}\right) h_{1}^{\perp} H_{1}^{\perp|\ell, m\rangle}\right], \\
& F_{U U}^{P_{\ell, m} \cos \left((1-m) \phi_{h}+m \phi_{R}\right)}=-\frac{2 M}{Q} \mathcal{J}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \cos \left((m-1) \phi_{h}+(1-m) \phi_{k}\right)\right. \\
& \times\left(x h H_{1}^{\perp|\ell, m\rangle}+\frac{M_{h}}{M} f_{1} \frac{\tilde{D}^{\perp|\ell, m\rangle}}{z}\right) \\
& +\frac{\left|\boldsymbol{p}_{T}\right|}{M} \cos \left((m-1) \phi_{h}+\phi_{p}-m \phi_{k}\right) \\
& \left.\times\left(x f^{\perp} D_{1}^{|\ell, m\rangle}+\frac{M}{M_{h}} h_{1}^{\perp} \frac{\tilde{H}^{|\ell, m\rangle}}{z}\right)\right] .
\end{aligned}
$$

\checkmark Can test Lund/Artru model with $F_{U U}^{\sin ^{2} \vartheta \cos \left(2 \phi_{R}\right)}, F_{U U}^{\sin ^{2} \vartheta \cos \left(4 \phi_{h}-2 \phi_{R}\right)}$ via Boer-Mulder's function

Twist-2 Structure Functions, Transverse Target

$$
\begin{array}{rlrl}
F_{U T, L}^{P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)}= & 0 \\
F_{U T, T}^{P_{\ell, m} \sin \left((m+1) \phi_{h}-m \phi_{R}-\phi_{S}\right)}= & -\mathcal{J}\left[\frac{\left|\boldsymbol{p}_{T}\right|}{M} \cos \left((m+1) \phi_{h}-\phi_{p}-m \phi_{k}\right)\right. \\
& \left.\times\left(f_{1 T}^{\perp}\left(D_{1}^{|\ell, m\rangle}+D_{1}^{|\ell,-m\rangle}\right)+\chi(m) g_{1 T}\left(D_{1}^{|\ell, m\rangle}-D_{1}^{|\ell,-m\rangle}\right)\right)\right], \\
& & -\mathcal{J}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \cos \left((m-1) \phi_{h}-\phi_{p}-m \phi_{k}\right) h_{1} H_{1}^{\perp|\ell, m\rangle}\right] \\
F_{U T}^{P_{\ell, m} \sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right)}= & \\
F_{U T}^{P_{\ell, m} \sin \left((3-m) \phi_{h}+m \phi_{R}-\phi_{S}\right)}= & \mathcal{J}\left[\frac{\left|\boldsymbol{p}_{T}\right|^{2}\left|\boldsymbol{k}_{T}\right|}{M^{2} M_{h}} \cos \left((m-3) \phi_{h}+2 \phi_{p}-(m-1) \phi_{k}\right) h_{1 T}^{\perp} H_{1}^{\perp|\ell, m\rangle}\right]
\end{array}
$$

- Can test Lund/Artru model with $F_{U T}^{\sin ^{2} \vartheta \sin \left(-\phi_{h}+2 \phi_{R}+\phi_{S}\right)}$ and $F_{U T}^{\sin ^{2} \vartheta \sin \left(3 \phi_{h}-2 \phi_{R}+\phi_{S}\right)}$ via transversity
- In theory, could also test Lund/Artru and gluon radiation models with $F_{U T}^{\sin ^{2} \vartheta \sin \left(\phi_{h}+2 \phi_{R}-\phi_{S}\right)}$ and $F_{U T}^{\sin ^{2} \vartheta \sin \left(5 \phi_{h}-2 \phi_{R}-\phi_{S}\right)}$ via pretzelocity
- Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero

