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This talk

…is on phenomenological work I’ve done with Banfi, Dasgupta 
& Marzani involving the φ* observable (and QT as a cross-check)

•  Introduce φ* in the context of Drell-Yan production (of 
massive lepton pairs)

•  Discuss effects of gluon emission on observable(s)

•  Present formal aspects of our NNLL resummed calculation

•  Present comparisons to data and recent predictions

•  Future considerations
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The Drell-Yan process

S. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett. 
25 (1970) 316 [Erratum ibid. 25 (1970) 902]
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(…in the Born approximation)

/Z 

Recoil of the Z boson against emission(s) from 
colliding partons generates a QT spectrum

hA + hB ! `+ + `� +X



The φ* observable

Eur. Phys. J. C (2011) 71: 1600 Page 3 of 7
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Thus the variations with p
(1)
T in aT and Q partially cancel

in the ratio, rendering aT /Q less susceptible to the effects of
lepton pT resolution than aT . In particular, in the region of
low QT then p

(1)
T ≈ p

(2)
T and thus !(aT /Q) ≈ 0. Similarly,

the quantity QT /Q is less susceptible to the effects of lepton
pT resolution than QT .

A simple example of an uncertainty in the lepton pT scale
calibration is to consider the pT of all leptons to be multi-
plied by a constant factor. It can be seen trivially that in this
case aT , QT and Q are all multiplied by the same factor and
that the measured aT /Q and QT /Q are unaffected by such
a scale uncertainty.

3 Correcting !φ for the scattering angle

The azimuthal opening angle between the two leptons, !φ,
is primarily sensitive to the same component of QT as aT ,
and is based only on the well measured lepton angles. How-
ever, at fixed aT /Q, !φ depends on the scattering angle θ∗

of the leptons relative to the beam direction in the dilepton
rest frame. For convenience, we define the acoplanarity an-
gle, φacop, as φacop = π − !φ. For p

(1)
T ≈ p

(2)
T it can be

fairly easily shown that

aT /Q ≈ tan(φacop/2) sin(θ∗).

This suggests that the variable

φ∗ ≡ tan(φacop/2) sin(θ∗)

may be an appropriate alternative quantity with which to
study QT .

In the analysis of hadron-hadron collisions, θ∗ is com-
monly evaluated in the Collins Soper frame [20]. However,
θ∗

CS requires knowledge of the lepton momenta and is thus
susceptible to the effects of lepton momentum resolution.
Motivated by the desire to obtain a measure of the scatter-
ing angle that is based entirely on the measured track direc-
tions (since this will give the best experimental resolution)
we propose here an alternative definition of θ∗. We apply
a Lorentz boost along the beam direction such that the two
leptons are back-to-back in the r-θ plane. This Lorentz boost
corresponds to β = tanh(η−+η+

2 ) and yields the result2

cos(θ∗
η ) = tanh

(
η− − η+

2

)
,

2The lepton pseudorapidity, η, is defined as η = − ln[tan( θ
2 )], where θ

is the polar angle with respect to the beam direction, in the laboratory
frame.

where η− and η+ are the pseudorapidities of the negatively
and positively charge lepton, respectively.

We consider two candidate variables

φ∗
CS ≡ tan(φacop/2) sin(θ∗

CS),

φ∗
η ≡ tan(φacop/2) sin(θ∗

η )

for further evaluation in terms of their experimental resolu-
tion and physics sensitivity.

4 Simple parameterised detector simulation

Monte Carlo events are generated using PYTHIA [21], for
the process pp̄ → Z/γ ∗, at

√
s = 1.96 TeV, in the e+e− and

µ+µ− decay channels, and re-weighted in dilepton QT and
rapidity, y, to match the higher order predictions of RES-
BOS [22] as in [16]. Electrons and muons are defined at
“particle level” according to the prescription in [23], and at
“detector level” by applying simple Gaussian smearing to
the particle level momenta: δ(1/pT ) = 3 × 10−3 (1/GeV)
for muons, which are measured in the tracking detectors;
δp/p = 0.4(p/p0)

−1/2 with p0 = 1 GeV for electrons,
which are measured in the calorimeter. In addition, the par-
ticle angles are smeared, assuming Gaussian resolutions of
0.3 × 10−3 rad for φ and 1.4 × 10−3 for η. These energy,
momentum, and angular resolutions roughly correspond to
those in the DØ detector [24].

