parton distribution functions

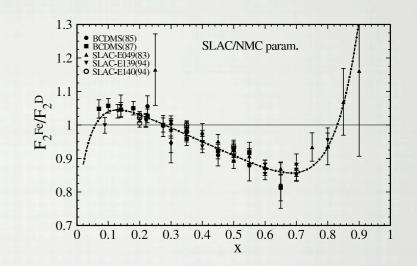
INSTITUT FÜR THEORETISCHE PHYSIK, KIT

IN COLLABORATION WITH:

A.KUSINA, T.JEŽO, F.OLNESS, I.SCHIENBEIN, J.OWENS, J.MORFIN, C. KEPPEL ...

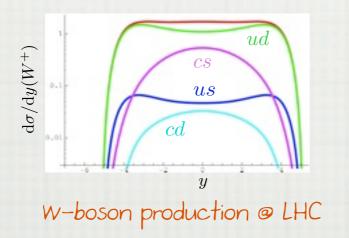
OUTLINE

Motívatíon ξ Revíew of available nPDFs
 New results from nCTEQ analysis
 Conclusions ξ Outlook



Motivation

What are nuclear parton density functions (nPDF) ?


parton densities for partons in bound proton & neutron

• Where are nuclear parton density functions useful ?

I. Strange quark content of the proton

(anti-)strange PDF from (anti-)neutrino DIS with heavy nuclei - nuclear effects important

	0.245	NuTeV01 NuTeV01 Global EW fit + NNPDF1.2 [S]
$\sin^2 heta_W$	0.24	T
	0.235	
	0.23	¥
	0.225	T *
	0.22	· · · · · · · · · · · · · · · · · · ·
	0.215	l

weak mixing angle from NuTeV experiment

2. Heavy ion collisions @ RHIC, LHC

lead & gold heavy nuclei - nuclear effects in gluon PDF substantial

npdf review

Review of existing global analyses of nuclear PDF

I. Multiplicative nuclear correction factor $f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$ bound parton density
free parton density

> Hirai, Kumano, Nagai [PRC76(2007)065207] arXiv: 0709.0338 Eskola, Paukkunen, Salgado [JHEP0904(2009)065] arXiv: 0902.4154 de Florian, Sassot, Stratmann, Zurita [PRD85(2012)074028]arXiv: 1112.6324

nPDF REVIEW

Review of existing global analyses of nuclear PDF

I. Multiplicative nuclear correction factor $f_i^A(x_N,Q_0^2) = R_i(x_N,Q_0,A,Z)f_i(x_N,Q_0^2)$ free parton density
free parton density

> Hirai, Kumano, Nagai [PRC76(2007)065207] arXiv: 0709.0338 Eskola, Paukkunen, Salgado [JHEP0904(2009)065] arXiv: 0902.4154 de Florian, Sassot, Stratmann, Zurita [PRD85(2012)074028]arXiv: 1112.6324

2. Native nuclear PDF

 $f_i^A(x_N,Q_0^2) = f_i(x_N,A,Q_0^2)$ bound parton density

$$f_i(x_N,Q_0^2) = f_i(x_N,A=1,Q_0^2)$$

free parton density

nCTEQ [PRD80(2009)094004] arXiv: 0907.2357

nPDF review Q^2 (GeV²)

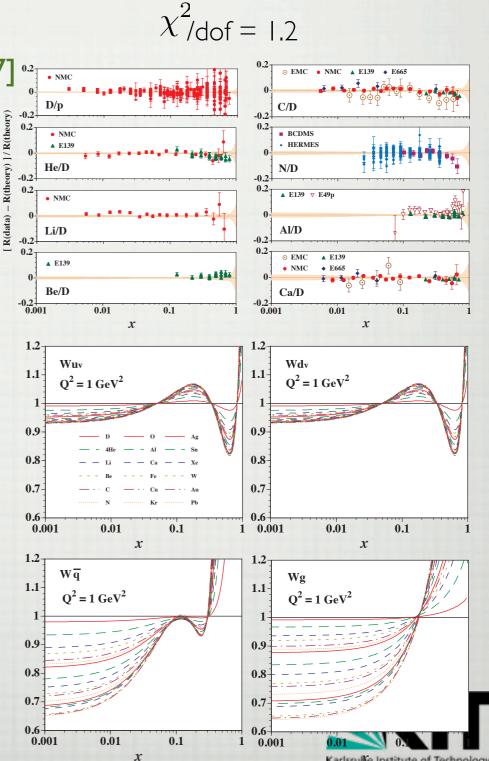
F2Ca/F2

 $Q^2 (GeV^2)$

Review of existing global analyses of nuclear PDF

HIRAI, KUMANO, NAGAI'07 [PRC76(2007)065207] LO, NLO, ERROR PDFS

uses multiplicative factor


$$f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$$

where proton PDF in MRST 1998 and factor

$$R_i(x, A, Z) = 1 + \left(1 - \frac{1}{A^{\alpha}}\right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{\beta_i}}$$

neglects region x>1

- includes all current DIS & DY data set (same as our analysis - discussed later)
- use Hessian method to produce error PDFs