Collinear versus TMD Moments

- It is not the particulars of the DF or FF that make a moment survive in the collinear case, but rather the $\sum m=0$ (necessary condition).
- Moments with $h_{1}^{\perp} H_{1}^{\perp|\ell, m\rangle}$ (Boer-Mulders moments)
- h_{1}^{\perp} has $\chi \neq \chi^{\prime}$, and thus $\Delta m=-1$
- H_{1}^{\perp} similarly has $\Delta m=-1$.
- Final state polarization must have $m=2$ in order that $\sum m=0$.
- Only surviving moment in collinear dihadron production is $|2,2\rangle$.
- Moments with $h_{1} H_{1}^{\perp|\ell, m\rangle}$ (Collins moments)
- h_{1} has $\Delta m=0$.
- H_{1}^{\perp} again has $\Delta m=-1$.
- Collinear moments are $|1,1\rangle,|2,1\rangle$.
- Can also look for the m which cancels the ϕ_{h} dependence

$$
\begin{aligned}
F_{U U}^{P} \ell_{\ell, m} \cos \left((2-m) \phi_{h}+m \phi_{R}\right) & =-\mathcal{J}\left[\frac{\left|\boldsymbol{p}_{T}\right|\left|\boldsymbol{k}_{T}\right|}{M M_{h}} \cos \left((m-2) \phi_{h}+\phi_{p}+(1-m) \phi_{k}\right) h_{1}^{\perp} H_{1}^{\perp|\ell, m\rangle}\right] \\
F_{U T}^{P_{\ell, m} \sin \left((1-m) \phi_{h}+m \phi_{R}+\phi_{S}\right)} & =-\mathcal{J}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \cos \left((m-1) \phi_{h}-\phi_{p}-m \phi_{k}\right) h_{1} H_{1}^{\perp|\ell, m\rangle}\right]
\end{aligned}
$$

The HERMES Experiment

Beam Long. pol. $e^{ \pm}$at 27.6 GeV Lep.-Had. Sep. High efficiency $\approx 98 \%$
Target Trans. pol. H ($\approx 75 \%$) Long. pol. H ($\approx 85 \%$) Unpol. H,D,Ne,Kr,...

Low contamination ($<2 \%$)
Hadron PID Separates $\pi^{ \pm}, K^{ \pm}, p, \bar{p}$ with momenta in $2-15 \mathrm{GeV}$

Particle Reconstruction

- Central value of π^{0} peak is close to PDG value-observed width due to detector resolution
- Pythia vs data plots indicate the many subprocesses in $\pi \pi$-dihadron production
- $K^{+} K^{-}$much cleaner-only processes are one resonant (ϕ) and one non-resonant production

Analysis Details

- Considering final states of $\pi^{+} \pi^{-}, \pi^{+} \gamma \gamma, \pi^{-} \gamma \gamma, K^{+} K^{-}$
- Need a model for TMDGen, and then could likewise analyze $K^{+} \pi^{-}, K^{-} \pi^{+}$, $K^{+} \gamma \gamma, K^{-} \gamma \gamma$.
- Need to correct for acceptance, which requires a new Monte Carlo generator and new TMD fragmentation functions.
- Correction applied for non-resonant $\gamma \gamma$ pairs.
- Integrated charge symmetric background $\lesssim 5 \%$ and exclusive background $\lesssim 3.5 \%$.
- Effects determined to be negligible.
- Systematics include
- Acceptance, smearing, and radiative effects
- Dependence on the beam charge
- Particle identification procedures

New TMDGEn Generator

- No previous Monte Carlo generator has TMD dihadron production with full angular dependence
- Method
- Integrates cross section per flavor to determine "quark branching ratios"
- Throw a flavor type according to ratios
- Throw kinematic/angular variables by evaluating cross section
- Can use weights or acceptance rejection
- Full TMD simulation: each event has specific $\left|\boldsymbol{p}_{T}\right|, \phi_{p},\left|\boldsymbol{k}_{T}\right|, \phi_{k}$ values
- Includes both pseudo-scalar and dihadron SIDIS cross sections
- Guiding plans
- Extreme flexibility
- Allow many models for fragmentation and distribution functions
- Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
- Output options \& connecting to analysis chains of various experiments
- Minimize dependencies on other libraries
- Full flavor and transverse momentum dependence.
- Current C++ package considered stable and allows further expansion
- Can be useful for both experimentalists and theorists.