Events are accepted for further analysis if: 70 < Q <

110 GeV and both leptons satisfy the requirements pT >

15 GeV and |η| < 2. These selection cuts are made at parti-
cle level, unless otherwise stated.

5 Scaling factors

In the following sections, we compare the experimental res-
olution and physics sensitivity of the various candidate vari-
ables. In particular, we compare the variation of the reso-
lution for each variable as a function of that variable. This
comparison is facilitated by ensuring that all distributions
have approximately the same scale and shape. Compared
to QT or QT /Q, all other variables are on average a fac-
tor

√
2 smaller (since aT and aL measure one component

of QT ). A simple multiplication by MZ (= 91.19 GeV [25])
corrects for the average Q−1 factor in the mass ratio and
angular variables and conveniently ensures that all vari-
ables have the same units (GeV). Finally, the mean value
of sin(θ∗) is around ∼0.85, and tan(φacop/2) is scaled by
this additional factor. The above factors are summarised in
Table 1.

* Indicates the frame in which the leptons are (longitudinally) back-to-back. θ* is the angle the leptons 
make with respect to the z axis in this frame.

Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders, A. Banfi, S. 
Redford, M. Vesterinen, P. Waller and T. R. Wyatt, EPJ C, Volume 71, Number 3 (2011), 1600
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…is experimentally better-determined that QT, making this an 
important observable for study.



(One) motivation for study 
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FIG. 2: (color online) Corrected distributions of (1/σ)× (dσ/dφ∗

η) for dimuon events with (a) |y| < 1 and (b) 1 < |y| < 2;
and dielectron events with (c) |y| < 1, (d) 1 < |y| < 2 and (e) |y| > 2. The larger plots show the restricted range
0 < φ∗

η < 0.34 and the insets show the full range of φ∗

η. The predictions from ResBos are shown as the red histogram and
from ResBos with small-x broadening as the black histogram [which is visible principally in (e)].
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FIG. 3: (color online) Ratio of the corrected distributions of (1/σ)× (dσ/dφ∗

η) to ResBos for: (a) |y| < 1, (b) 1 < |y| < 2
and (c) |y| > 2. Statistical and systematic uncertainties are combined in quadrature. In (a) and (b) a χ2 for the comparison
of the dielectron and dimuon data, χ2

(ee/µµ), is calculated assuming uncorrelated uncertainties. The yellow band around the
ResBos prediction represents the quadrature sum of uncertainty due to PDFs (evaluated using the CTEQ6.6 NLO error
PDFs [14]) and the uncertainty due to the QCD scale (evaluated by varying the factorization and renormalization scales
simultaneously by a factor of two). Also shown are the changes to the ResBos predictions when g2 is set to 0.66 (dotted
blue line) and when the small-x broadening option is enabled (solid black line).
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Precise study of the Z/γ∗ boson transverse momentum distribution in pp ̄ collisions using a novel 
technique, D0 Collaboration: V. M. Abazov, et al., Phys.Rev.Lett.106:122001, 2011



Scale régimes

There exist three important and distinct scale régimes:

•  Fixed-order is formally valid:

•  All-orders required:

•  Non-perturbative régime:

where M is the invariant mass
of the lepton pair.
Similar régimes exist for φ*…
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Figure 1. Figure illustrating the full NNLL resummed result to NLO for the φ∗ distribution. Also
shown for comparison is the fixed-order result from MCFM while the range of φ∗ chosen is that
over which data has been collected [25].

one should observe a significantly smaller scale uncertainty at low φ∗ for NNLL resumma-

tion as opposed to NLL resummation, one would nevertheless expect it to be important in

the eventual comparisons to data and would certainly wish to take it into account before

reaching conclusions on the size of non-perturbative effects.

3.1 Perturbative uncertainties

Here we shall deal with the issue of the perturbative uncertainty afflicting our calculation.

In general, one can consider the strong coupling to be evaluated, as usual, at some renor-

malisation scale µR which, although of the order of M , is not the same. Very similarly, the

factorisation scale µF , which sets the scale where the pdfs are evolved from, ought not to

be exactly equal to M . Another arbitrary scale in our perturbative calculation enters the

argument of the logarithms we are resumming, ln(b̄2M2) → ln(b̄2µ2
Q), where we refer to

µQ as the resummation scale. For analogous studies for the QT spectrum see, for instance,

ref. [21]. Keeping the full dependence on those scales the resummed expression in eq. (2.3)

becomes

dσ

dφ∗
(φ∗,M, cos θ∗, y) =

πα2

sNc

∫ ∞

0
dbM cos (bMφ∗) e−R(b̄,M,µQ,µR)

×Σ (x1, x2, cos θ
∗, b,M, µQ, µR, µF ) . (3.2)

Explicit formulae are reported in appendices A and B. The resummation is then matched

to a fixed-order calculation, which also depends on renormalisation and factorisation scales.