Karlsruhe Institute of Technology

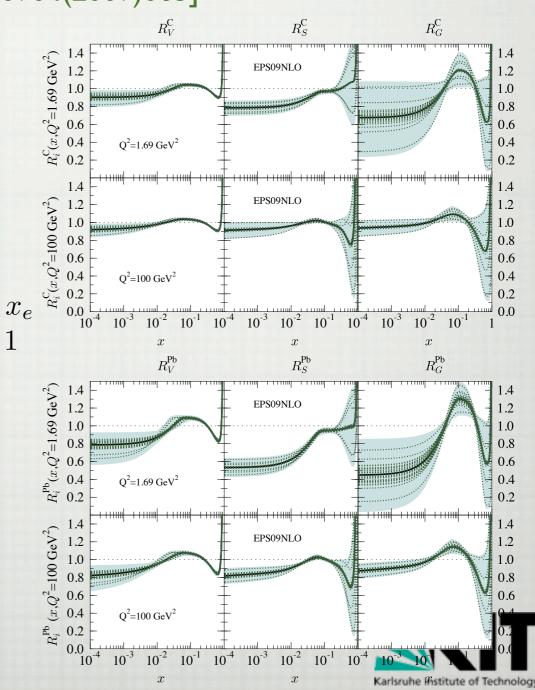
nPDF review

Review of existing global analyses of nuclear PDF

ESKOLA, PAUKKUNEN, SALGADO'09 [JHEP0904(2009)065] LO, NLO, ERROR PDFS

uses multiplicative factor

 $f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$


where proton PDF in CTEQ6.1M and factor is a complicated piecewise defined function

$$R_{i}(x, A, Z) = \begin{cases} a_{0} + (a_{1} + a_{2}x)(e^{-x} - e^{-x_{a}}) & x \leq x_{a} \\ b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} & x_{a} \leq x \leq x \\ c_{0} + (c_{1} - c_{2}x)(1 - x)^{-\beta} & x_{e} \leq x \leq 1 \end{cases}$$

with A-dependent parameters

neglects region x>1

- $^{\diamond}$ includes all current DIS & DY data set & $\pi^{0}\,\mathrm{RHIC}$ data to constrain gluon
- use Hessian method to produce error PDFs

 χ^2 /dof = 0.8

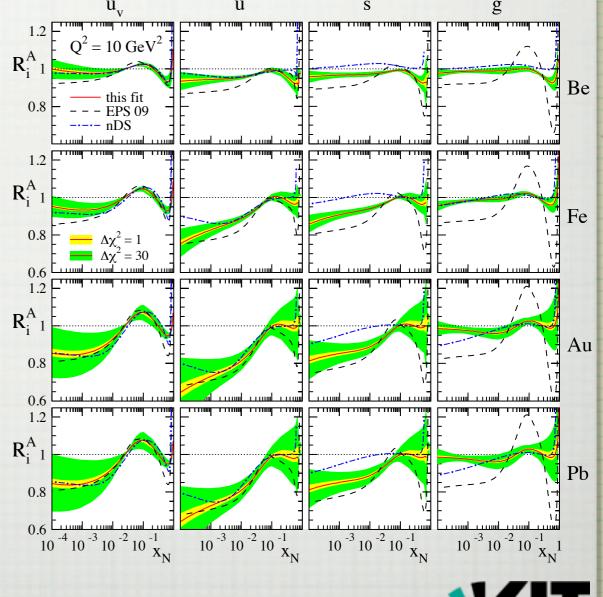
nPDF review

Review of existing global analyses of nuclear PDF

DE FLORIAN, SASSOT, STRATMANN, ZURITA [PRD85(2012)074028] LO, NLO, ERROR PDFS u, ū ū š

uses multiplicative factor

$$f_i^A(x_N, Q_0^2) = R_i(x_N, Q_0, A, Z) f_i(x_N, Q_0^2)$$


where proton PDF in MSTW08 and factor is a complicated function different for each flavour

$$R_v^A(x, Q_0^2) = \epsilon_1 x^{\alpha_v} (1 - x)^{\beta_1} (1 + \epsilon_2 (1 - x)^{\beta_2}) \times (1 + a_v (1 - x)^{\beta_3})$$

$$R_s^A(x, Q_0^2) = R_v^A(x, Q_0^2) \frac{\epsilon_s}{\epsilon_1} \frac{1 + a_s x^{\alpha_s}}{a_s + 1}$$

$$R_g^A(x, Q_0^2) = R_v^A(x, Q_0^2) \frac{\epsilon_g}{\epsilon_1} \frac{1 + a_g x^{\alpha_g}}{a_g + 1}$$

- $^{\diamond}$ includes all current DIS & DY data set & $\pi^0\,{\rm RHIC}$ data and $F_2^{\nu A}$ from neutrino data
- use Hessian method to produce error PDFs

CTEQ framework for nuclear PDF - based on CTEQ6M proton fit

In functional form for bound protons same as for free proton PDF (restrict x to 0 < x < 1)

 $x f_k(x, Q_0) = c_0 x^{c_1} (1 - x)^{c_2} e^{c_3 x} (1 + e^{c_4} x)^{c_5} \qquad k = u_v, d_v, g, \bar{u} + \bar{d}, s, \bar{s}$ $\bar{d}(x, Q_0) / \bar{u}(x, Q_0) = c_0 x^{c_1} (1 - x)^{c_2} + (1 + c_3 x) (1 - x)^{c_4}$

coefficients with A-dependance (reduces to proton for A=I)

$$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}} \right), \quad k = \{1, \dots, 5\}$$

 \circ proton coefficients $c_{k,0}$ fixed to special CTEQ6M fit without much of nuclear data

PDF for a nucleus with A-nucleons out of which Z-protons

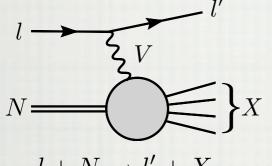
$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{A-Z}{A} f_i^{n/A}(x,Q)$$

Input scale and other input parameters as in CTEQ6M proton analysis

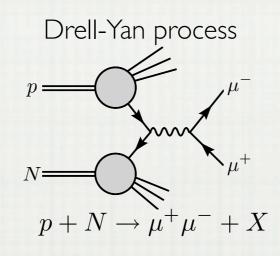
 $Q_0 = m_c = 1.3 \text{GeV}$ $m_b = 4.5 \text{ GeV}$ $\alpha_s(m_Z) = 0.118$

