A N_{F}-Dependent VFNS for Heavy Flavors: Merging the FFNS and VFNS
A. Kusina ${ }^{1}$, F. I. Olness, I. Schienbein, J. Y. Yu, T. Stavreva, K. Kovařík, T. Ježo
${ }^{1}$ Southern Methodist University, Dallas, TX 75275, USA
DIS 2013, 22-26 April 2013, Marseille, France

- Motivations
- Generalized VFNS
- Results

■ Summary

Problems with FFNS and VFNS

■ Doing global analyses we want to include different data in broad energy range.
\boldsymbol{x} FFNS: can't be used for LHC energies $\left(Q \gg m_{Q}\right.$ unresummed logarithms $\log Q / m_{Q}$)

Problems with FFNS and VFNS

- Doing global analyses we want to include different data in broad energy range.
\boldsymbol{x} FFNS: can't be used for LHC energies $\left(Q \gg m_{Q}\right.$ unresummed logarithms $\log Q / m_{Q}$)
it's like driving on first gear on a highway...

Problems with FFNS and VFNS

■ Doing global analyses we want to include different data in broad energy range.
\boldsymbol{x} FFNS: can't be used for LHC energies $\left(Q \gg m_{Q}\right.$ unresummed logarithms $\log Q / m_{Q}$)
it's like driving on first gear on a highway...

x VFNS: flavor threshold in the middle of (precision) HERA data set potential problem with discontinuities

SOLUTION: VFNS $\left(N_{F}\right)$

- coexisting N_{F}-dependent PDFs \& α_{S}

■ user can choose when to switch between N_{F} and $N_{F}+1$ scheme

Where is the difference between $\operatorname{VFNS}\left(N_{F}\right)$ and VFNS?

\checkmark both use the same matching conditions

$$
f_{i}\left(x, \mu, N_{F}+1\right)=A^{i j} \otimes f_{j}\left(x, \mu, N_{F}\right)
$$

\checkmark both features

- resummation of logarithms $\log \mu / m_{c, b}$
- can be reliably extended to high scales $1 \lesssim \mu / m_{c, b} \lesssim \infty$
- in the low scales reduces to FFNS
x VFNS has no overlap between schemes with different N_{F}
x In VFNS historically switching/transition always at $\mu=m_{Q}$

Why do we want overlap?

If we want to analyze HERA data (1106.1028): $Q \sim[2,10] \mathrm{GeV}$ x flavor threshold in the middle of a (precision) data set

Switching/transition scale choice

Switch between N_{F} and $N_{F}+1$ when convenient

Switching/transition scale choice

Switch between N_{F} and $N_{F}+1$ when convenient

change scheme
m_{b}

- remember about uncancelled $\log \left(Q / m_{Q}\right)$ in FFNS

N_{F} Dependent Variable Flavor Number Scheme VFNS $\left(N_{F}\right)$

We propose a simple generalization of VFNS which however has a big practical advantage!

■ coexisting N_{f}-dependent PDFs

- connected by matching conditions (e.g. in $\overline{M S}$ scheme)

■ user can choose when to switch between schemes! (he can avoid to do it in the middle of a precision data set, especially when working in higher orders when discontinuities appear)
! Different from phenomenological fits with different number of flavors (e.g. CTEQ5M hep-ph/9903282)!

Choice of matching \& switching scales

It is rather natural to use the same matching scale as in the traditional VFNS (no logarithmic terms, continues at NLO)
\square matching scales $\mu_{i}^{m}=m_{Q_{i}}$
What about
\square switching/transition scales $\mu_{i}^{s}=? ? ?$

- $\mu_{i}^{s}=m_{Q_{i}}$
- adjusted to a given data set or process (for HERA $\mu_{4}^{s} \simeq 10 \mathrm{GeV}$)
- $\mu_{i}^{s}=h(x)$, in particular e.g. $\mu_{i}^{s}=W=\sqrt{\frac{Q^{2}(1-x)}{x}}$

Sketch of a PDF fit in $\operatorname{VFNS}\left(N_{F}\right)$

1. Parametrize PDFs at $\mu_{0} \sim 1 \mathrm{GeV}$, and generate family of N_{F} dependent PDFs:

- starting at μ_{0} evolve PDFs and α_{S} using $N_{F}=3$ evolution up to $\mu_{\text {max }}$, giving: $f_{a}\left(x, \mu, N_{F}=3\right)$ and $\alpha_{s}\left(\mu, N_{F}=3\right)$
- at $\mu=m_{c}$ use $\overline{M S}$ matching conditions to compute $N_{F}=4$ PDFs and α_{s}, then use $N_{F}=4$ evolution to obtain $f_{a}\left(x, \mu, N_{F}=4\right)$ and $\alpha_{s}\left(\mu, N_{F}=4\right)$
- at $\mu=m_{b} \ldots$

2. Fit HERA $F_{2}^{c h a r m}$ data using $N_{F}=3$ "FFNS" PDFs and α_{S}.
3. Fit high-scale LHC data using $N_{F}=4,5$ "VFNS" PDFs and α_{S}.
4. Minimize χ^{2} by adjusting PDF parameters at $\mu=Q_{0}$.
5. Regenerate new set of $\operatorname{VFNS}\left(N_{F}\right)$ PDFs (for $\left.N_{F}=3,4,5\right)$ and repeat steps 2-4.