The dependence of the resummed and matched result on these arbitrary scales is one order

higher than the accuracy we are working at, i.e. it affects terms which are at least N3LL and

NNLO. Thus, varying them around the dilepton invariant mass M provides us with an esti-

mate of the size of those perturbative contributions which are beyond our accuracy. In doing
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Multiple emission

•  Fixed-order QT and φ* differential cross-section distributions 
diverge at low values. This corresponds to soft/collinear 
emission from incoming partons.


•  Order-by-order, perturbative expansion is enhanced by large 

logs – effective expansion parameter: e.g. αs à αsL2

•  …in this region of phase space because of the disparity 
between relevant physical scales in the process.

•  Cannot truncate series: must restructure the perturbation series 
and sum entire classes of logs to all orders à resummation

•  In practice, relies heavily on concept of independent emission.
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The formalism
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The resummation of large logarithms in the QT spectrum has been studied by several
groups for many years and it is currently known to NNLL accuracy (see Ref [4] and
references therein). Accurate theoretical predictions have been compared to data com-
ing from the D0 and CDF experiments at the Tevatron but no clear conclusions have
been drawn to date about the relevance of non-perturbative effects. One of the limiting
factor has been the experimental resolution which affects the measurement of transverse
momenta. For this reason novel variables have been introduced in [5, 6] and recently
measured by the D0 collaboration [7]. These variables, labelled the aT and φ∗, both cru-
cially depend on the azimuthal angle Δφ between the final state leptons, at low QT . The
experimental resolution for aT and φ∗ is significantly better than the one for QT [6].

The D0 collaboration compared the result of their measurement to the theoretical
prediction of the program RESBOS [8]. They found overall agreement with some dis-
crepancies in the large rapidity region. In particular, the data disfavour current non-
perturbative models, such as small-x broadening [9] . Therefore we need an accurate
theoretical prediction for these new variables, along the line of those for QT resumma-
tion, to be able to assess the importance of non-perturbative effects.

THE φ ∗ DISTRIBUTION

In Ref. [10] we have computed a theoretical prediction for the φ∗ distribution by match-
ing a resummed NNLL calculation, which captures the dominant behaviour at small φ∗

to a NLO one obtained from the program MCFM:
(

dσ
dφ∗

)

matched
=

(

dσ
dφ∗

)

resummed
+

(

dσ
dφ∗

)

NLO
−

(

dσ
dφ∗

)

expanded
(1)

The resummed distribution has the following form

dσ
dφ∗ (φ∗,M,cosθ∗,y) =

πα2

sNc

∫ ∞

0
dbM cos(bMφ∗)e−R(  b,M,µQ,µR) (2)

× Σ(x1,x2,cosθ∗,b,M,µQ,µR,µF) ,

where x1,2 = M√
se

±y and  b = beγE
2 . The above result is yet to be integrated over the

dilepton invariant mass M, the scattering angle θ∗ and rapidity of the dilepton system
(or equivalently the Z boson rapidity) y. Note the dependence on three arbitrary scales:
renormalisation, factorisation and resummation, which can be varied in order to estimate
the theoretical uncertainty. At the moment we set them all equal to each other and to the
dilepton invariant mass M.

The dependence upon the large logarithms we wish to resum is encoded in the
radiator:

R
(  bM

)

= Lg(1)(αsL)+g(2) (αsL)+
αs
π
g(3) (αsL) , (3)

where L = ln(  b2M2) and αs = αs(M). The functions g(i) are the same as in [4] but
in our case the radiator does not contain any term involving the DGLAP anomalous
dimensions or the coefficient functions. These N-dependent contributions have been
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2 . The above result is yet to be integrated over the dilepton invariant

mass M , the scattering angle θ∗ and rapidity of the dilepton system (or equivalently the Z boson rapid-
ity) y. Note the dependence on three arbitrary scales: renormalisation, factorisation and resummation,
which can be varied in order to estimate the theoretical uncertainty. At the moment we set them all
equal to each other and to the dilepton invariant mass M .

The dependence upon the large logarithms we wish to resum is encoded in the radiator:
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the radiator does not contain any term involving the DGLAP anomalous dimensions or the coefficient
functions. These N -dependent contributions have been used to evolve the parton distribution functions
or have been taken care of by evaluating the running coupling in front of the coefficient functions
at the appropriate scale 1/b. The coefficient A(3) appearing in the function g3 has been recently
determined [11]. However, we currently include in g3 only the terms which are relevant at O

(

α2
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)

, and
we call our partial NNLL resummation NNLL∗.