Kinematic cuts on data

 $Q > 2 \,\mathrm{GeV} \qquad W > 3.5 \,\mathrm{GeV}$


Karlsruhe Institute of Technology

nCTEQ [PRD80(2009)094004] arXiv: 0907.2357

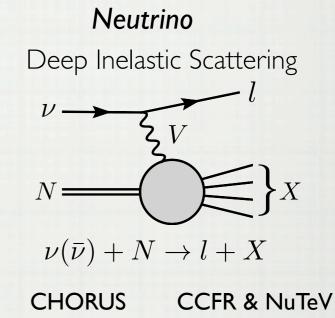

Experiments included in the analysis

Charged lepton

Deep Inelastic Scattering

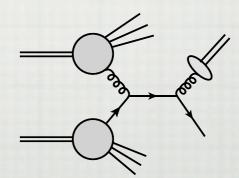
 $l+N \to l'+X$

CERN BCDMS & EMC & NMC N = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn, W)


FNAL E-665DESY HermesN = (D, C, Ca, Pb, Xe)N = (D, He, N, Kr)

SLAC E-139 & E-049 N = (D, Ag, Al, Au, Be, C, Ca, Fe, He)

FNAL E-772 & E-886 N = (D, C, Ca, Fe, W)


1233 data points (708 after cuts)

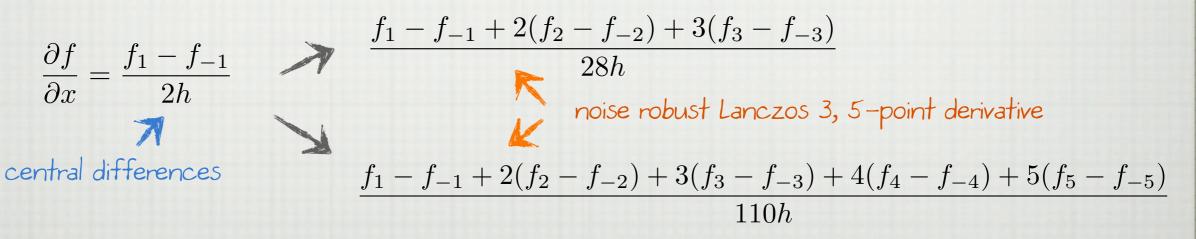
NOT (YET) INCLUDED

N = Pb N = Fe

Single pion production

RHIC - PHENIX & STAR N = AuKarlsruhe Institute of Technology

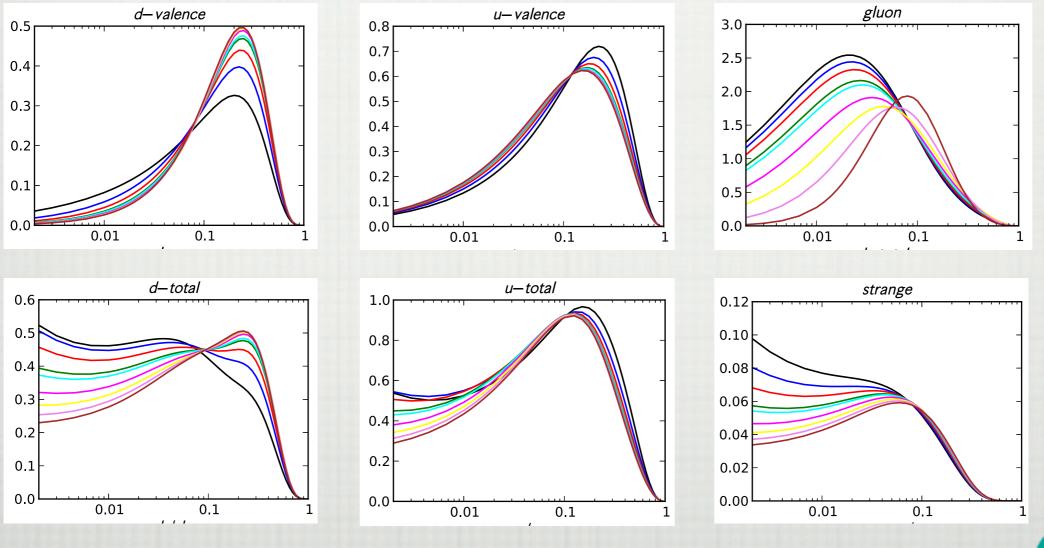
 NPDF fit properties: we fit nuclear data with NLO QCD predictions 			l	Observable D	Experiment NMC-97	# data 275				
we fit nuclear data with NLO QCD predictions					11110 01	275				
				He/D	SLAC-E139 NMC-95,re	18				
			• we fit pucker data with NILO OCD predictions							
		we nit nuclear data with NLO QCD predictions								
(Δ)	$(\Lambda \cap \nabla T)$									
we include heavy quark effects (ACOT)				Be/D C/D	SLAC-E139 EMC-88	17 9				
• applied standard CTEO kinematical suite ONOCN 9	C/D	EMC-90	$\frac{9}{2}$							
applied standard CTEQ kinematical cuts Q>2GeV &		SLAC-E139	7							
		NMC-95,re	16							
				1.0.1.0	NMC-95	15				
					FNAL-E665-95	4				
	$\mathbf{F_2^A}/\mathbf{F_2^A'}:$ Observable		# data	N/D	BCDMS-85	9				
		I			Hermes	92				
NPDF fit results:	Be/C Al/C	NMC-96 NMC-96	$\frac{15}{15}$	Al/D	SLAC-E049	18				
	Ca/C	NMC-95	20	C. /D	SLAC-E139	17				
700(1222) data a sinta after (hafere) auto		NMC-96	15	Ca/D	EMC-90 SLAC-E139	$\begin{array}{c} 2\\ 7\end{array}$				
9708 (1233) data points after (before) cuts	Fe/C	NMC-95	15		NMC-95,re	15				
	Sn/C	NMC-96	144		FNAL-E665-95	4				
I7 free parameters - 691 degrees of freedom	Pb/C	NMC-96	15	Fe/D	BCDMS-85	6				
	C/Li	NMC-95	20	,	BCDMS-87	10				
$\sim \text{overall} \chi^2/\text{dof} = 0.87$	Ca/Li	NMC-95	20		SLAC-E049	14				
\sim overall λ /dot – 0.8/	Total:		279		SLAC-E139	23				
					SLAC-E140	6				
individually for different data subsets	pA / pA'			Cu/D	EMC-88	9				
,	$\sigma_{\mathbf{DY}}^{\mathbf{pA}} / \sigma_{\mathbf{DY}}^{\mathbf{pA'}} :$	D • •	// 1 /		EMC-93(addendum) EMC-93(chariot)	10				
$E = EA / ED = \chi^2 / E = 0.00$		Experiment	# data	Kr/D	Hermes	84				
	'	FNAL-E772-90 FNAL-E772-90	9	Ag/D	SLAC-E139	7				
$A \cdot A = 2$	Ca/D Fe/D	FNAL-E772-90	9 9	Sn/D	EMC-88	8				
	W/D	FNAL-E772-90	9	Xe/D	FNAL-E665-92	4				
\mathbf{F}	Fe/Be	FNAL-E866-99	28	Au/D	SLAC-E139	18				
for $\sigma_{DY}^{pA}/\sigma_{DY}^{pA'}\chi^2/\text{pt} = 0.85$	W/Be	FNAL-E866-99	28	Pb/D	FNAL-E665-95	4				
$\frac{101}{DY} \frac{\partial_{DY}}{\partial_{DY}} \frac{\chi}{\chi} \frac{101 - 0.85}{T}$	Fotal:		92	Total:		862				


