

Forward Neutral Pion Cross Section and Spin Asymmetry Measurements at STAR

S. Gliske, for the STAR Collaboration

Argonne National Laboratory

XI International Workshop on Deep-Inelastic Scattering and Related Subjects

Marseille, France April 23rd, 2013

Motivation: $\Delta g(x)$ and pQCD

- The gluon helicity distribution is one contributor to the total nucleon spin.
- ▶ While initially measured via (SI)DIS, measuring A_{LL} in polarized $pp \rightarrow \pi^0 + X$
 - Provides complimentary access, both kinematically and in relation to partonic sub-processes
 - Has significant effects on global $\Delta g(x)$ fits
- The global fits of $\Delta g(x)$ are poorly constrained at x < 0.05.
- How to reach $\Delta g(x)$ at lower x?
 - Measure A_{LL} farther forward (η in 1-2), i.e. the STAR endcap electromagnetic calorimeter (EEMC)
 - ▶ Main subprocess is now gq scattering, with small x of the gluon.
- First step: measure $pp \rightarrow \pi^0 + X$ cross section and compare with pQCD.
- π^0 mesons are also a background to the prompt photon + jet, another channel to access $\Delta g(x)$

DSSV+/DSSV++, arXiv:1304.0079

10⁻¹ x

10 -2

Transverse Spin Asymmetry A_N

- A_N expected to
 - ▶ Increase with *x_F*
 - Go to zero in the limit of $p_T \rightarrow 0$
 - Scale as $1/p_T$ at high p_T .
- STAR EEMC has larger dynamic range in p_T and covers an unmeasured (p_T, x_F) region
 - $5 < p_T < 12 \text{ GeV}, 0.06 < x_F < 0.27, \text{ and } 0.8 < \eta < 2.0$
- A_N will be small due to small x_F , but may show p_T dependence.

- ► Non-zero A_N for x_F > 0 observed over wide energy range.
- Includes contributions from leading twist Sivers and Collins effects or higher twist effects.

STAR's Endcap Electromagnetic Calorimeter

- ▶ Nucl. Instrum. Meth. A 499 (2003) 740.
- Lead/scintillator sampling EM calorimeter
- Covers $1.09 < \eta < 2$ over full azimuth
- ▶ 720 optically isolated projective towers ($\approx 22X_0$)
- 2 pre-shower, 1 post-shower layers, and an additional shower max. detector (SMD)
- Trigger involves thresholds on the maximum tower energy and the 3 × 3 patch of surrounding towers.

- Scintillating strip SMD
 - ϕ segmented into 12 sectors
 - Two active planes
 - 288 strips per plane
- Full ϕ coverage–no gaps
- Resolution of a few mm

Particle Reconstruction

- EM Particle (γ , e^{\pm} , etc.) Reconstruction Procedure
 - 1. Identify clusters in the u and v strips
 - 2. Determine which u and v clusters to associate with incident particles
 - 3. Compute energy of incident particle using the towers.
- SMD clusters are found by
 - Smoothing the histogram using the method of J. Tukey (TH1::Smooth).
 - ► Identify clusters as a strip above an energy threshold, with ±3 strips having monotonically decreasing energy.
 - Cluster position is set to energy-weighted mean position
- We expect cluster to be larger than $1 \pm 3 = 7$ strips, but
 - Expect central strip position & energy to be sufficiently correlated to cluster position & energy.
 - Correlation increased by smoothing
- SMD response in fairly clean π^0 candidate (data) event is plotted on the right.
 - Blue histograms show energy response per strip.
 - ► Inverted red triangles represent clusters, drawn at x=mean, y=10% cluster energy.
- General reconstruction difficulties include
 - Upstream material: π^0 opening angle on the same order as opening angle for $\gamma \to e^+e^-$
 - Single particle sometimes looks like two particles, and vice versa

Data/Monte Carlo Comparison

- Plots shown for $\pi^0 p_T$ in 8-9 GeV
- Pythia tune 329, "Pro-pT0"
- Agreement generally good for $\pi^0 p_T > 6 \text{ GeV}$
- ► 5 < p_T < 6 GeV usable, but has higher systematic uncertainty
- ► Sampled lumi. of 8 pb⁻¹

Background Subtraction

► There exist a variety of backgrounds, both due to physics and reconstruction; for example,

- ▶ $\gamma \rightarrow e^+e^-$ conversions, and π^0 candidate could be γe^+ , γe^- , e^+e^- , etc.
- Reconstructing the wrong number of photons in an event
- Sufficient to use three template functions to model signal + background
 - π^0 signal, direct conversion background, all other backgrounds
- ► Template function parameters fixed by fitting functions to reconstructed Pythia Monte Carlo.
- Normalizations of the templates and an energy scale factor determined by fitting template functions to the data

$$f_T(M_{\gamma\gamma}) = \sum_{i=1}^3 w_i f_i(M_{\gamma\gamma}/\alpha)$$

Computing the Cross Section

• The unfolded number of π^0 s per p_T bin is computed as

$$N_i^{(\pi^0)} = \sum_j S_{i,j}^{-1} f_j s_j N_j^{(\text{raw})}$$

- ► *S* is the smearing matrix
- f accounts for π^0 s smeared into the p_T range from outside
- s is the signal fraction
- ► $N^{(\text{raw})}$ is the raw number of counts in the π^0 peak window.
- The cross section is computed as

$$E\frac{d^{3}\sigma}{d\boldsymbol{p}^{3}} = \frac{1}{2\pi}\frac{1}{\Delta\eta}\frac{1}{\Delta p_{T}}\frac{1}{\langle p_{T}\rangle}\frac{1}{\epsilon}\frac{1}{\text{B.R.}}\frac{N^{(\pi^{0})}}{\mathcal{L}}$$