Before presenting results for the matched distribution Eq. (1) we must check that the expansion of
our resummation to O(α2

s) agrees with the NLO calculation. We remind the reader that the relation
between the resummation for QT and aT was worked out in [12] and we also have that φ∗ ∼ aT /M
as small QT . In order to check our understanding of the relation between the different observables we
compute
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Subtracting ∆D from the corresponding fixed-order differential distribution D (φ∗) −D (QT/2), com-
puted with MCFM at NLO, we find a result that tends to zero, as shown in Fig. 1, on the left. Thus,
we have complete control over the divergent pieces at order α2

s and we can adopt a particularly simple
matching formula like the one in Eq. (1), where one adds the resummed differential distribution to the
NLO result and subtracts the expansion of the resummation to order α2

s.
The result for the matched differential φ∗ distribution is plotted in Fig. 1 on the right, together

with the pure fixed order O
(

α2
s

)

calculation obtained from MCFM. The curves are obtained taking into
account the DØ cuts for the muons, i.e. 70 < M < 110 GeV, pT > 15 GeV and η < 2, and integrating
over the rapidity of the Z boson. We notice that the NLO calculation diverges in the region of small
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The resummation of large logarithms in the QT spectrum has been studied by several
groups for many years and it is currently known to NNLL accuracy (see Ref [4] and
references therein). Accurate theoretical predictions have been compared to data com-
ing from the D0 and CDF experiments at the Tevatron but no clear conclusions have
been drawn to date about the relevance of non-perturbative effects. One of the limiting
factor has been the experimental resolution which affects the measurement of transverse
momenta. For this reason novel variables have been introduced in [5, 6] and recently
measured by the D0 collaboration [7]. These variables, labelled the aT and φ∗, both cru-
cially depend on the azimuthal angle Δφ between the final state leptons, at low QT . The
experimental resolution for aT and φ∗ is significantly better than the one for QT [6].

The D0 collaboration compared the result of their measurement to the theoretical
prediction of the program RESBOS [8]. They found overall agreement with some dis-
crepancies in the large rapidity region. In particular, the data disfavour current non-
perturbative models, such as small-x broadening [9] . Therefore we need an accurate
theoretical prediction for these new variables, along the line of those for QT resumma-
tion, to be able to assess the importance of non-perturbative effects.

THE φ ∗ DISTRIBUTION

In Ref. [10] we have computed a theoretical prediction for the φ∗ distribution by match-
ing a resummed NNLL calculation, which captures the dominant behaviour at small φ∗

to a NLO one obtained from the program MCFM:
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The resummed distribution has the following form

dσ
dφ∗ (φ∗,M,cosθ∗,y) =

πα2

sNc

∫ ∞

0
dbM cos(bMφ∗)e−R(  b,M,µQ,µR) (2)
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where x1,2 = M√
se

±y and  b = beγE
2 . The above result is yet to be integrated over the

dilepton invariant mass M, the scattering angle θ∗ and rapidity of the dilepton system
(or equivalently the Z boson rapidity) y. Note the dependence on three arbitrary scales:
renormalisation, factorisation and resummation, which can be varied in order to estimate
the theoretical uncertainty. At the moment we set them all equal to each other and to the
dilepton invariant mass M.

The dependence upon the large logarithms we wish to resum is encoded in the
radiator:

R
(  bM

)

= Lg(1)(αsL)+g(2) (αsL)+
αs
π
g(3) (αsL) , (3)

where L = ln(  b2M2) and αs = αs(M). The functions g(i) are the same as in [4] but
in our case the radiator does not contain any term involving the DGLAP anomalous
dimensions or the coefficient functions. These N-dependent contributions have been
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our resummation to O(α2
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Subtracting ∆D from the corresponding fixed-order differential distribution D (φ∗) −D (QT/2), com-
puted with MCFM at NLO, we find a result that tends to zero, as shown in Fig. 1, on the left. Thus,
we have complete control over the divergent pieces at order α2