Acceptance/Smearing

- One could do two step process

1. Unfold the yield $\boldsymbol{y}=S \boldsymbol{x}$
2. Solve for moments $\boldsymbol{x}=X \boldsymbol{\alpha}$

- Or do all at once by solving $\boldsymbol{y}=S X \alpha$
- Or unfold in parameter space via $X^{-1} \boldsymbol{y}=X^{-1} S X \boldsymbol{\alpha} \Leftrightarrow \boldsymbol{\beta}=S^{\prime} \boldsymbol{\alpha}$
- In practice, we solve $\boldsymbol{b}=B \boldsymbol{\alpha}$ with
$b_{i}=\frac{V}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}\left(x^{(R, k)}\right), \quad\left(c^{b}\right)_{j, j^{\prime}}=\frac{\delta_{j, j^{\prime}}}{N_{R}-1}\left[\frac{V^{2}}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}^{2}\left(\boldsymbol{x}^{(R, k)}\right)-\left(b_{i}\right)^{2}\right]$,
$B_{i, j}=\frac{V^{3}}{N_{M C}} \sum_{k=1}^{N_{M C}} f_{i}\left(\boldsymbol{x}^{(R, k)}\right) f_{j}\left(\boldsymbol{x}^{(T, k)}\right), \quad\left(C^{B}\right)_{j, k ; j^{\prime}, k^{\prime}}=\frac{\delta_{j, j^{\prime}} \delta_{k, k^{\prime}}}{N_{\epsilon}-1}\left[\frac{V^{4}}{N_{\epsilon}} \sum_{k=1}^{N_{\epsilon}} f_{j}^{2}\left(\boldsymbol{x}^{(M, k)}\right) f_{k}^{2}\left(\boldsymbol{x}^{(T, k)}\right)-\left(B_{j, k}\right)^{2}\right]$.
- The fit is applied over the angular variables in several different binning options:
- $1 \mathrm{D} M_{h h}$ bins or various 2D bins: $M_{h h}$ and one of $\left\{x, y, z, P_{h \perp}\right\}$
- We "unfold" acceptance only using TMDGen, thus $\boldsymbol{x}^{(R)}=\boldsymbol{x}^{(T)}$ and $B=B^{T}$.
- Basis consists of 24 unpolarized and 18 polarized moments

$|1,1\rangle$ Moment for $\pi \pi$ Dihadrons

Published $\pi^{+} \pi^{-}$Results

- Signs of moments are consistent for all $\pi \pi$ dihadron species.
- Statistics are much more limited for $\pi^{ \pm} \pi^{0}$ dihadrons.
- Despite uncertainties, may still help constrain global fits.

$|2, \pm 2\rangle$ Moments for $\pi \pi$ Dihadrons

- $|2,-2\rangle$ moment very consistent with zero for all flavors
- Results for $|2,2\rangle$ are consistent with expectations
- No indication of any signal outside the ρ-mass bin
- Negative moments for $\rho^{ \pm}$, very small ρ^{0} moments
- Results are sufficiently suggestive to merit measurements at current experiments.

Conclusions and Outlook

- First preliminary results for transverse target moments of dihadron production
- Current work continues on the finalization and publication of these preliminary results
- Transverse momentum dependent $|2, \pm 2\rangle$ moments related to string models of fragmentation
- Measurements are consistent with models
- Results point towards needing a higher statistic data set
- Measured $|1,1\rangle$ moments allow collinear access to transversity
- These additional $\pi^{ \pm} \pi^{0}$ species will assist in the $u-d$ flavor separation
- Future work with $K^{+} K^{-}$
- Little data near ϕ-mass, but much more for $M_{K K}>1.05 \mathrm{GeV}$
- Can again measure $|1,1\rangle$ to access to strange flavor of transversity
- Sivers moments related to strange flavor of Sivers function.
- Also have data for πK-dihadrons
- However, we are lacking a fragmentation function model.