NPDF Hessian analysis:

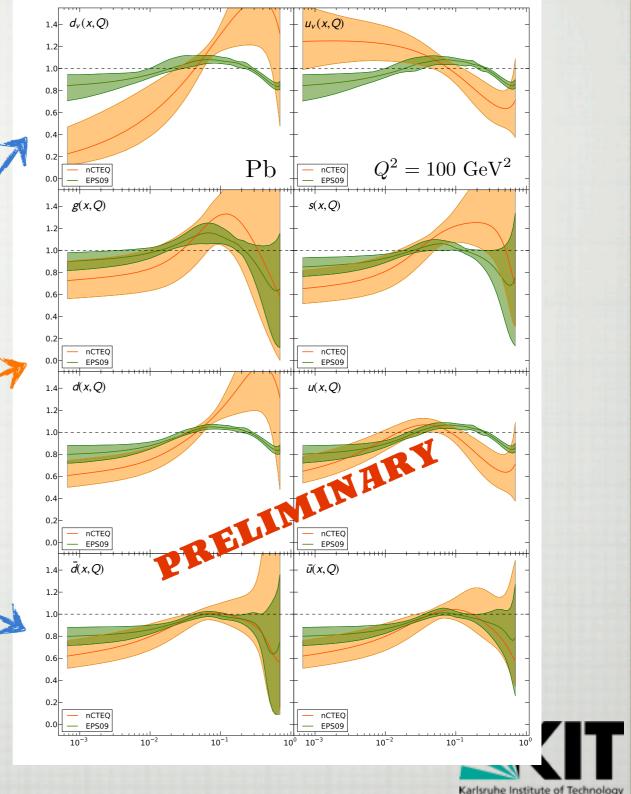
$$\chi^{2} = \chi_{0}^{2} + \frac{1}{2}H_{ij}(a_{i} - a_{i}^{0})(a_{j} - a_{j}^{0}) \qquad H_{ij} = \frac{\partial^{2}\chi^{2}}{\partial a_{i}\partial a_{j}}$$

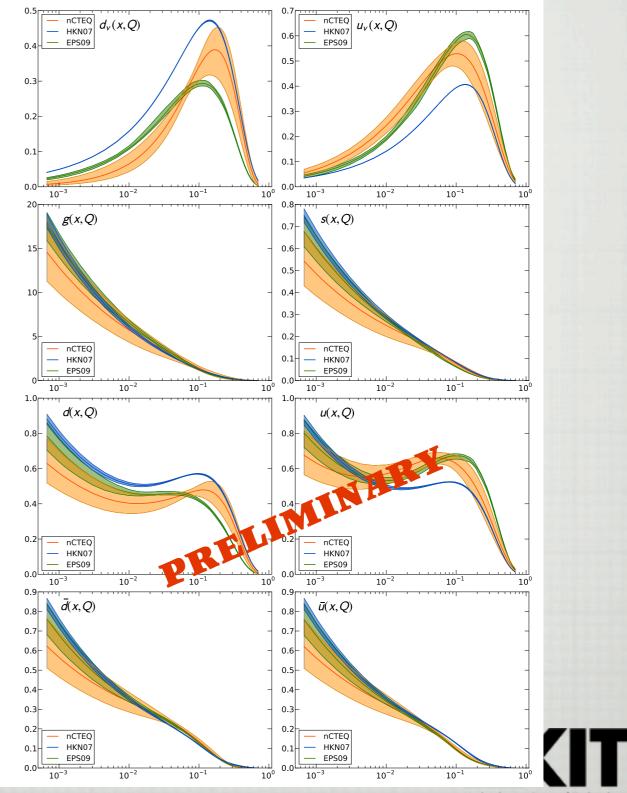
- I7 free parameters 7 gluon parameters
 - 8 valence parameters
 - 2 sea parameters
- Eigenvalues span 10 orders of magnitude

numerical precision required


• Use improved derivatives - less sensitive to noise

• $\Delta \chi^2 = 35$ determined so that every nuclear target is described within 90% C.L.

