The spin structure function of the proton g_1^p measured at COMPASS

Vincent Andrieux

 $\label{eq:CEA-Saclay Irfu/SPhN} CEA-Saclay \mbox{ Irfu/SPhN} on behalf of the COMPASS Collaboration$

Outline

Introduction

- Motivations
- Polarised DIS
- COMPASS spectrometer
- DIS campaigns
- 2 Experimental technique
 - Double spin asymmetry
 - COMPASS target

Results 3

- COMPASS kinematic domain
- Systematics
- Asymmetry & Spin structure function

Conclusions

Introduction

Results

Conclusions

What is the nucleon spin made up of?

Spin contribution

Spin sum rule :

 $S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^g + L_z^q$

where $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

This talk focuses on the COMPASS polarised DIS campaigns on a proton target (2007 & 2011)

Introduction	Experimental technique	Results 000000	Conclusions
Polarised	deep inelastic scattering	: Access to g_1	

Kinematic variables	
$Q^2 = -q^2 = -(k-k')^2$	virtuality of the photon
$x_{Bj} = rac{Q^2}{2M_p u}$	Bjorken variable

イロト イ部ト イヨト イヨト 三日

Inclusive cross section

$$\frac{d^2 \sigma}{dx_{Bj} dQ^2} = \underbrace{c_1 F_1(x_{Bj}, Q^2) + c_2 F_2(x_{Bj}, Q^2)}_{unpolarised structure functions} + \underbrace{c_3^{s, s} g_1(x_{Bj}, Q^2) + c_4^{s, s} g_2(x_{Bj}, Q^2)}_{polarised structure functions}$$

Beam and target polarised ightarrow Access to g_1

💛 Vincent Andrieux (CEA-Saclay)

🕗 Vincent Andrieux (CEA-Saclay)

April 23, 2013

5/15

Introduction ○○○●	Experimental technique 00	Results 000000	Conclusions
DIS campaigns			

Years	Target	Beam Energy	No. of DIS events ($ imes$ 10 ⁶)
2002-2006	⁶ LiD	160 GeV	135.1
2007	NH ₃	160 GeV	85.3
2011	NH ₃	200 GeV	78

- Get statistics at low x_{Bi} for longitudinally polarised protons
- Balance measurements between proton and deuteron data for analyses using both
 - \rightarrow Flavour separation: Δq poorly known at low x_{Bj}
 - $\rightarrow \text{ Bjorken sum rule: projected precision :} \\ \int_{0.003}^{0.7} g_1^{NS} dx : \pm 0.006(stat.) \pm 0.011(syst.)$
- Extend the kinematic domain for ΔG extraction via global fits

Introduction Experimental technique Results Conclusions

g_1 extraction from double spin asymmetry

Double spin asymmetry

$$A_{\parallel} = \frac{d\sigma^{\rightleftharpoons} - d\sigma^{\rightrightarrows}}{d\sigma^{\rightrightarrows} + d\sigma^{\rightrightarrows}} = D(A_1 + \eta A_2)$$

where D and η are kinematic variables.

COMPASS case :
$$\eta \propto rac{\mathsf{x}_{Bj}}{Q} \sim 0$$

Virtual photon-nucleon asymmetry

$$A_1 = rac{g_1 - \gamma^2 g_2}{F_1} \sim rac{g_1}{F_1} \qquad A_2 = \gamma rac{g_1 + g_2}{F_1} \sim 0$$

where $\gamma \propto rac{\mathbf{x}_{Bj}}{Q}$ is a kinematic variable (small at COMPASS)

$$\Rightarrow A_{\parallel} \approx D \cdot \frac{g_1}{F_1}$$

А

	Experimental technique	Conclusions
	00	
COMPASS targ	et	

$$\frac{A_{\parallel}}{D} = \frac{1}{|P_B P_T| f D} \left(\frac{N^{\rightleftharpoons} - N^{\rightrightarrows}}{N^{\rightleftharpoons} + N^{\rightrightarrows}} \right)$$

Simultaneous recording of the two spin states in oppositely polarised target cells