Backup Slides

Partial Wave Expansion

- Fragmentation functions expanded into partial waves in the direct sum basis according to

$$
\begin{aligned}
D_{1} & =\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell, m}(\cos \vartheta) e^{i m\left(\phi_{R}-\phi_{k}\right)} D_{1}^{|\ell, m\rangle}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|\right), \\
H_{1}^{\perp} & =\sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell, m}(\cos \vartheta) e^{i m\left(\phi_{R}-\phi_{k}\right)} H_{1}^{\perp|\ell, m\rangle}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|\right),
\end{aligned}
$$

- Each term in pseudo-scalar and dihadron cross section uniquely related to a specific partial wave $|\ell, m\rangle$.
- Cross section looks the same for all final states, excepting certain partial waves may or may not be present
- Pseudo-scalar production is $\ell=0$ sector
- Dihadron production is $\ell=0,1,2$ sector
- Given the pseudo-scalar cross section (at any twist) can extrapolate cross section for other final states

Rigorous Definitions

- Fragmentation Correlation Matrix

$$
\Delta_{m n}\left(P_{h}, S_{h} ; k\right)=\sum_{X} \int \frac{d^{4} x}{(2 \pi)^{4}} e^{i k \cdot x}\langle 0| \Psi_{m}(x)\left|P_{h}, S_{h} ; X\right\rangle\left\langle P_{h}, S_{h} ; X\right| \bar{\Psi}_{n}(0)|0\rangle
$$

- Trace Notation

$$
\Delta^{[\Gamma]}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|, \cos \vartheta, \phi_{R}-\phi_{k}\right)=\left.4 \pi \frac{z|\boldsymbol{R}|}{16 M_{h}} \int d k^{+} \operatorname{Tr}\left[\Gamma \Delta\left(k, P_{h}, R\right)\right]\right|_{k^{-}=P_{h}^{-} / z} .
$$

- Define fragmentation functions via trace relations

	Previous Definitions		New Definition
FF	Pseudo-Scalar	Dihadron	All Final States
D_{1}	$\Delta^{\left[\gamma^{-}\right]}$	$\Delta^{\left[\gamma^{-}\right]}$	$\Delta^{\left[\gamma^{-}\left(1+i \gamma^{5}\right)\right]}$
G_{1}^{\perp}	--	$\propto \Delta^{\left[\gamma^{-} \gamma^{5}\right]}$	--
H_{1}^{\perp}	$\Delta^{\left[\left(\sigma^{1-}\right) \gamma^{5}\right]}$	$\Delta^{\left[\left(\sigma^{(1-}\right) \gamma^{5}\right]}$	$\Delta^{\left[\left(\sigma^{1-}+i \sigma^{2-}\right) \gamma^{5}\right]}$
\bar{H}_{1}^{\Varangle}	--	$\propto \Delta^{\left[\left(\sigma^{2-}\right) \gamma^{5}\right]}$	--

Relation with Previous Notation

- Real part of fragmentation function similar
- New definition of $D_{1} \& H_{1}^{\perp}$
- Adds "imaginary" part to $D_{1} \& H_{1}^{\perp}$, instead of introducing new functions.
- Functions are complex valued and depend on $Q^{2}, z,\left|k_{T}\right|, M_{h}, \cos \vartheta,\left(\phi_{R}-\phi_{k}\right)$.
- Comparing with similar trace definitions, e.g. PRD 67:094002, yields the relations

