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 Measure WW/WZ  lnjj 

 Why interested in dibosons? 

 Verification of SM 

 New Physics in anomalous triple 

gauge couplings (TGC)  

 Step towards measurement of WW 

scattering (how is unitarity restored) 
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Why this measurement? 

 Advantages compared to fully leptonic decays 

 Higher sxBF  (lnjj ~6x larger than lnln) 

 Better kinematic constraints (only 1 n instead of 2) 

 Disadvantage compared to fully leptonic: 

 Much higher backgrounds 

 Wjj from WW and Zjj from WZ can’t be distinguished due to the 
resolution of the dijet mass 



 

 

 

 

 

 

 

 

 

 Biggest problem:  measuring signal on top of the 

enormous W+jets background  (S/B<3%) 

 Understanding mjj shape of backgrounds is critical 
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Analysis strategy 
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• Trigger on charged lepton 

 

 

 

 

• Require missing ET 

 

 

• Look for two jets and form 

invariant mass 

• Fit signal+background dijet-

mass shape to extract diboson 

cross-section 



 W/Z+jets 

 Alpgen+Herwig+Jimmy 

 W+Heavy Flavor modeled separately 

 ttbar 

 MC@NLO+Herwig 

 Single-top 

 MC@NLO 

 Multi-jet 

 Data-driven – later in this talk 

 

 Signal (WW/WZ) 

 Herwig (LO) 

 Normalization from MCFM (NLO) 
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Background and Signal Model 

Normalizations 

from fit to data 



 4.7 fb-1 at 7 TeV 

 Use single-electron/muon triggers 

 

 

 1 isolated lepton with pT>25 GeV 

 Veto event if extra lepton with pT>20 GeV 

 pT(j1)> 30 GeV,  pT(j2)> 25 GeV 

 Veto event if >2 jets with pT>20 GeV 

 mT > 40 GeV 

 Missing ET>30 GeV 

 Lepton matched to primary vertex 

  Df(MET,j1)>0.8 

 DR(j,l)>0.5 

  Dh(j1,j2)<1.5 and DR(j1,j2)>0.7 
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Event Selection 

Reduce ttbar 

Reduce multi-jet 



 Jet pT measured to ~15% 

in analysis phase-space 

 Jet energy scale (JES) 

uncertainty 3-5% 

 Includes effect from pile-up 
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Jet Performance 

ATLAS-CONF-2013-004 



 Multi-jet background is due to fake 

leptons (jets faking electrons, or 

heavy-flavor jets decaying semi-

leptonically) 

 Control regions enhanced in multi-

jet fakes: 

 Electron:  fake electron without 

Transition Radiation signal 

 Muon: invert muon vertex-

matching requirement 

 Obtain MET templates from 

control regions 

 Fit full MET distribution to extract 

multi-jet component 

 Simultaneously extract scale-

factors for W/Z+jets used for data-

MC comparison 
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Data-driven multi-jet estimate 



 Breakdown of expected backgrounds 

 Expected signal+background agrees with data 

 

 

 

 

 

 

 

 

 

(errors in table are from cross-section uncertainties only) 

 

 8 Brian Lindquist 

Data vs expectation 



 Plots show kinematic distributions of jets forming the W/Zjj 

candidate 

 Data well described by MC, within systematic uncertainties 

 Yellow error band gives effect of Jet Energy scale (JES) only 
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MC-data agreement 



 Dijet-mass spectrum well 

described by 

signal+background model 

 

 

 W/Z+jets background  (no 

true W/Zjj) peaks close 

to the signal (true W/Zjj) 
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MC-data agreement (2) 



 Perform binned maximum-likelihood fit to mjj in interval [25-250] GeV. 

 Fit separately and simultaneously the e and m channels 

 

 

 

 

 

 

 

 

 

 

 3 backgrounds:  W/Z+jets, top, and multi-jet, allowed to float, subject 
to log-normal constraints  large sidebands allows backgrounds to 
be constrained 

 Fit for m=s(fitted)/s(SM),         s(SM) at NLO using MCFM 
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Fitting procedure 

Histograms 

normalized 



 Systematics can affect both the shapes and normalization of 

histograms in the mjj fit 

 Shape systematics: float nuisance parameters aj that interpolate 

between nominal and modified histogram shapes 

 

Shape 

 MC statistics (mainly W/Z+jets)  -- 18% 

 Jet energy scale – 12% 

 Jet energy resolution – 6% 

 Multi-jet shape/normalization – 5% 

Normalization 

 W/Z+jets normalization – 11% 

 Top normalization – 6% 

 Luminosity  -- 3.9% 

Total systematics:  28% 
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Incorporation of Systematics 

 MC statistics and JES 

systematic not profiled 

in fit; instead, varied 

up and down in a toy 

MC method 



  s(fitted)/s(SM)  =  1.13 ± 0.34 

 σ(WW+WZ) = 72 ± 9 (stat) ± 15 (syst) ± 13 (MC stat) pb 

 SM prediction: s = 63.4 ± 2.6 pb 
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Fit result 
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Background subtracted 



 Calculate significance 

using toy MC method 

 Use profile-likelihood ratio 

l as test-statistic 

 Compute l for both bkg-

only and sig+bkg toys to 

estimate expected 

significance 

 Includes systematics 

 

 Expected:  3.0 sigma 

 Observed:  3.3 sigma 
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Significance 



 Evidence (3.3 sigma) for WW/WZ process in the 

challenging semileptonic channel at ATLAS 

 

 Signal/SignalSM  =  1.13 ± 0.34 

 σ(WW+WZ) = 72 ± 9 (stat) ± 15 (syst) ± 13 (MC stat) pb 

 Consistent with SM: 63.4 ± 2.6 pb 
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Summary 
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Backup 



 Systematics can affect both the shapes and normalization of 

histograms in the mjj fit 

 Shape systematics: float nuisance parameters aj that interpolate 

between nominal and modified histogram shapes 
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Incorporation of Systematics 

 JES 

systematic 

not fitted; 

instead, 

varied up 

and down in 

toys 
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Systematics table 

Mainly W+jets 

MC statistics 


