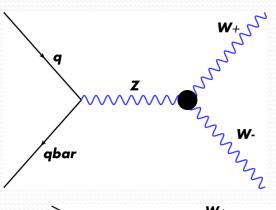
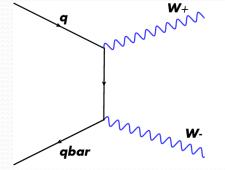
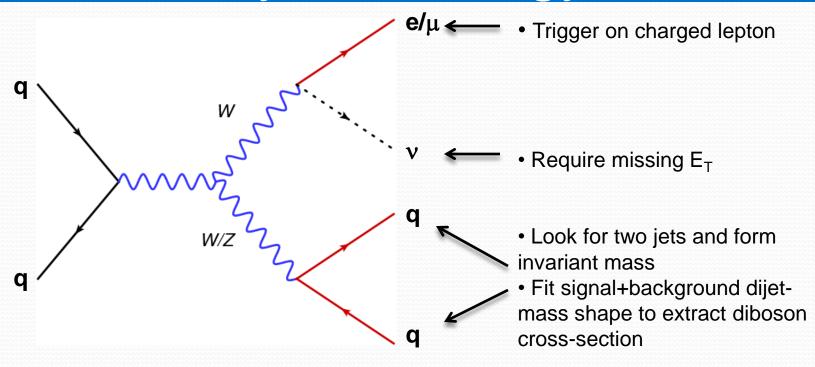


Measurement of WW and WZ production with one vector boson decaying hadronically at ATLAS


ATLAS-CONF-2012-157


Brian Lindquist Stony Brook University On Behalf of the ATLAS Collaboration

> **DIS 2013** April 23, 2013


Why this measurement?

- Measure WW/WZ \rightarrow Ivjj
- Why interested in dibosons?
 - Verification of SM
 - New Physics in anomalous triple gauge couplings (TGC)
 - Step towards measurement of WW scattering (how is unitarity restored)
- Advantages compared to fully leptonic decays
 - Higher σxBF (Ivjj ~6x larger than IvIv)
 - Better kinematic constraints (only 1 v instead of 2)
- Disadvantage compared to fully leptonic:
 - Much higher backgrounds
 - W→jj from WW and Z→jj from WZ can't be distinguished due to the resolution of the dijet mass

Analysis strategy

- Biggest problem: measuring signal on top of the enormous W+jets background (S/B<3%)
 - Understanding m_{ii} shape of backgrounds is critical

Background and Signal Model

- W/Z+jets
 - Alpgen+Herwig+Jimmy
 - W+Heavy Flavor modeled separately
- ttbar
 - MC@NLO+Herwig
- Single-top
 - MC@NLO
- Multi-jet
 - Data-driven later in this talk
- Signal (WW/WZ)
 - Herwig (LO)
 - Normalization from MCFM (NLO)

Normalizations from fit to data

Event Selection

- 4.7 fb⁻¹ at 7 TeV
- Use single-electron/muon triggers

- 1 isolated lepton with p_T>25 GeV
- Veto event if extra lepton with $p_T > 20 \text{ GeV}$
- p_T(j₁)> 30 GeV, p_T(j₂)> 25 GeV
- Veto event if >2 jets with p_T>20 GeV ←
- m_T > 40 GeV
- Missing E_T>30 GeV
- Lepton matched to primary vertex
- ∆φ(MET,j1)>0.8
- ∆R(j,ℓ)>0.5
- ∆η(j1,j2)<1.5 and ∆R(j1,j2)>0.7

Reduce ttbar

Reduce multi-jet

Jet Performance

- Jet p_T measured to ~15% in analysis phase-space
- Jet energy scale (JES) uncertainty 3-5%

ATLAS-CONF-2013-004

Anti-k, R = 0.4, EM+JES + in situ correction

 10^{2}

2×10²

Data 2011, $\sqrt{s} = 7$ TeV, L dt = 4.7 fb⁻¹

0.12

0.1

0.08

0.06

0.04

0.02

20

30 40

n = 0.5

Fractional JES uncertainty

Includes effect from pile-up

Total uncertainty

Baseline in situ JES

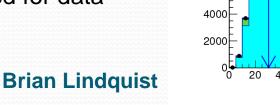
Close-by jet, $\Delta R = 0.7$

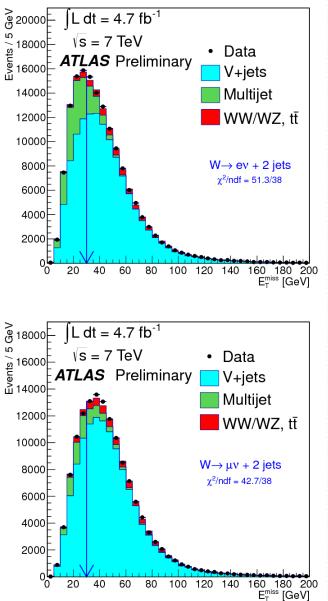
Flav. composition, inclusive jets

Flav. response, inclusive jets Pileup, average 2011 conditions

Brian Lindquist

 2×10^{3}


 p_{τ}^{jet} [GeV]