s and we can adopt a particularly simple
matching formula like the one in Eq. (1), where one adds the resummed differential distribution to the
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s.
The result for the matched differential φ∗ distribution is plotted in Fig. 1 on the right, together
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calculation obtained from MCFM. The curves are obtained taking into
account the DØ cuts for the muons, i.e. 70 < M < 110 GeV, pT > 15 GeV and η < 2, and integrating
over the rapidity of the Z boson. We notice that the NLO calculation diverges in the region of small
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The resummation of large logarithms in the QT spectrum has been studied by several
groups for many years and it is currently known to NNLL accuracy (see Ref [4] and
references therein). Accurate theoretical predictions have been compared to data com-
ing from the D0 and CDF experiments at the Tevatron but no clear conclusions have
been drawn to date about the relevance of non-perturbative effects. One of the limiting
factor has been the experimental resolution which affects the measurement of transverse
momenta. For this reason novel variables have been introduced in [5, 6] and recently
measured by the D0 collaboration [7]. These variables, labelled the aT and φ∗, both cru-
cially depend on the azimuthal angle Δφ between the final state leptons, at low QT . The
experimental resolution for aT and φ∗ is significantly better than the one for QT [6].

The D0 collaboration compared the result of their measurement to the theoretical
prediction of the program RESBOS [8]. They found overall agreement with some dis-
crepancies in the large rapidity region. In particular, the data disfavour current non-
perturbative models, such as small-x broadening [9] . Therefore we need an accurate
theoretical prediction for these new variables, along the line of those for QT resumma-
tion, to be able to assess the importance of non-perturbative effects.

THE φ ∗ DISTRIBUTION

In Ref. [10] we have computed a theoretical prediction for the φ∗ distribution by match-
ing a resummed NNLL calculation, which captures the dominant behaviour at small φ∗

to a NLO one obtained from the program MCFM:
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where x1,2 = M√
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2 . The above result is yet to be integrated over the

dilepton invariant mass M, the scattering angle θ∗ and rapidity of the dilepton system
(or equivalently the Z boson rapidity) y. Note the dependence on three arbitrary scales:
renormalisation, factorisation and resummation, which can be varied in order to estimate
the theoretical uncertainty. At the moment we set them all equal to each other and to the
dilepton invariant mass M.

The dependence upon the large logarithms we wish to resum is encoded in the
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dimensions or the coefficient functions. These N-dependent contributions have been
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as small QT . In order to check our understanding of the relation between the different observables we
compute

∆D(ε) =
1

σ0

d

d ln ε

(

σ (φ∗)
∣

∣

φ∗=ε
− σ (QT /2)

∣

∣

QT /2=ε

)

. (4)

Subtracting ∆D from the corresponding fixed-order differential distribution D (φ∗) −D (QT/2), com-
puted with MCFM at NLO, we find a result that tends to zero, as shown in Fig. 1, on the left. Thus,
we have complete control over the divergent pieces at order α2

s and we can adopt a particularly simple
matching formula like the one in Eq. (1), where one adds the resummed differential distribution to the
NLO result and subtracts the expansion of the resummation to order α2

s.
The result for the matched differential φ∗ distribution is plotted in Fig. 1 on the right, together

with the pure fixed order O
(

α2
s

)

calculation obtained from MCFM. The curves are obtained taking into
account the DØ cuts for the muons, i.e. 70 < M < 110 GeV, pT > 15 GeV and η < 2, and integrating
over the rapidity of the Z boson. We notice that the NLO calculation diverges in the region of small
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The resummation of large logarithms in the QT spectrum has been studied by several
groups for many years and it is currently known to NNLL accuracy (see Ref [4] and
references therein). Accurate theoretical predictions have been compared to data com-
ing from the D0 and CDF experiments at the Tevatron but no clear conclusions have
been drawn to date about the relevance of non-perturbative effects. One of the limiting
factor has been the experimental resolution which affects the measurement of transverse
momenta. For this reason novel variables have been introduced in [5, 6] and recently
measured by the D0 collaboration [7]. These variables, labelled the aT and φ∗, both cru-
cially depend on the azimuthal angle Δφ between the final state leptons, at low QT . The
experimental resolution for aT and φ∗ is significantly better than the one for QT [6].

The D0 collaboration compared the result of their measurement to the theoretical
prediction of the program RESBOS [8]. They found overall agreement with some dis-
crepancies in the large rapidity region. In particular, the data disfavour current non-
perturbative models, such as small-x broadening [9] . Therefore we need an accurate
theoretical prediction for these new variables, along the line of those for QT resumma-
tion, to be able to assess the importance of non-perturbative effects.