$$
\begin{aligned}
\left.D_{1}\right|_{\text {Gliske }} & =\left[D_{1}+i \frac{|\boldsymbol{R}|\left|\boldsymbol{k}_{T}\right|}{M_{h}^{2}} \sin \vartheta \sin \left(\phi_{R}-\phi_{k}\right) G_{1}^{\perp}\right]_{\text {other }}, \\
\left.H_{1}^{\perp}\right|_{\text {Gliske }} & =\left[H_{1}^{\perp}+\frac{|\boldsymbol{R}|}{\left|\boldsymbol{k}_{T}\right|} \sin \vartheta e^{i\left(\phi_{R}-\phi_{k}\right)} \bar{H}_{1}^{\Varangle}\right]_{\text {other }}=\left.\frac{|\boldsymbol{R}|^{2}}{\left|\boldsymbol{k}_{T}\right|^{2}} H_{1}^{\Varangle}\right|_{\text {other }},
\end{aligned}
$$

- Note: there are inconsistencies in the literature between definitions of

$$
H_{1}^{\Varangle}, \bar{H}_{1}^{\Varangle}, \text { and } H_{1}^{\prime \Varangle} .
$$

Collinear Dihadron Spectator Model

- Based on Bacchetta/Radici spectator model for collinear dihadron production Phys. Rev. D74 11 (2006) 114007
- The SIDIS X is replaced with a single, on-shell, particle of mass $M_{s} \propto M_{h}$.
- Assume one spectator for hadron pairs and vector mesons.
- Integration over transverse momenta is performed before extracting fragmentation functions.
- One can use the same correlator to extract TMD fragmentation functions
- One just needs to not integrate and follow the Dirac-matrix algebra and partial wave expansion.
- Numeric studies show need for additional \boldsymbol{k}_{T} cut-off.
- Original model intended for $\pi^{+} \pi^{-}$pairs
- Adding flavor dependence allows generalization to $\pi^{+} \pi^{0}, \pi^{-} \pi^{0}$ pairs.
- Slight change to vertex function allows generalization to $K^{+} K^{-}$pairs.
- Slight change to vertex function and allows generalization to $K^{+} K^{-}$pairs.
- The model only includes partial waves of the Collins function for $\ell<2$.
- Model cannot easily be extended to mixed mass pairs ($K \pi$)

Available Models in TMDGen

Distribution Functions	Model Identifier
f_{1}	CTEQ
f_{1}	LHAPDF
f_{1}	BCR08
f_{1}	GRV98
g_{1}	GRSV2000
$f_{1 T}, h_{1 T}^{\perp}, h_{1}$	Torino Group
$f_{1}, g_{1}, g_{1 L}, g_{1 T}, f_{1 T}, h_{1}, h_{1}^{\perp}, h_{1 T}^{\perp}$	Pavia Spectator Model

Frag. Functions	Final State	Model Identifier
D_{1}	pseudo-scalar	fDSS
D_{1}	pseudo-scalar	Kretzer
D_{1}, H_{1}^{\perp}	dihadron	Spectator Model
D_{1}, H_{1}^{\perp}	dihadron	Set given partial wave proportional to any other partial wave

$\pi^{+} \pi^{0}$ Kinematic Distributions, p. 1

- Close agreement for x, y, z distributions.
- Main discrepancy in x-may be due to imbalance in the flavor contributions, or Q^{2} effects.
- Similar results for other $\pi \pi$ and $K K$ dihadrons.

$\pi^{+} \pi^{0}$ Kinematic Distributions, p. 2

- Fairly good agreement in both $P_{h \perp}$ and M_{h} distributions.
- Note: some discrepancies in full $5 D$ kinematic, but PyTHiA also doesn't match data in full $5 D$