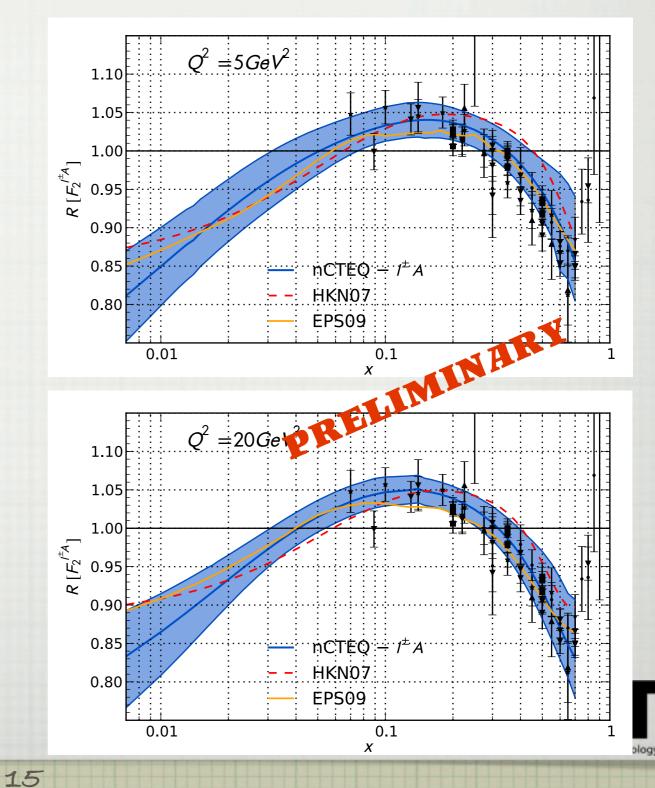

Parton density functions for bound partons as a function of x
 black yellow brown
 $x f_k^A(x,Q)$ for A = (1, 2, 4, 9, 12, 27, 56, 108, 207) red purple


 nCTEQ nuclear correction factors with uncertainties

$$R_i(\text{Pb}) = \frac{f_i^{Pb}(x,Q)}{f_i^p(x,Q)}$$
 @ $Q^2 = 100 \text{ GeV}^2$

- different solution for d-valence & u-valence compared to EPS09
- larger uncertainty @ gluon nuclear correction
 factor & bigger low-x suppression
- sea quark nuclear correction factors similar to EPS09
- nuclear correction factors depend largely on underlying proton baseline

- nCTEQ nuclear PDFs with uncertainties $xf_i^{Pb}(x,Q)$ @ $Q^2 = 100 \text{ GeV}^2$
 - nCTEQ d-valence & u-valence solution between HKN07 & EPS09
 - nCTEQ nuclear uncertainties larger than previous nPDF analyses
 - nPDFs not dependant on proton baseline better agreement between different nPDFs
 - Results still very preliminary


14

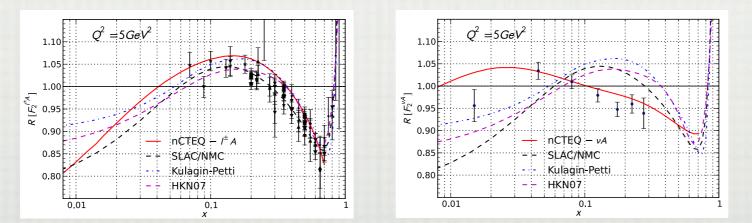
Karlsruhe Institute of Technolog

• nCTEQ structure function ratios with uncertainties

$$R = \frac{F_2^{Fe}(x,Q)}{F_2^D(x,Q)}$$

- Structure function ratios are fitted observables
- Despite different d-valence & u-valence solutions - ratio of structure functions remain very similar
- Good description of data & differences between nCTEQ and other nPDFs appear at low-x where there's no data

• Why is the nCTEQ analysis still **PRELIMINARY**?

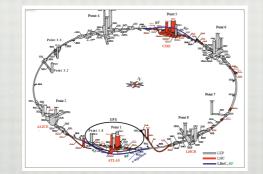

On-going work - inclusion of single inclusive pion production data from

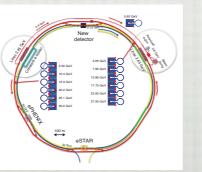
d-Au from RHIC

more realistic estimate of the nuclear gluon correction factor
 @ intermediate & high-x

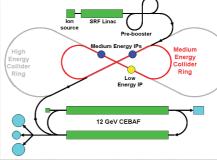
In discussion - inclusion of neutrino DIS data (inconsistencies within NuTeV data)

- better flavour separation for nuclear effects


Conclusions & Outlook

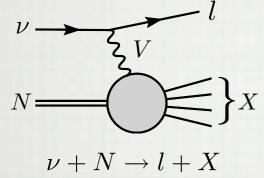

• nCTEQ analysis still preliminary - RHIC data being included & analysed at the moment

 nCTEQ has larger uncertainties & larger nuclear suppression for gluon @ low-x


LHC pPb data have a large potential to constrain nPDF
 need baseline w/o LHC data first

Next-generation colliders LHeC or EIC would be a game changer for nPDFs

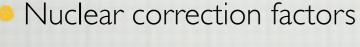
17



BACKUP SLIDES

Neutrino DIS cross-section data

NuTeV & di-muon → 2310 data points N = FeCHORUS → 824 data points N = Pb


- All charged lepton DIS & Drell-Yan data → 708 data points
- Challenges in combining the neutrino & charged lepton data
 - deal with the disparity of number of data points assigning weights to neutrino data
 - neutrino DIS data only with 2 heavy nuclei insufficient to get a reliable A-dependance
 - o all neutrino data show the different behavior or only NuTeV ?
- Different neutrino observables

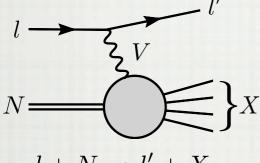
$$\frac{d\sigma^{\nu A}}{dxdQ^2}~\&~\frac{d\sigma^{\bar{\nu}A}}{dxdQ^2}$$

$$\sim {d\sigma^{\nu A}\over dx dQ^2}$$
 vs.

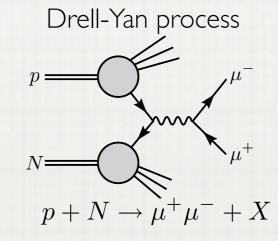
$$F_2^{\nu+\bar{\nu}}(x,Q^2) \& xF_3^{\nu+\bar{\nu}}(x,Q^2)$$

needs theory assumptions to extract

 $R[F_2^{\nu}] = F_2^{\nu A} / F_2^{\nu A, \text{free}}$ we show correction factors defined e.g. as



from free proton PDF


Experiments included in the analysis

Charged lepton

Deep Inelastic Scattering

 $l+N \to l'+X$

Neutrino

Deep Inelastic Scattering $\nu \longrightarrow l$ $N \longrightarrow l + X$

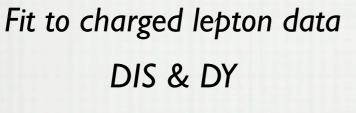
CHORUS

N = Pb

 $N = \mathrm{Fe}$

CCFR & NuTeV

CERN BCDMS & EMC & NMCN = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn, W)FNAL E-665DESY HermesN = (D, C, Ca, Pb, Xe)N = (D, He, N, Kr)

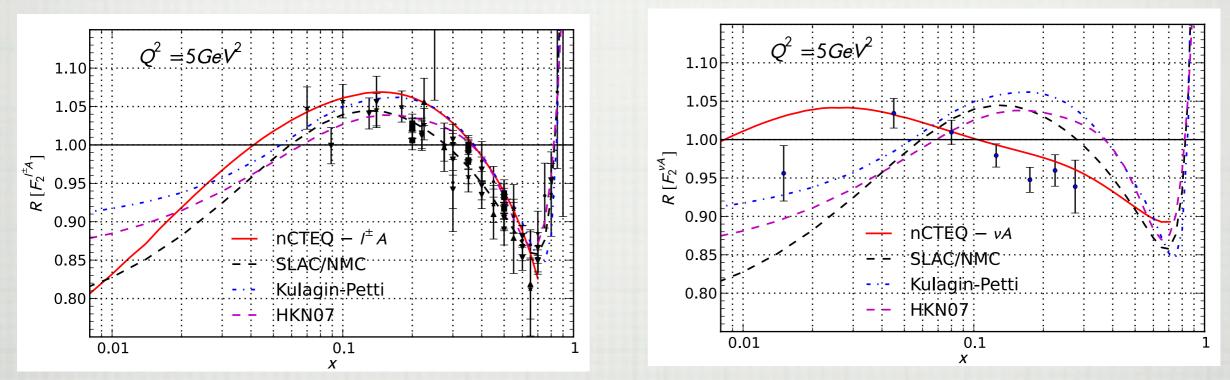

SLAC E-139 & E-049 N = (D, Ag, Al, Au, Be, C, Ca, Fe, He)

FNAL E-772 & E-886 N = (D, C, Ca, Fe, W)

1233 data points (708 after cuts)

3832 data points (3134 after cuts)

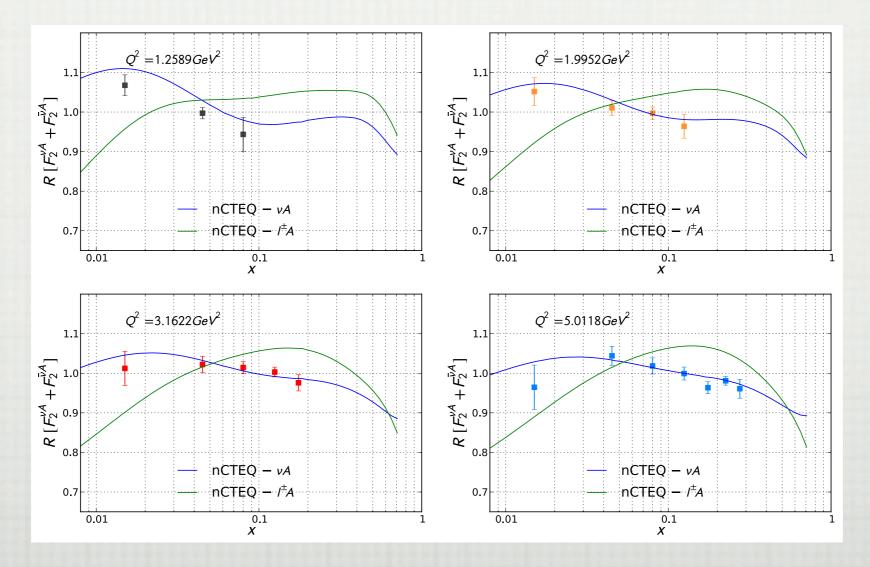
Comparison of charged lepton and neutrino fits

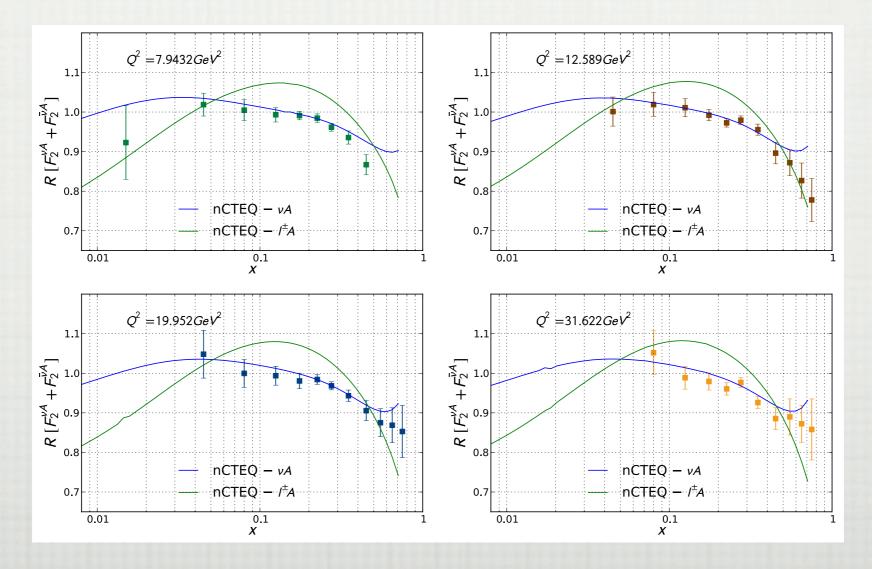


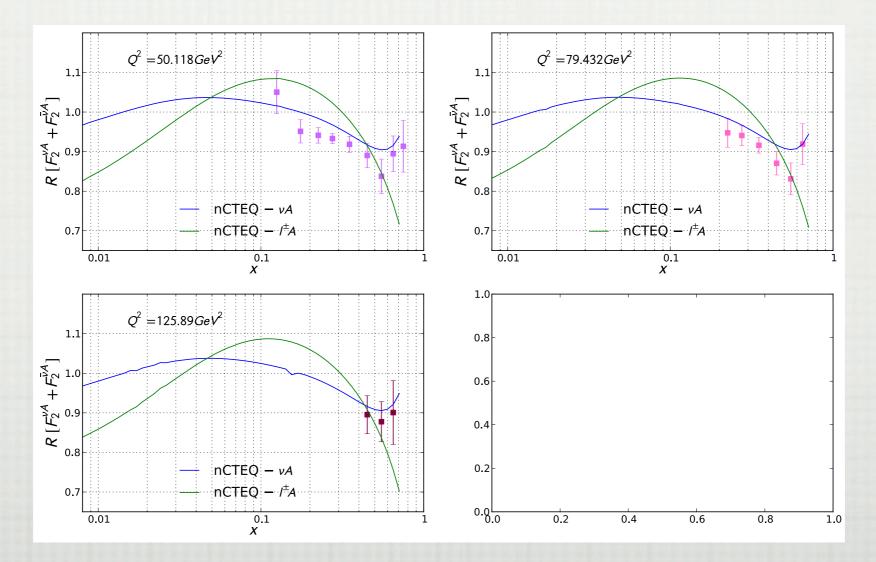
 χ^2 /d.o.f = 0.89

KK et al. [Phys.Rev.Lett. |06(2011) |22301] arXiv: |012.1178

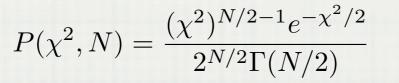
Fit to only neutrino DIS

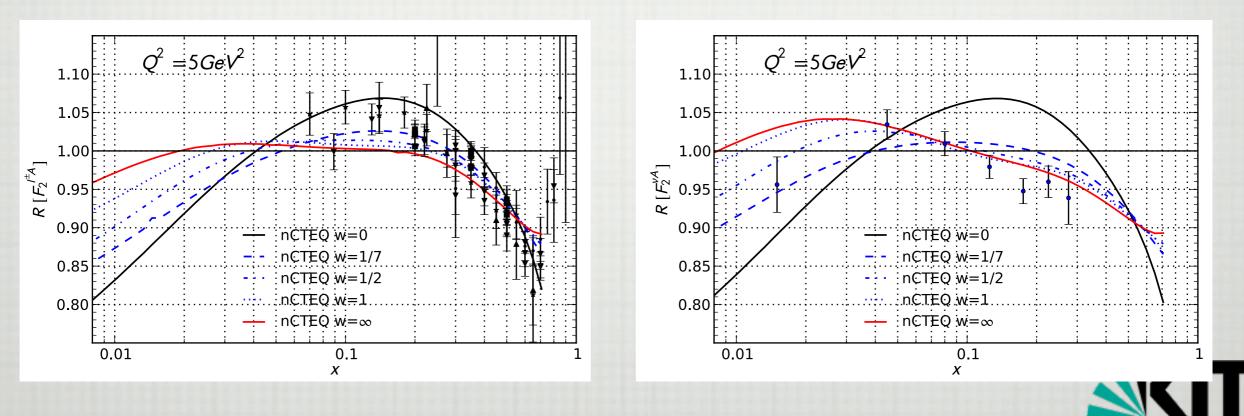

 χ^2 /d.o.f = 1.33


• can we explain the difference and fit all data together in a global fit ?