THE φ ∗ DISTRIBUTION

In Ref. [10] we have computed a theoretical prediction for the φ∗ distribution by match-
ing a resummed NNLL calculation, which captures the dominant behaviour at small φ∗

to a NLO one obtained from the program MCFM:
(

dσ
dφ∗

)

matched
=

(

dσ
dφ∗

)

resummed
+

(

dσ
dφ∗

)

NLO
−

(

dσ
dφ∗

)

expanded
(1)

The resummed distribution has the following form

dσ
dφ∗ (φ∗,M,cosθ∗,y) =

πα2

sNc

∫ ∞

0
dbM cos(bMφ∗)e−R(  b,M,µQ,µR) (2)

× Σ(x1,x2,cosθ∗,b,M,µQ,µR,µF) ,

where x1,2 = M√
se

±y and  b = beγE
2 . The above result is yet to be integrated over the

dilepton invariant mass M, the scattering angle θ∗ and rapidity of the dilepton system
(or equivalently the Z boson rapidity) y. Note the dependence on three arbitrary scales:
renormalisation, factorisation and resummation, which can be varied in order to estimate
the theoretical uncertainty. At the moment we set them all equal to each other and to the
dilepton invariant mass M.

The dependence upon the large logarithms we wish to resum is encoded in the
radiator:

R
(  bM

)

= Lg(1)(αsL)+g(2) (αsL)+
αs
π
g(3) (αsL) , (3)

where L = ln(  b2M2) and αs = αs(M). The functions g(i) are the same as in [4] but
in our case the radiator does not contain any term involving the DGLAP anomalous
dimensions or the coefficient functions. These N-dependent contributions have been
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The resummed distribution has the following form:

The distribution is computed as follows:

Fixed-order at NLO

resummed

R ‘same’ for QT, but 
with Bessel in place of 
cosine.

the program MCFM:
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mass M , the scattering angle θ∗ and rapidity of the dilepton system (or equivalently the Z boson rapid-
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The dependence upon the large logarithms we wish to resum is encoded in the radiator:
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(
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αs

π
g(3) (αsL) , (3)

where L = ln(b̄2M2) and αs = αs(M). The functions g(i) are the same as in [4] but in our case
the radiator does not contain any term involving the DGLAP anomalous dimensions or the coefficient
functions. These N -dependent contributions have been used to evolve the parton distribution functions
or have been taken care of by evaluating the running coupling in front of the coefficient functions
at the appropriate scale 1/b. The coefficient A(3) appearing in the function g3 has been recently
determined [11]. However, we currently include in g3 only the terms which are relevant at O

(

α2
s

)

, and
we call our partial NNLL resummation NNLL∗.

Before presenting results for the matched distribution Eq. (1) we must check that the expansion of
our resummation to O(α2

s) agrees with the NLO calculation. We remind the reader that the relation
between the resummation for QT and aT was worked out in [12] and we also have that φ∗ ∼ aT /M
as small QT . In order to check our understanding of the relation between the different observables we
compute
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Subtracting ∆D from the corresponding fixed-order differential distribution D (φ∗) −D (QT/2), com-
puted with MCFM at NLO, we find a result that tends to zero, as shown in Fig. 1, on the left. Thus,
we have complete control over the divergent pieces at order α2

s and we can adopt a particularly simple
matching formula like the one in Eq. (1), where one adds the resummed differential distribution to the
NLO result and subtracts the expansion of the resummation to order α2

s.
The result for the matched differential φ∗ distribution is plotted in Fig. 1 on the right, together

with the pure fixed order O
(

α2
s

)

calculation obtained from MCFM. The curves are obtained taking into
account the DØ cuts for the muons, i.e. 70 < M < 110 GeV, pT > 15 GeV and η < 2, and integrating
over the rapidity of the Z boson. We notice that the NLO calculation diverges in the region of small
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The resummation of large logarithms in the QT spectrum has been studied by several
groups for many years and it is currently known to NNLL accuracy (see Ref [4] and
references therein). Accurate theoretical predictions have been compared to data com-
ing from the D0 and CDF experiments at the Tevatron but no clear conclusions have
been drawn to date about the relevance of non-perturbative effects. One of the limiting
factor has been the experimental resolution which affects the measurement of transverse
momenta. For this reason novel variables have been introduced in [5, 6] and recently
measured by the D0 collaboration [7]. These variables, labelled the aT and φ∗, both cru-
cially depend on the azimuthal angle Δφ between the final state leptons, at low QT . The
experimental resolution for aT and φ∗ is significantly better than the one for QT [6].