ATLAS Preliminary

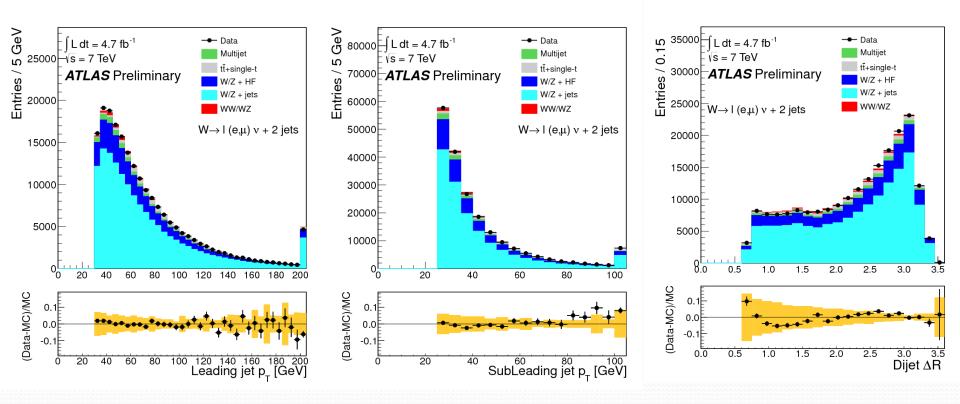
10³

Data-driven multi-jet estimate

- Multi-jet background is due to fake leptons (jets faking electrons, or heavy-flavor jets decaying semileptonically)
- Control regions enhanced in multijet fakes:
 - Electron: fake electron without Transition Radiation signal
 - Muon: invert muon vertexmatching requirement
- Obtain MET templates from control regions
- Fit full MET distribution to extract multi-jet component
 - Simultaneously extract scalefactors for W/Z+jets used for data-MC comparison

7

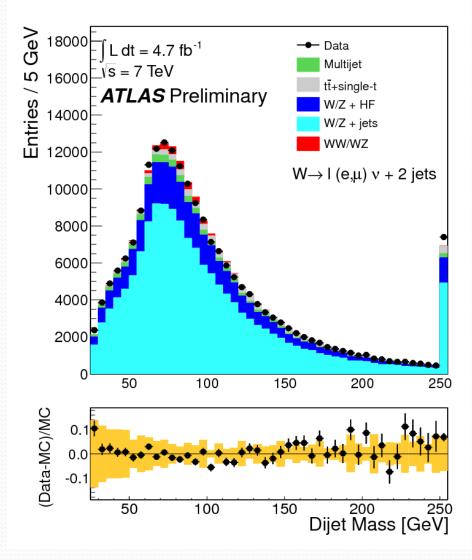
Data vs expectation


- Breakdown of expected backgrounds
- Expected signal+background agrees with data

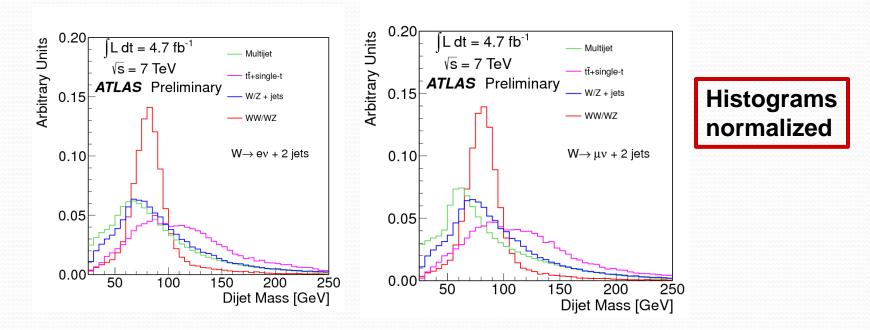
Process	е	μ
WW	1250 ± 60	1360 ± 70
WZ	276 ± 19	306 ± 21
W + light jets	$(67 \pm 13) \times 10^3$	$(71 \pm 14) \times 10^3$
W/Z + heavy flavor jets	$(19 \pm 4) \times 10^3$	$(20 \pm 4) \times 10^3$
tī	$(24.8 \pm 2.5) \times 10^2$	$(24.6 \pm 2.5) \times 10^2$
single top	$(13.5 \pm 1.3) \times 10^2$	$(13.7 \pm 1.4) \times 10^2$
multijet	$(50 \pm 15) \times 10^2$	$(39 \pm 12) \times 10^2$
Z + jets	$(35 \pm 7) \times 10^2$	$(32 \pm 6) \times 10^2$
$W\gamma + ZZ$	383 ± 19	464 ± 23
Total SM prediction	$(100 \pm 14) \times 10^3$	$(103 \pm 15) \times 10^3$
Total Data	100055	103627
Signal efficiency for $60 < m_{ii} < 120 \text{ GeV}$	0.7%	0.9%
Signal to background ratio for $60 < m_{jj} < 120 \text{ GeV}$	2.6%	2.8%