Smearing/Acceptance Effects

- Let $\boldsymbol{x}^{(T)}$ be true value of variables, $\boldsymbol{x}^{(R)}$ the reconstructed values
- A conditional probability $p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right)$ relates the true PDF $p\left(\boldsymbol{x}^{(T)}\right)$ with the PDF of the reconstructed variables, $p\left(\boldsymbol{x}^{(R)}\right)$.
- Specific relation given by Fredholm integral equation

$$
\begin{aligned}
p\left(\boldsymbol{x}^{(R)}\right) & =\eta \int d^{D} \boldsymbol{x}^{(T)} p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right) p\left(\boldsymbol{x}^{(T)}\right) \\
\frac{1}{\eta} & =\int d^{D} \boldsymbol{x}^{(R)} d^{D} \boldsymbol{x}^{(T)} p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right) p\left(\boldsymbol{x}^{(T)}\right) .
\end{aligned}
$$

- Can rewrite in terms of a smearing operator

$$
S\left[g\left(\boldsymbol{x}^{(T)}\right)\right]=\int d^{D} \boldsymbol{x}^{(T)} p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right) g\left(\boldsymbol{x}^{(T)}\right) .
$$

- Fredholm equation is simply

$$
p\left(\boldsymbol{x}^{(R)}\right)=S\left[\eta p\left(\boldsymbol{x}^{(T)}\right)\right] .
$$

Solution with Finite Basis and Integrated Squared Error

- Restrict to finite basis

$$
\begin{aligned}
\eta p\left(\boldsymbol{x}^{(T)}\right) & =\sum_{i} \alpha_{i} f_{i}\left(\boldsymbol{x}^{(T)}\right), \\
p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right) & =\sum_{i, j} \Gamma_{i, j} f_{i}\left(\boldsymbol{x}^{(R)}\right) f_{j}\left(\boldsymbol{x}^{(T)}\right) .
\end{aligned}
$$

- Determine parameters by minimizing the integrated squared error (ISE)

$$
\begin{aligned}
& I S E_{1}=\int d^{D} \boldsymbol{x}^{(R)} d^{D} \boldsymbol{x}^{(T)}\left[p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right)-\sum_{i, j} \Gamma_{i, j} f_{i}\left(\boldsymbol{x}^{(R)}\right) f_{j}\left(\boldsymbol{x}^{(T)}\right)\right]^{2} \\
& I S E_{2}=\int d^{D} \boldsymbol{x}^{(R)}\left\{p\left(\boldsymbol{x}^{(R)}\right)-\sum_{i} \alpha_{i} S\left[f_{i}\left(\boldsymbol{x}^{(T)}\right)\right]\right\}^{2} .
\end{aligned}
$$

Analytic Solution

- Define/compute

$$
\begin{aligned}
F_{i, j} & =\int d^{D} \boldsymbol{x}^{(T)} f_{i}\left(\boldsymbol{x}^{(T)}\right) f_{j}\left(\boldsymbol{x}^{(T)}\right), \\
B_{i, j} & =\int d^{D} \boldsymbol{x}^{(R)} d^{D} \boldsymbol{x}^{(T)} p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right) f_{i}\left(\boldsymbol{x}^{(R)}\right) f_{j}\left(\boldsymbol{x}^{(T)}\right), \\
& =V \int d^{D} \boldsymbol{x}^{(R)} d^{D} \boldsymbol{x}^{(T)} p_{M C}\left(\boldsymbol{x}^{(T)}, \boldsymbol{x}^{(R)}\right) f_{i}\left(\boldsymbol{x}^{(R)}\right) f_{j}\left(\boldsymbol{x}^{(T)}\right), \\
b_{i} & =\int d^{D} \boldsymbol{x}^{(R)} p\left(\boldsymbol{x}^{(R)}\right) f_{i}\left(\boldsymbol{x}^{(R)}\right) .
\end{aligned}
$$

- ISEs reduce to the matrix equation

$$
B^{T} F^{-1} B \boldsymbol{\alpha}=B^{T} F^{-1} \boldsymbol{b}
$$

- Assuming B is invertible, this reduces to $B \boldsymbol{\alpha}=\boldsymbol{b}$.
- Note: the least squares solution, ignoring smearing, is $F \boldsymbol{\alpha}=\boldsymbol{b}$.