- Physical η is in (0.8, 2.0), thus $\Delta \eta = 1.2$.
- The p_T bin width, Δp_T , varies between 1 and 4 GeV.
- The total efficiency ϵ is the product of the trigger and reconstruction efficiencies.
- The branching ratio for $\pi^0 \rightarrow \gamma \gamma$ is 0.98823 (PDG)

Cross Section Uncertainties

- ► The statistical uncertainty is the Poisson uncertainty on the raw number of counts
- The following p_T dependent systematic uncertainties are included in the analysis
 - On the signal fraction
 - Uncertainty on template function parameters, energy scale and signal weight
 - Uncertainty on integrals to determine the fraction within the signal (peak) region
 - Uncertainty based on the fit residual, related to accuracy of template shapes
 - On the unfolded number of π^0 s
 - ▶ Uncertainty on the smearing matrix *S* and factor *f* (related to Monte Carlo statistical uncertainty)
 - Uncertainty related to effectiveness of accounting for "smeared in" background
 - On the final cross section
 - Uncertainty on $\langle p_T \rangle$, assuming EEMC resolution is $\delta E/E = 0.16/\sqrt{E}$
 - Uncertainties on reconstruction and trigger efficiencies (related to Monte Carlo statistical uncertainty)
 - Overall energy scale uncertainty of 3%—dominant systematic uncertainty
- All uncertainties are propagated analytically

Cross Section Preliminary Results

- ► Theory curve from private communication with Marco Stratmann
 - Uses CTEQ65M distribution functions and DSS fragmentation function
 - Does not include propagated uncertainty on distribution and fragmentation functions
- ▶ Points plotted at Lafferty-Wyatt points, by fitting entire result to an exponential.
 - Error bars indicate statistical uncertainty (barely visible)
 - Error boxes indicate systematic systematic uncertainty.
- Experimental uncertainties are on the order of the theoretical scale uncertainty.
- Result covers an unmeasured region of phase space
 - It is observed that the cross section for $0.8 < \eta < 2.0$ is not much different than that for $0 < \eta < 1$.

Analysis for Longitudinal Spin Asymmetries

• The raw asymmetries are computed from number of π^0 candidates within $0.1 < M_{\gamma\gamma} < 0.2$ GeV.

- Luminosity weighted polarizations are $\langle P_B \rangle = 0.56$, $\langle P_Y \rangle = 0.59$, and $\langle P_B P_Y \rangle = 0.33$.
- Asymmetries corrected for background using

$$A^{sig} = \frac{1}{s} \left(A^{raw} - (1-s)A^{bkg} \right),$$

► Background asymmetries are estimated from mass sideband regions and are observed to be within 1σ of zero with $\sigma \approx 0.01$.

Preliminary Results for Longitudinal Spin Asymmetries

- Preliminary results shown at SPIN'08 use older procedures
 - Significant time invested in improving simulations, reconstruction code, and background subtraction procedure.
- Main message unchanged
- Systematics well under control
- First measurement in this η range
- Consistent with predictions
- May have some impact due to lower Bjorken-x coverage
- Additional statistics already recorded at STAR during other running years.
 - Need effort verifying and improving simulations for the other years.

Transverse Spin Asymmetry A_N Analysis

Raw asymmetry

$$\mathcal{E}(\phi) \quad = \quad \frac{\sqrt{\alpha^{\uparrow}\beta^{\downarrow}} - \sqrt{\alpha^{\downarrow}\beta^{\uparrow}}}{\sqrt{\alpha^{\uparrow}\beta^{\downarrow}} + \sqrt{\alpha^{\downarrow}\beta^{\uparrow}}}$$

• Fit
$$\mathcal{E}(\phi)$$
 to $p_0 + \varepsilon \sin \phi$

- The background is subtracted from ε using same procedure as for longitudinal asymmetries.
 - Background asymmetries again within 1σ of zero with $\sigma \approx 0.01$.
- ► A_N obtained by scaling background subtracted ε by one over the luminosity weighted polarization.
- Systematics include
 - Uncertainty on the signal fraction
 - Uncertainty on the background asymmetry estimate
 - ϕ -dependent single beam backgrounds.

Transverse Spin Asymmetry A_N Preliminary Results

- Results consistent with zero for both x_F < 0 and x_F > 0
- ► Sensitivity not great enough to discern shape of *p*_T dependence
- Results lie in unmeasured region of (x_F, p_T) phase space
- Would like to include theory curves for comparison before publication

Conclusions and Outlook

► Results represent measurements in previously unmeasured kinematic regions

- First $pp \to \pi^0 + X$ cross section within this η range
- A_{LL} reaches lower Bjorken- x_2 than published measurements
- A_N covers unmeasured (x_F, p_T) region
- ▶ Publication of these results is currently under review within the collaboration.
- ► These results demonstrate reconstruction with the EEMC is in a mature state.
- ► Thus far only 200 GeV data from one year analyzed
 - Several more years of data to analyze
 - More recent years have higher integrated luminosity and less upstream material
 - Data available for both \sqrt{s} at 200 GeV and 500 GeV.
 - Just need to finalize some details regarding the simulations.
- The STAR EEMC is also sensitive to other final states, such as prompt photons and η 's
- These results open the door for many STAR EEMC results to come.

Backup Slides

Additional Template Fit Results