COMP	ASS target		

	Experimental technique	Conclusions
	0	
COMPASS targ	et	

$$\frac{A_{\parallel}}{D} = \frac{1}{|P_B P_T| f D} \left(\frac{N^{e} - N^{e}}{N^{e} + N^{e}} \right)$$

Simultaneous recording of the two spin states in oppositely polarised target cells

	Experimental technique	Conclusions
	00	
COMPASS	target	

$$\frac{A_{\parallel}}{D} = \frac{1}{|P_B P_T| f D} \left(\frac{N^{e} - N^{e}}{N^{e} + N^{e}} \right)$$

Simultaneous recording of the two spin states in oppositely polarised target cells

Vincent Andrieux (CEA-Saclav)

▲ 문 ▶ ▲ 문 ▶

	Experimental technique	Results	Conclusions
		0000	
C			

Systematic error

- Two kinds of contributions:
 - Multiplicative
 - Additive

$$A_1^{1\gamma} = \frac{1}{fDP_BP_T}A^{raw} - \left(A_1^{RC} + \mathcal{O}(\frac{x}{Q}A_2) + \mathcal{O}(A_{False})\right)$$

	Beam polarisation	dP_B/P_B	5%
Multiplicative	Target polarisation	dP_T/P_T	5%
variables	Depolarisation factor	dD/D	2 - 3 %
error, ΔA_1^{mult}	Dilution factor	df / f	2 %
	Total		$\Delta A_1^{mu/t} \simeq 0.08 A_1$
Additive	Transverse asymmetry	$\mathcal{O}(x/Q) \cdot \Delta A_2$	$10^{-3} - 10^{-2}$
variables	Rad. corrections	ΔA_1^{RC}	$0.1 \cdot Max(A_{1, incl}^{RC} , A_{1, hadr}^{RC}) = 10^{-5} - 10^{-3}$
error, ΔA_1^{add}	False asymmetry	ΔA_{false}	$< 0.34: 0.84 \cdot \Delta A_1^{stat}$ (Dominant)

• 1 pull distribution per x-bin • 1 entry \sim 48h of data with 1 field rotation

イロト イヨト イヨト イヨト

Introduction 0000

Experimental technique

Results

Conclusions

COMPASS Proton results at 200 GeV and 160 GeV

$$g_1(x_{Bj}) = rac{F_2}{2 \, x_{Bj} \, (1+R)} A_1$$

• SMC parametrisation of F_2

SMC PRD 55 (1998) 112001

•
$$\mathsf{R} = \frac{\sigma^L}{\sigma^T}$$

COMPASS PLB **647** (2007) 330

- Statistical errors (2007 and 2011) 2-3 times smaller than 2 years of SMC.
- Lower x_{Bj} value reached

 \Rightarrow No significant dependence on Q^2 observed

イロト イヨト イヨト イヨト

Introduction Experimental technique Results Conclusions 000000 Indirect measurement of ΔG , g_1^p : Q^2 evolution

World data $g_1^p(x)$ as a function of Q^2 in bins of x

- COMPASS 160 GeV
- COMPASS 200 GeV
- NEW data point at very low x

New inputs for global fits and indirect ΔG extraction

LSS'05 fit at next-to-leading order PRD 73 (2006) 034023

	Experimental technique	Conclusions
Conclusions		

- $\rightarrow\,$ Improvement of statistics with the new results of $g_1^{\,\rho}$ at 200 GeV
- ightarrow Extension of the measured region to lower x_{Bj} and larger Q^2
- $\rightarrow\,$ New inputs and constraints for global fits

Outlook

- Update of the Bjorken Sum Rule
- Indirect measurement of ΔG via g_1 COMPASS global fit
- Extraction of $A_{1,p}^{\pi^+}$, $A_{1,p}^{\pi^-}$, $A_{1,p}^{K^+}$ and $A_{1,p}^{K^-}$
- Extraction of Δq per flavour

	Experimental technique		Conclusions
0000	00	000000	

BACKUP

æ

★ E ► < E ►</p>

Introduction	Experimental technique	Results	Conclusions
0000	00	000000	
Triggers con	tribution		

- Inclusive sample: largest contribution
- Large x_{Bj} : Equal contribution from semi-inclusive & inclusive sample
- Large Q^2 : Largest contribution from the semi-inclusive sample