- NLO QCD calculation of $\frac{F_2^{\nu A} + F_2^{\bar{\nu} A}}{2}$ in the ACOT-VFN scheme
 - comparison of nCTEQ only neutrino fit against extracted NuTeV data at different Q²
 - charge lepton fit undershoots low-x data & overshoots mid-x data
 - Iow-Q² and small-x data cause tension with the shadowing observed in charged lepton data

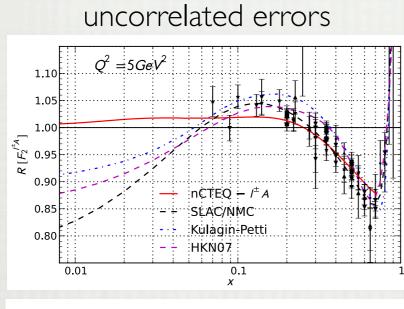
- NLO QCD calculation of $\frac{F_2^{\nu A} + F_2^{\bar{\nu} A}}{2}$ in the ACOT-VFN scheme
 - comparison of nCTEQ only neutrino fit against extracted NuTeV data at different Q²
 - charge lepton fit undershoots low-x data & overshoots mid-x data
 - Iow-Q² and small-x data cause tension with the shadowing observed in charged lepton data

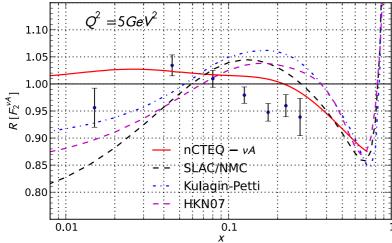



- NLO QCD calculation of $\frac{F_2^{\nu A} + F_2^{\bar{\nu} A}}{2}$ in the ACOT-VFN scheme
 - comparison of nCTEQ only neutrino fit against extracted NuTeV data at different Q²
 - charge lepton fit undershoots low-x data & overshoots mid-x data
 - Iow-Q² and small-x data cause tension with the shadowing observed in charged lepton data

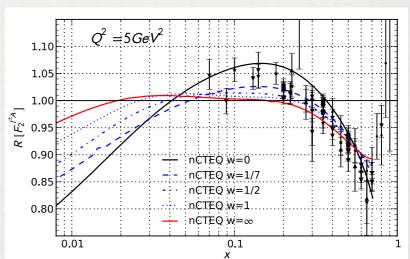
Analysis of fits with different weights of neutrino DIS (correlated errors)

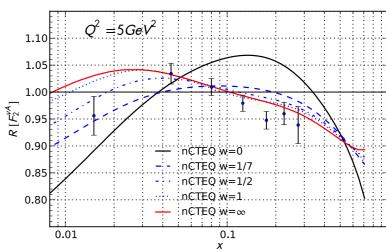
u	, l^{\pm}	$A \mid \chi^2$	(/pt)	νA	$\chi^2 \ (/\mathrm{pt})$	\mid total $\chi^2(/\text{pt}) \mid$
0	70	8 630	(0.89)	-		630 ± 58
1	/7 70	8 645	(0.91)	3134	4681(1.50)	5326 ± 203
1	/2 70	8 680	(0.96)	3134	4375(1.40)	5055 ± 192
1	70	8 736	(1.04)	3134	4246(1.36)	4983 ± 190
0	0 -		-	3134	4167(1.33)	4167 ± 176


26


Karlsruhe Institute of Technology

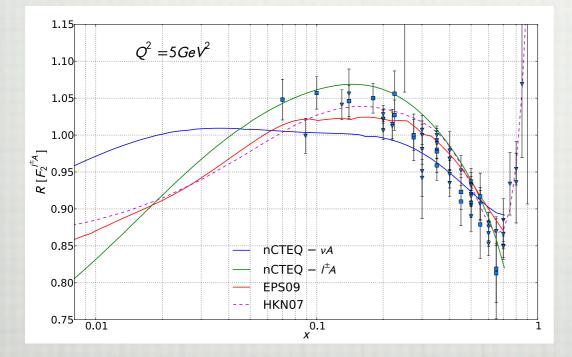
Analysis of fits with neutrino DIS (uncorrelated errors)

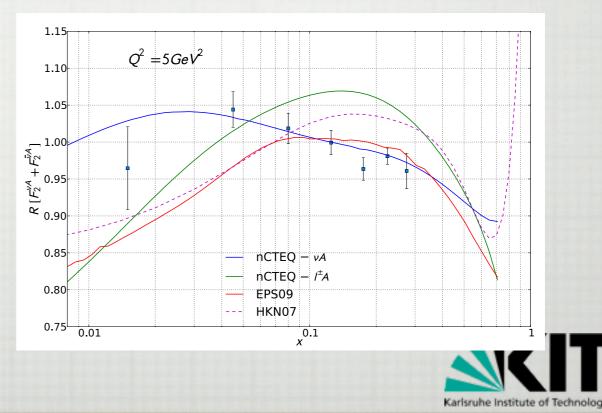

w	$l^{\pm}A$	$\chi^2 (/\text{pt})$	νA	$\chi^2 (/\text{pt})$	total $\chi^2(/\text{pt})$
1-corr	708	736(1.04)	3134	4246(1.36)	4983(1.30)
1-uncorr	708	809 (1.14)	3110	3115(1.00)	3924(1.02)


27

correlated errors

Properties of neutrino fits


CHORUS data are in good agreement with the charged lepton data


combined:
$$\chi^2$$
/pt=1.03

NuTeV data (with correlated errors) difficult to fit alone or with the charged lepton data

alone: χ^2 /pt=1.35 combined: χ^2 /pt=1.33

Neutrino data dominate the combined fit without re-weighting - final result depends from the weight chosen