The D0 collaboration compared the result of their measurement to the theoretical
prediction of the program RESBOS [8]. They found overall agreement with some dis-
crepancies in the large rapidity region. In particular, the data disfavour current non-
perturbative models, such as small-x broadening [9] . Therefore we need an accurate
theoretical prediction for these new variables, along the line of those for QT resumma-
tion, to be able to assess the importance of non-perturbative effects.

THE φ ∗ DISTRIBUTION

In Ref. [10] we have computed a theoretical prediction for the φ∗ distribution by match-
ing a resummed NNLL calculation, which captures the dominant behaviour at small φ∗

to a NLO one obtained from the program MCFM:
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where x1,2 = M√
se

±y and  b = beγE
2 . The above result is yet to be integrated over the

dilepton invariant mass M, the scattering angle θ∗ and rapidity of the dilepton system
(or equivalently the Z boson rapidity) y. Note the dependence on three arbitrary scales:
renormalisation, factorisation and resummation, which can be varied in order to estimate
the theoretical uncertainty. At the moment we set them all equal to each other and to the
dilepton invariant mass M.

The dependence upon the large logarithms we wish to resum is encoded in the
radiator:
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)

= Lg(1)(αsL)+g(2) (αsL)+
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in our case the radiator does not contain any term involving the DGLAP anomalous
dimensions or the coefficient functions. These N-dependent contributions have been
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Subtracting ∆D from the corresponding fixed-order differential distribution D (φ∗) −D (QT/2), com-
puted with MCFM at NLO, we find a result that tends to zero, as shown in Fig. 1, on the left. Thus,
we have complete control over the divergent pieces at order α2

s and we can adopt a particularly simple
matching formula like the one in Eq. (1), where one adds the resummed differential distribution to the
NLO result and subtracts the expansion of the resummation to order α2

s.
The result for the matched differential φ∗ distribution is plotted in Fig. 1 on the right, together

with the pure fixed order O
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calculation obtained from MCFM. The curves are obtained taking into
account the DØ cuts for the muons, i.e. 70 < M < 110 GeV, pT > 15 GeV and η < 2, and integrating
over the rapidity of the Z boson. We notice that the NLO calculation diverges in the region of small
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Features of the calculation

•  Captures next-to-next-to-leading logs (NNLL)
•  Matched with next-to-leading order (NLO) calculation*
•  Independent variation of all perturbative scales to obtain uncertainty
•  Purely perturbative calculation: not reliant on the intrinsic kt
•  Better understanding of vector boson low QT

–  What NP corrections need to be applied and how do they depend on kinematics x, M2?
•  Of benefit when it comes to studying the equivalent Higgs spectrum

* i.e. the distribution is NLO
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Scale variations 
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Non-perturbative effects
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ATLAS and CMS QT spectra
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ATLAS φ* prediction
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ATLAS φ* prediction: a detailed look
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Concluding remarks

•  Public code is available at:�
�
http://www.hep.manchester.ac.uk/u/tomlinson/code/ptresum_alpha.tar.gz

•  Future considerations:
–  It would be interesting to see more extreme kinematic 

régimes explored (e.g. LHCb) which may challenge 
standard QT resummation
•  Explore x-dependent models in the radiator

–  Is there a need for TMDs?
–  Can we reduce the theoretical uncertainty?
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Backup slides 
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In previous papers [27, 28] we have provided the details of a resummed treatment

of the new variables and discussed their relationship to QT and to each other. We have

computed the resummation to NNLL accuracy and carried out the matching to fixed-order

NLO results from MCFM. Since the variables aT /M and φ∗ are essentially identical at low

QT [24, 25, 28] we shall focus here on the φ∗ case which is also the variable favoured by the

DØ collaboration in terms of measurement [25]. In the present paper we extend our initial

theoretical studies to the phenomenological level by deriving our matched resummed results

differentially in the vector boson rapidity and with precisely the same cuts as adopted for

the DØ measurements [25]. We study the role of various scales in the problem including

renormalisation and factorisation scale variation as well as resummation scale uncertainties

(rescaling the argument of the logarithms we are resumming) and derive uncertainty bands

for the perturbative result. We then compare our results to the experimental data for both

electrons and muons in various rapidity bins.

We organise the present paper as follows: in the next section we provide a reminder

of the details of the observables and their dependence on soft emissions as well as write

down the resummed formula we derived in our previous work. In the following section

we consider the general full NNLL result with variations of factorisation, renormalisation

and resummation scales so as to derive the uncertainty on the perturbative result. Next

we provide our comparisons to the experimental data and comment on the quality of the

agreement as well as the potential need to include non-perturbative effects before providing

a concluding discussion identifying future developments. We also provide for convenience

an appendix where we list the main formulae we use in this work.