RESULTS

Our N_{f}-dependent PDFs

For a demonstration reason of this analyses we produced a benchmark N_{F}-dependent PDFs, based on nCTEQ fit [0907.2357], using NLO evolution and initial scale of $\mu_{0}=1.2 \mathrm{GeV}$.

■ matching scales $\mu_{i}^{m}=m_{Q_{i}}$
■ switching/transition scales to be chosen by user ($\mu_{i}^{s} \sim m_{Q_{i}}$)

Effect of N_{f} channels in PDFs

Opening of the new channels (c, b) is compensated by the decreasing gluon $g \rightarrow c \bar{c}$

$$
\begin{aligned}
& f_{i}\left(x, \mu, N_{F}+1\right)=A^{i j} \otimes f_{j}\left(x, \mu, N_{F}\right) \\
& A^{i j}=\delta^{i j}+\frac{\alpha_{s}}{2 \pi}\left(a_{1}^{i j}+b_{1}^{i j} \ln \left[\frac{\mu}{m}\right]\right) \\
& \quad+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(a_{2}^{i j}+b_{2}^{i j} \ln \left[\frac{\mu}{m}\right]+c_{2}^{i j} \ln ^{2}\left[\frac{\mu}{m}\right]\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { at NLO } a_{1}^{i j}=0 \\
& \text { at NNLO } a_{2}^{i j} \neq 0
\end{aligned}
$$

Effect of N_{f} channels in PDFs

Opening of the new channels (c, b) is compensated by the decreasing gluon $u \bar{u} \rightarrow g \rightarrow c \bar{c}$

$$
\begin{aligned}
& f_{i}\left(x, \mu, N_{F}+1\right)=A^{i j} \otimes f_{j}\left(x, \mu, N_{F}\right) \\
& A^{i j}=\delta^{i j}+\frac{\alpha_{s}}{2 \pi}\left(a_{1}^{i j}+b_{1}^{i j} \ln \left[\frac{\mu}{m}\right]\right) \\
& \quad+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(a_{2}^{i j}+b_{2}^{i j} \ln \left[\frac{\mu}{m}\right]+c_{2}^{i j} \ln ^{2}\left[\frac{\mu}{m}\right]\right)+\ldots
\end{aligned}
$$

$$
\text { at NLO } a_{1}^{i j}=0
$$

$$
\text { at NNLO } a_{2}^{i j} \neq 0
$$

α_{S} across flavor thresholds

α_{S} at order $\mathcal{O}\left(\alpha_{s}^{3}\right)$ becomes discontinuous

$$
\alpha_{s}\left(m^{2}, N_{F}+1\right)=\alpha_{s}\left(m^{2}, N_{F}\right)+c_{20} \alpha_{s}^{3}\left(m^{2}, N_{F}\right)
$$

N_{f} dependence of structure functions (N3LO: 1203.0282)

$$
F_{2}\left(x=10^{-3}\right)
$$

$$
F_{2} / F_{2\left(N_{f}=5\right)}^{N^{3} L O}
$$

$$
F_{L}\left(x=10^{-5}\right)
$$

N_{f} dependence of structure functions (N3LO: 1203.0282)

- $Q<m_{Q}$:
- higher order corrections are crucial;
- $N_{F}=3$ and $N_{F}=5$ results coincide
- $Q \gg m_{Q}$:
- higher order corrections not important;
- $N_{F}=3$ and $N_{F}=5$ results diverge due to uncancelled logs $\log \left(Q / m_{q}\right)$
- $Q \geq m_{Q}$:
- $N_{F}=3$ result can be extended to $Q \sim($ a few $) \times m_{c}$

$$
F_{2} / F_{2\left(N_{f}=5\right)}^{N^{3} L O}
$$

$$
F_{L} / F_{L\left(N_{f}=5\right)}^{N^{3} L O}
$$

charm production at HERA

Estimate effect of $N_{f}=3$ vs. $N_{f}=5$ by comparing gluons

- at low $Q(10 \mathrm{GeV})$ the shift is $\sim 6 \%$ and flat along x

■ HVQDIS (hep-ph/9706334), used in HERA anlyses, works in $N_{F}=3$ FFNS. We can use this ratio to approximate its results in case where only $N_{F}=4,5$ PDFs were available.

Summary

■ We proposed a simple generalization of VFNS allowing to take advantage of both FFNS and VFNS.
■ Especially interesting for higher order analyses, when PDFs and α_{S} discontinuous.
■ VFNS $\left(N_{F}\right)$ allows to avoid flavors transition if it happens in the middle of a data set.

BACKUP SLIDES

Interplay between $\alpha_{S}\left(\mu_{R}, N_{f}\right)$ and $g\left(x, \mu, N_{f}\right)$

■ LO ~ light quark PDFs (not sensitive to change $N_{F} \rightarrow N_{F}+1$)
\square combination $\alpha_{S} g$ enters many NLO corrections (leading component)

- for $Q \sim 10 \mathrm{GeV}$ consistent 3 -flavor (FFNS) or 5 -flavor (VFNS) schemes are comparable: flavor dependence in α_{S} and g partly cancel

Interplay between $\alpha_{S}\left(\mu_{R}, N_{f}\right)$ and $g\left(x, \mu, N_{f}\right)$

\square LO \sim light quark PDFs (not sensitive to change $N_{F} \rightarrow N_{F}+1$)

- combination $\alpha_{S} g$ enters many NLO corrections (leading component)
■ for $Q \sim 10 \mathrm{GeV}$ consistent 3-flavor (FFNS) or 5-flavor (VFNS) schemes are comparable: flavor dependence in α_{S} and g partly cancel

Matching conditions for PDFs

$$
f_{i}\left(x, \mu, N_{F}+1\right)=A^{i j} \otimes f_{j}\left(x, \mu, N_{F}\right)
$$

where $A^{i j}$ can be computed perturbatively as (hep-ph/9601302, hep-ph/9612398)

$$
\begin{aligned}
A^{i j} & =\delta^{i j}+\frac{\alpha_{s}}{2 \pi}\left(a_{1}^{i j}+P_{0}^{i j} \ln \left[\frac{\mu^{2}}{m^{2}}\right]\right) \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(a_{2}^{i j}+\left\{P_{1}^{i j}+P_{0}^{i j} \otimes a_{1}^{i j}-\beta_{0} a_{1}^{i j}\right\} \ln \left[\frac{\mu^{2}}{m^{2}}\right]\right. \\
& \left.+\frac{1}{2}\left\{P_{0}^{i j} \otimes P_{0}^{i j}-\beta_{0} P_{0}^{i j}\right\} \ln ^{2}\left[\frac{\mu^{2}}{m^{2}}\right]\right)+\ldots
\end{aligned}
$$

α_{S} evolution

The running of $\alpha_{S}\left(\mu, N_{F}\right)$

$$
\mu^{2} \frac{d \alpha_{s}}{d \mu^{2}}=\beta\left(\alpha_{s}\right)=-\left(b_{0} \alpha_{s}^{2}+b_{1} \alpha_{s}^{3}+b_{2} \alpha_{s}^{4}+\ldots\right)
$$

At the NLO (2-loop) level we obtain

$$
\alpha_{S}\left(\mu^{2}, N_{F}\right)=\frac{1}{b_{0}\left(N_{F}\right) \ln \left(\mu^{2} / \Lambda^{2}\right)}\left(1-\frac{b_{1}\left(N_{F}\right)}{b_{0}^{2}\left(N_{F}\right)} \frac{\ln \left(\ln \left(\mu^{2} / \Lambda^{2}\right)\right)}{\ln \left(\mu^{2} / \Lambda^{2}\right)}\right)
$$

where $b_{0}\left(N_{F}\right)=\left(33-2 N_{F}\right) / 12 \pi$ and $b_{1}\left(N_{F}\right)=\left(153-19 N_{F}\right) / 24 \pi^{2}$.

α_{S} across flavor thresholds

$$
\alpha_{s}\left(\mu^{2}, N_{F+1}\right)=\alpha_{s}\left(\mu^{2}, N_{F}\right)\left[1+\sum_{k=1}^{\infty} \sum_{\ell=0}^{k} c_{k \ell}\left[\alpha_{s}\left(\mu^{2}, N_{F}\right)\right]^{k} \ln ^{l}\left(\frac{\mu_{R}^{2}}{m^{2}}\right)\right]
$$

where $c_{10}=0$ and $c_{20}=-11 / 72 \pi^{2}$

Using $\mu=m$ and restricting to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ terms

$$
\alpha_{s}\left(m^{2}, N_{F}+1\right)=\alpha_{s}\left(m^{2}, N_{F}\right)+c_{20} \alpha_{s}^{3}\left(m^{2}, N_{F}\right)
$$

ACOT scheme (hep-ph/9312319, hep-ph/9806259)

The key ingredient of ACOT scheme is subtraction term (SUB), at NLO we have

$$
\sigma_{T O T}=\sigma_{L O}+\left\{\sigma_{N L O}-\sigma_{S U B}\right\}
$$

for gluon-initiated processes:

$$
\sigma_{S U B}=f_{g} \otimes \tilde{P}_{g \rightarrow Q} \otimes \sigma_{Q V \rightarrow Q}
$$

$\tilde{P}_{g \rightarrow Q}$ is the $\overline{M S}$ splitting times the logarithm $\ln \left(\mu^{2} / m_{Q}^{2}\right)$

Discontinuities in higher orders

■ measurable quantities calculated at $O\left(\alpha_{s}^{n}\right)$

$$
\sigma_{T O T}^{N_{F}=5}=\sigma_{T O T}^{N_{F}=4}+O\left(\alpha_{s}^{n+1}\right)
$$

Discontinuities in higher orders

$$
F_{L}\left(x=10^{-5}\right)
$$

Discontinuities in measurable quantities

Matching condition:

$$
f_{a}^{N_{F}+1}=A_{a b} \otimes f_{b}^{N_{F}}
$$

for $\mu=m_{b}$:

$$
\begin{aligned}
f_{b}^{5} & =\left\{0+\frac{\alpha_{s}}{2 \pi} P_{q g}\left(L+a_{q g}\right)+O\left(\alpha_{s}^{2}\right)\right\} \otimes f_{g}^{4} \\
f_{g}^{5} & =\left\{1+\frac{\alpha_{s}}{2 \pi} P_{g g}\left(L+a_{g g}\right)+O\left(\alpha_{s}^{2}\right)\right\} \otimes f_{g}^{4}
\end{aligned}
$$

where $L=\ln \left(\mu^{2} / m_{b}^{2}\right)$
■ for $\overline{M S}$ at NLO $a_{q g}=a_{g g}=0 \rightarrow$ PDFs are continuous

Discontinuities in measurable quantities

What if $a \neq 0$ at NLO:
ACOT for $N_{F}=5\left(\mu>m_{b}\right)$:

$$
\begin{aligned}
\sigma_{L O} & =C^{0} \otimes f_{b}^{5} \simeq C^{0} \otimes\left\{0+\frac{\alpha_{s}}{2 \pi} P_{q g}\left(L+a_{q g}\right)\right\} \otimes f_{g}^{4} \\
\sigma_{N L O} & =C^{1} \otimes f_{g}^{5} \simeq C^{1} \otimes\left\{1+\frac{\alpha_{s}}{2 \pi} P_{g g}\left(L+a_{g g}\right)\right\} \otimes f_{g}^{4} \\
\sigma_{S U B} & =C^{0} \otimes \widetilde{f}_{g \rightarrow q} \otimes f_{g}^{5} \simeq C^{0} \otimes\left\{\frac{\alpha_{s}}{2 \pi} P_{q g}\left(L+a_{q g}\right)\right\} \\
& \otimes\left\{1+\frac{\alpha_{s}}{2 \pi} P_{g g}\left(L+a_{g g}\right)\right\} \otimes f_{g}^{4}
\end{aligned}
$$

to $\mathcal{O}\left(\alpha_{s}^{1}\right)$ order:

$$
\sigma_{T O T}^{N_{F}=5}=\sigma_{L O}+\sigma_{N L O}-\sigma_{S U B}=C^{1} \otimes f_{g}^{4}+O\left(\alpha_{s}^{2}\right)
$$

ACOT for $N_{F}=4\left(\mu<m_{b}\right)$:

$$
\sigma_{T O T}^{N_{F}=4}=\sigma_{N L O}=C^{1} \otimes f_{g}^{4}+O\left(\alpha_{s}^{2}\right)
$$

N_{f} dependence of structure functions: F_{2}

(N3LO calculation: 1203.0282)

$$
x=10^{-1}
$$

$x=10^{-3}$

$$
x=10^{-5}
$$

N_{f} dependence of structure functions: F_{L}

$$
x=10^{-1}
$$

$$
x=10^{-3}
$$

$$
x=10^{-5}
$$

Different treatment of α_{S} in FFNS

■ number of flavors entering α_{S} is fixed and the same as number of flavors entering PDFs: $N_{R}=N_{F}$ hep-ph/0603143 (A. Martin, W. Stirling, and R. Thorne)

- N_{R} is changing as in the VFNS (but independently from N_{F}) hep-ph/0608276 (M. Gluck and E. Reya)