Numeric Solution

- The quantities can be computed as

$$
\begin{aligned}
b_{i} & =\frac{V}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}\left(\boldsymbol{x}^{(R, k)}\right), \\
B_{i, j} & =\frac{V^{3}}{N_{M C}} \sum_{k=1}^{N_{M C}} f_{i}\left(\boldsymbol{x}^{(R, k)}\right) f_{j}\left(\boldsymbol{x}^{(T, k)}\right) .
\end{aligned}
$$

- Use standard methods to solve $B \boldsymbol{\alpha}=\boldsymbol{b}$.
- One is simply unfolding in the parameter space.

Uncertainty Calculation

- Define

$$
\begin{aligned}
\left(C^{b}\right)_{j, j^{\prime}} & =\frac{\delta_{j, j^{\prime}}}{N_{R}-1}\left[\frac{V^{2}}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}^{2}\left(\boldsymbol{x}^{(R, k)}\right)-\left(b_{i}\right)^{2}\right] \\
\left(C^{B}\right)_{j, k ; j^{\prime}, k^{\prime}} & =\frac{\delta_{j, j j^{\prime}} \delta_{k, k^{\prime}}}{N_{\epsilon}-1}\left[\frac{V^{6}}{N_{\epsilon}} \sum_{k=1}^{N_{\epsilon}} f_{j}^{2}\left(\boldsymbol{x}^{(M, k)}\right) f_{k}^{2}\left(\boldsymbol{x}^{(T, k)}\right)-\left(B_{j, k}\right)^{2}\right], \\
C_{i, i^{\prime}}^{\prime(B)} & =\sum_{j, j^{\prime}} C_{i, j ; i^{\prime}, j^{\prime}}^{(B)} \alpha_{j} \alpha_{j^{\prime}}
\end{aligned}
$$

- The uncertainty on $\boldsymbol{\alpha}$ is then

$$
C^{(\boldsymbol{\alpha})}=B^{-1} C^{(\boldsymbol{b})} B^{-T}+B^{-1} C^{\prime(B)} B^{-T} .
$$

- One could consider a third term $\left(B^{T} F^{-1} B\right)^{-1}$, the Hessian of the matrix eq.
- Numeric studies show this term is not a meaningful estimate of the uncertainty, and that it can be neglected.

Alternate Derivation

- Again, assume that $p\left(\boldsymbol{x}^{(R)} \mid \boldsymbol{x}^{(T)}\right)=V p\left(\boldsymbol{x}^{(R)}, \boldsymbol{x}^{(T)}\right)$.
- Substitute $\eta p\left(\boldsymbol{x}^{(T)}\right)=\sum_{i} \alpha_{i} f_{i}\left(\boldsymbol{x}^{(T)}\right)$ into the Fredholm integral equation:

$$
p\left(\boldsymbol{x}^{(R)}\right)=V \sum_{i} \alpha_{i} \int d^{D} \boldsymbol{x}^{(T)} p_{M C}\left(\boldsymbol{x}^{(T)}, \boldsymbol{x}^{(R)}\right) f_{i}\left(\boldsymbol{x}^{(T)}\right) .
$$

- Applying the operator $\int d^{D} \boldsymbol{x}^{(R)} f_{j}\left(\boldsymbol{x}^{(R)}\right)$ to both sides yields

$$
\int d^{D} \boldsymbol{x}^{(R)} f_{j}\left(\boldsymbol{x}^{(R)}\right) p\left(\boldsymbol{x}^{(R)}\right)=V \sum_{i} \alpha_{i} \int d^{D} \boldsymbol{x}^{(R)} d^{D} \boldsymbol{x}^{(T)} p_{M C}\left(\boldsymbol{x}^{(T)}, \boldsymbol{x}^{(R)}\right) f_{i}\left(\boldsymbol{x}^{(T)}\right),
$$

- Using the definitions of \boldsymbol{b} and B, this reduces to

$$
b=B \alpha
$$