2 The φ∗ variable and its resummation

In this section we remind the reader of the main features of the resummed result computed

in ref. [28]. There we derived the dependence of the aT and φ∗ variables on soft and,

optionally, collinear gluon emissions from the incoming partons. In both cases one found

that, in the soft limit, the dependence on emissions was essentially via a single component

of gluon transverse momentum which was the one normal to the axis defined by the nearly

back-to-back leptons. Here, and for the rest of this paper, we shall focus on φ∗, which is a

measure of the deviation of the lepton opening angle ∆φ in the transverse plane from its

value at Born level, ∆φ = π. The φ∗ variable is defined as

φ∗ = tan (φacop/2) sin θ
∗ =

∣∣∣∣∣
∑

i

kT i

M
sinφi

∣∣∣∣∣
+O

(
k2T i

M2

)
, (2.1)

where φacop = π−∆φ is the acoplanarity angle which vanishes at Born level, sin θ∗ derives

from the angle in a boosted frame such that the leptons make angles θ∗ and π−θ∗ with the

beam,1 M is the mass of the lepton pair and φi is the angle of the gluon i with respect to

the lepton axis in the transverse plane, with kT i the magnitude of its transverse momentum

with respect to the emitting (incoming) partons. Requiring φ∗ to be equal to some fixed

1Our definition of φ∗ corresponds to the variable φ∗

η in the DØ study.
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momentum we thus have !pt1+ !pt2 = −
∑

i
!kti which means that the lepton pair or Z boson

pT is just minus the vector sum of emitted gluon transverse momenta !kti, where we refer

to the momentum transverse to the beam axis. To obtain the dependence of aT on the kti
we wish to find the component of this sum normal to the axis defined in eq. (2.1). The

axis is given by (writing !pt2 in terms of !pt1 and !kti)

n̂ =
2!pt1 +

∑

i
!kti

|2!pt1 +
∑

i
!kti|

≈
!pt1
|!pt1|

, (2.2)

where to obtain the last equation we have neglected the dependence of the axis on emissions

kti. The reason for doing so is that we are projecting the vector sum of the kti along and

normal to the axis and any term O (kti) in the definition of the axis impacts the projected

quantity only at the level of terms bilinear or quadratic in the small kti. Such terms can

be ignored compared to the leading linear terms ∼ kti that we shall retain and thus to our

accuracy the axis is along the lepton direction.2

We can parametrise the lepton and gluon momenta in the plane transverse to the beam

as below:

!pt1 = pt (1, 0) ,

!kti = kti (cos φi, sinφi) ,
(2.3)

where φi denotes the angle made by the ith emission with respect to the direction of lepton

1 in the transverse plane. It is thus clear that, expressed in these terms, the transverse

component of the Z boson pT is simply −
∑

i kti sinφi and one has

aT =

∣

∣

∣

∣

∣

∑

i

kti sinφi

∣

∣

∣

∣

∣

. (2.4)

We note immediately that the dependence on soft emissions is identical to the case of

azimuthal angle ∆φ between final state dijets near the back-to–back region ∆φ ≈ π, for

which resummation was carried out in ref. [20]. This is not surprising since the component

of the Z boson pT , transverse to the axis defined above, is proportional to π −∆φ, where

∆φ is the angle between the leptons in the plane transverse to the beam. The other

(longitudinal) component of Z boson pT , aL, is proportional in the soft limit to pt1 − pt2
the difference in lepton transverse momenta.3 This kinematics is summarised in fig. 1,

which shows final state momenta in the transverse plane. Together with !pt1 and !pt2, the

two lepton transverse momenta, we have displayed the vector boson transverse momentum

!pT , the axis n̂ defined in eq. (2.1), and the two transverse momentum components !aL
and !aT . From the figure it is also clear that the angle π − ∆φ, also indicated, is well

approximated by |!aT |/|!pt2| ≈ aT /pt1. In the case of dijet production the kinematics is the

same, with !pt1 and !pt2 representing the transverse momenta of the two highest-pt jets.
2To be more precise the recoil of the axis against soft emissions, if retained, corrects our result only by

terms that vanish as aT → 0. Such terms are beyond the scope of NLL resummation but will be included

up to NLO due to the matching.
3For the case of dijet production this pt imbalance has also been addressed via resummation in ref. [22]

which to our knowledge is the first extension of the pT resummation formalism to observables involving

final state jets.
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Relation between aT and φ*:


