

Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production

Juan Rojo CERN, PH Division, TH Unit

Based on: M. Gouzevich, A. Oliveira, J. Rojo, R. Rosenfeld, G. Salam, V. Sanz arXiv:1303:6636, submitted to JHEP

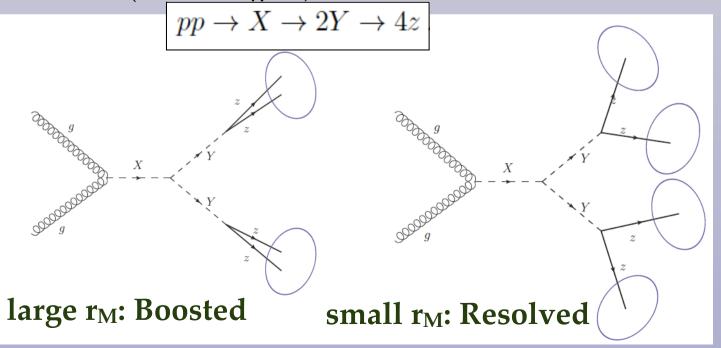
> Deep-Inelastic Scattering 2013 Marseille, 23 April 2013

Juan Rojo

Scale-Invariant Resonance Tagging

Motivation for scale-invariant tagging

- Many BSM scenarios involve **resonant pair production** of heavy (SM and BSM) particles
- In the spirit of **Simplified Models**, we assume that the underlying process is


$$pp \to X \to 2Y \to 4z$$

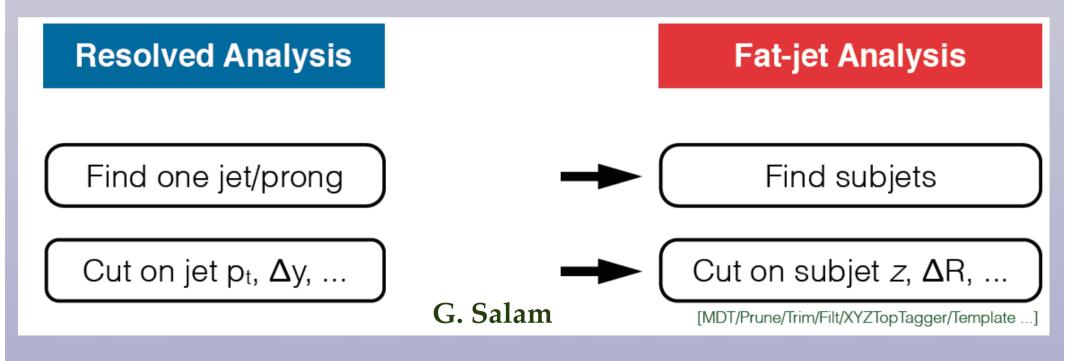
Find a second se

 $\stackrel{\scriptstyle \eq}{}$ Depending on the value of the mass ratio $r_M = M_X/2M_Y$ different final state topologies

 $\frac{1}{2}$ For large \mathbf{r}_{M} the intermediate heavy particles Y will be **highly boosted**, and thus their decay products z will be close in the detector

 $\frac{1}{2}$ For small \mathbf{r}_{M} the Y particles are produced close to rest, and the four decay particles z are well separated in the detector (**res<u>olved regime</u>**)

Motivation for scale-invariant tagging

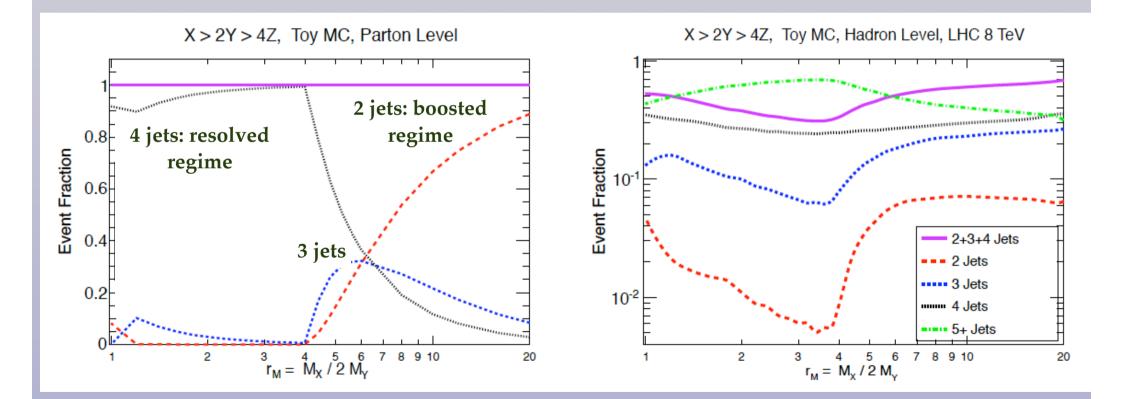

 $\stackrel{\scriptstyle \odot}{}$ In the resolved regime, small r_{M} , select two Y candidates by dijet mass pairing