(errors in table are from cross-section uncertainties only)

MC-data agreement


- Plots show kinematic distributions of jets forming the W/Z→jj candidate
- Data well described by MC, within systematic uncertainties
- Yellow error band gives effect of Jet Energy scale (JES) only

MC-data agreement (2)


 Dijet-mass spectrum well described by signal+background model

 W/Z+jets background (no true W/Z→jj) peaks close to the signal (true W/Z→jj)

Fitting procedure

- Perform binned maximum-likelihood fit to m_{ii} in interval [25-250] GeV.
- Fit separately and simultaneously the e and μ channels

- 3 backgrounds: W/Z+jets, top, and multi-jet, allowed to float, subject to log-normal constraints → large sidebands allows backgrounds to be constrained
- Fit for $\mu = \sigma$ (fitted)/ σ (SM), σ (SM) at NLO using MCFM

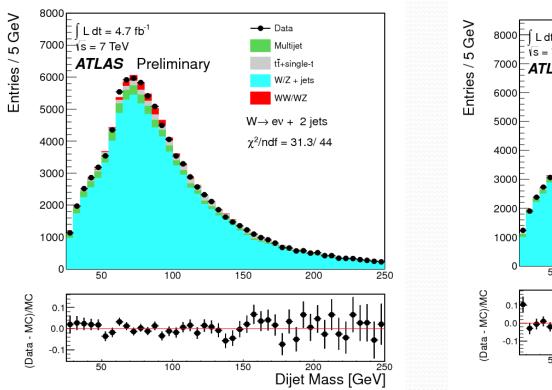
Incorporation of Systematics

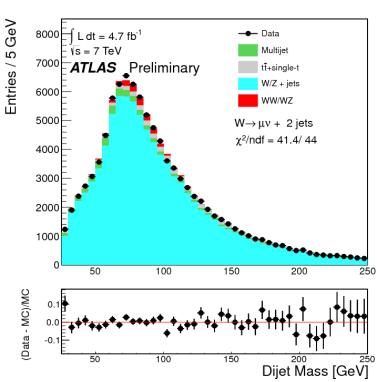
- Systematics can affect both the shapes and normalization of histograms in the m_{jj} fit
- Shape systematics: float nuisance parameters α_j that interpolate between nominal and modified histogram shapes

<u>Shape</u>

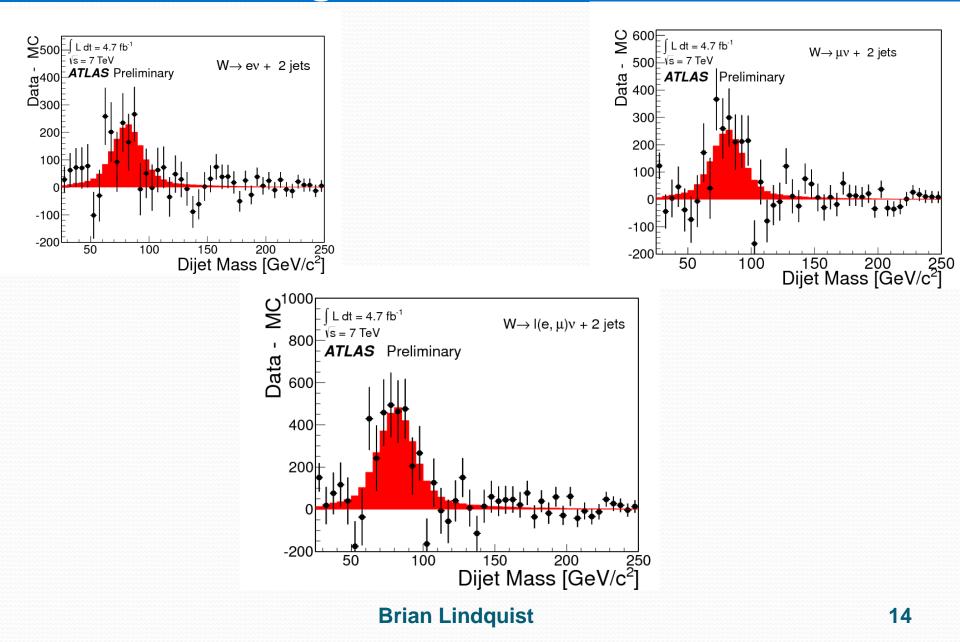
- MC statistics (mainly W/Z+jets) -- 18%
- Jet energy scale 12%
- Jet energy resolution 6%
- Multi-jet shape/normalization 5%

Normalization

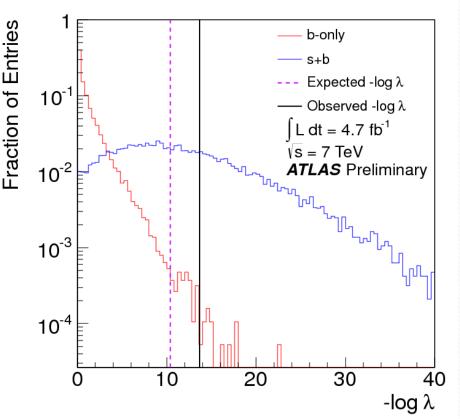

- W/Z+jets normalization 11%
- Top normalization 6%
- Luminosity -- 3.9%


Total systematics: 28%

 MC statistics and JES systematic not profiled in fit; instead, varied up and down in a toy MC method


Fit result

- $\sigma(\text{fitted})/\sigma(\text{SM}) = 1.13 \pm 0.34$
- σ(WW+WZ) = 72 ± 9 (stat) ± 15 (syst) ± 13 (MC stat) pb
- SM prediction: $\sigma = 63.4 \pm 2.6$ pb


Background subtracted

Significance

- Calculate significance using toy MC method
- Use profile-likelihood ratio
 λ as test-statistic
- Compute λ for both bkgonly and sig+bkg toys to estimate expected significance
- Includes systematics

Expected: 3.0 sigmaObserved: 3.3 sigma

Summary

- Evidence (3.3 sigma) for WW/WZ process in the challenging semileptonic channel at ATLAS
- Signal/SignalSM = 1.13 ± 0.34
- σ(WW+WZ) = 72 ± 9 (stat) ± 15 (syst) ± 13 (MC stat) pb
- Consistent with SM: 63.4 ± 2.6 pb

Incorporation of Systematics

- Systematics can affect both the shapes and normalization of histograms in the m_{ii} fit
- Shape systematics: float nuisance parameters α_i that interpolate between nominal and modified histogram shapes

$$h_{jk}(x) = h_{jk}^0(x) + \alpha_j \left(h_{jk}^+(x) - h_{jk}^0(x) \right), \ \alpha_j \ge 0 \,,$$

JES	Source of Systematic	Туре	Profiled
systematic	W/Z+jets rate	Norm.	yes
not fitted;	W/Z+jet modeling	Shape	yes
	$t\bar{t}$ +single t rate	Norm.	yes
instead,	ISR/FSR for $t\bar{t}$	Norm. and Shape	yes
varied up	multijet rate	Norm.	no
	multijet shape	Shape	no
and down in	PDF all processes but multijet	Norm.	no
toys	JES uncertainty all processes but multijet	Shape	no
	JES uncertainty signal	Norm.	no
	JER uncertainty background except multijet	Shape	yes
	JER uncertainty WW/WZ	Norm. and Shape	yes
	lepton reconstruction all processes except multijet	Norm.	no
	ISR/FSR for WW/WZ	Norm. and Shape	yes
	MC statistics all processes	N.A.	no

 $h_{ik}^{0}(x) - \alpha_{j} \left(h_{ik}^{-}(x) - h_{ik}^{0}(x) \right), \ \alpha_{j} < 0.$

Brian Lindquist

Systematics table

		Source	$\Delta \sigma / \sigma [\%]$
Mainly W+jets		Data Statistics	±12
MC statistics—		MC Statistics	±18
	\rightarrow	W/Z+jets normalization	±11
		W/Z jets shape variation	±5
		Multijet shape and normalization	±5
	\rightarrow	Top normalization	±6
		Top ISR/FSR	±1
		Jet energy scale (all samples)	±12
	\rightarrow	Jet energy resolution (all samples)	±6
		Lepton reconstruction (all samples)	±1
		WW/WZ ISR/FSR	±2
	\rightarrow	JES uncertainty on WW/WZ normalization	±6
		PDF (all samples)	±2
		Luminosity	±3.9
	_	Total systematics	±28