[©] In the boosted regime, **large r**_M, select two Y candidates using **fat-jets with Mass-Drop Tagger**

$$m_{j1} \le \mu \cdot m_j$$
 $\frac{\min(p_{t,j1}, p_{t,j2})^2}{m_j^2} \Delta R_{j1,j2}^2 > y_{\text{current}}$

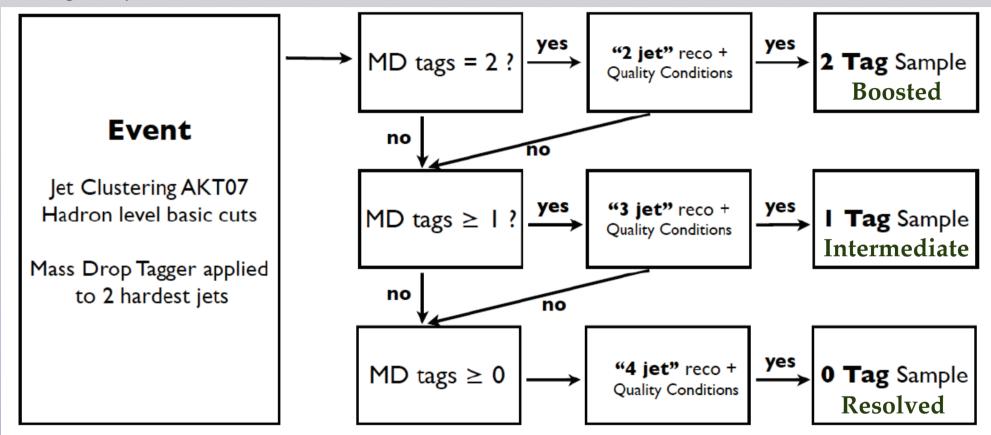
Gan we design a search strategy that efficiently explores **the whole mass range**?

For achieve a similar tagging efficiency, we want to apply the **same selection cuts** in the **boosted and resolved regimes**



Event Classification

At **parton level**, without cuts, the classification of the event topology (boosted, resolved or intermediate) is trivial **based on the number of jets**


But at **hadron level** with **realistic cuts** such naive classification is not feasible

A more robust event classification achieved based on the number of **jet substructure tags**

Event Classification

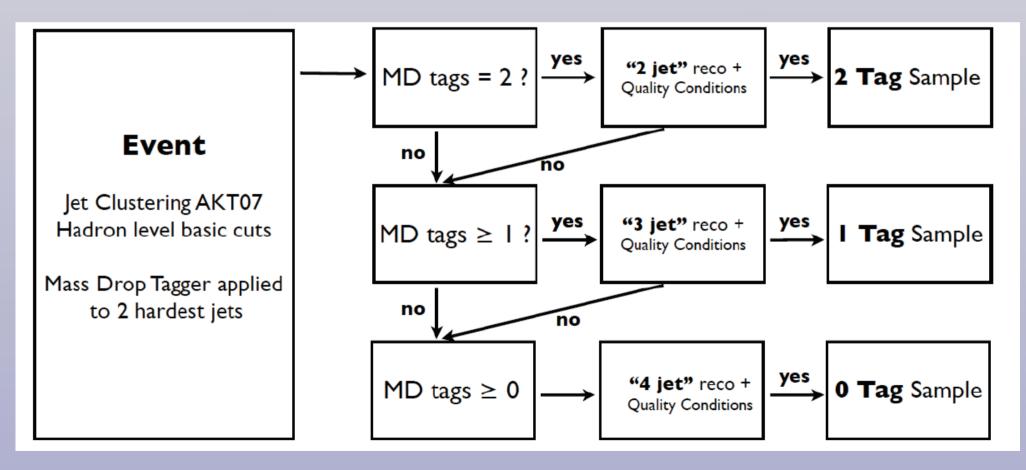
 $\frac{1}{2}$ Use a new **event classification** based on the number of **mass-drop substructure tags** of the leading two jets in the event

First we look for two mass-drop tags. if quality conditions are satisfied, **tag the event as arising from a heavy resonance X** and classify it in the **2 Tag sample**

Figure a mass-drop tag and pair the fat jet with the remaining two hardest jets. If quality conditions are satisfied, **tag the event as arising from a heavy resonance X** and classify it in the **1 Tag sample**

Figure 1 is a set of the set of t

Juan Rojo


6

Event Classification

NB: this is really a **unique analysis** based on a **unique data sample** ...

w ... but based on a **physical criterion**, event-by-event, to **apply the resonance analysis** that is specially **optimized for a given event topology**

Solution Allows to combine multiple analysis into a common search, or at least, to improve the efficiency of existing searches thanks to the smooth transition in the intermediate region

Quality Requirements

 $\frac{1}{2}$ To select events as arising from the **resonance X**, we require quality requirements, which are designed to lead to the same effects in the **boosted** and **resolved** regimes

Common cuts

$$\Delta y \equiv |y_{Y1} - y_{Y2}| \le \Delta y_{\max}$$

(s-channel BSM production more central, t-channel QCD more forward)

$$\left|\frac{(m_{Y1} - m_{Y2})}{\langle m_Y \rangle}\right| \le f_m$$

$$M_Y(1 - f_m) \le m_{Y1}, m_{Y2} \le M_Y(1 + f_m)$$

(Mass resolution & mass window)

Boosted regime

(applied to subjets within fat jet)

$$\frac{m_{j1} \le \mu \cdot m_j}{\frac{\min(p_{t,j1}, p_{t,j2})^2}{m_j^2} \Delta R_{j1,j2}^2 > y_{\text{current}}}$$

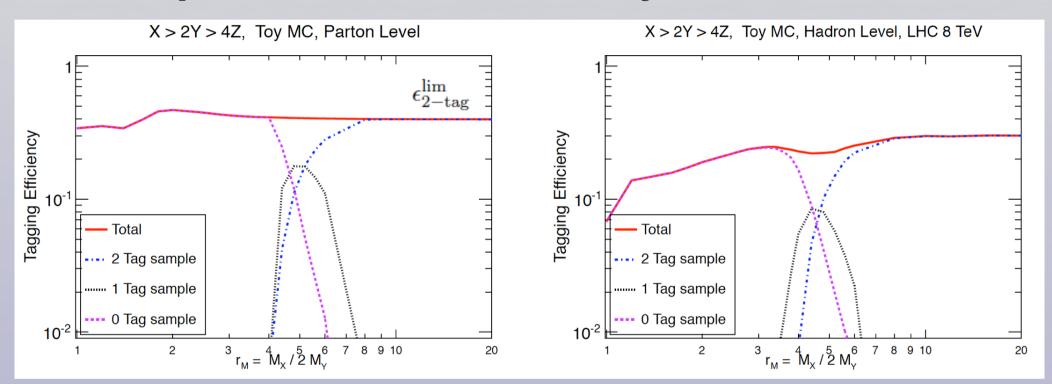
Resolved regimes

(applied to resolved jets of a Y candidate)

$$\max\left(m_{Yi,1}, m_{Yi,2}\right) \le \mu \cdot m_{Yi}$$

$$p_T^{(2)} \ge y_{\text{cut}} \cdot p_T^{(1)}$$

$$\Delta y \equiv |y_{Yi,1} - y_{Yi,2}| \le \Delta y_{\max}^{\text{res}}$$


DIS2013, Marseille, 23/04/2013

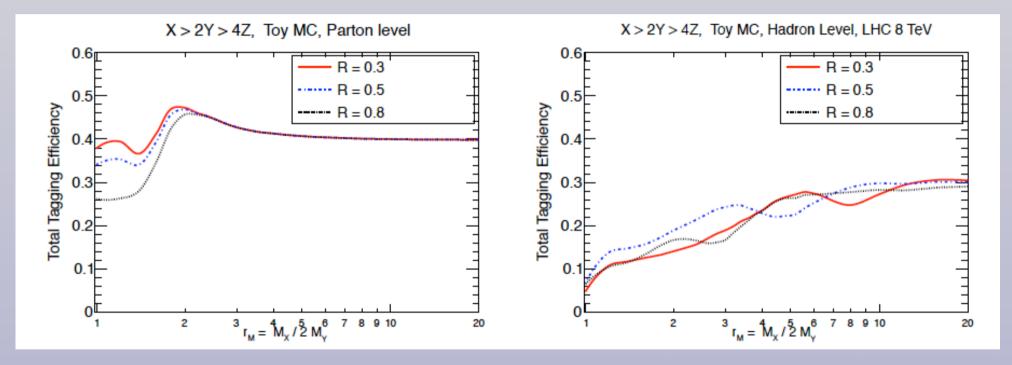
Juan Rojo

Scale-invariant tagging

Tagging efficiency **independent of the value of the mass ratio** (except hadron level small **r**_M)

Smooth interpolation between the boosted and resolved regimes

At parton level the **tagging efficiency in the boosted limit** can be computed analytically

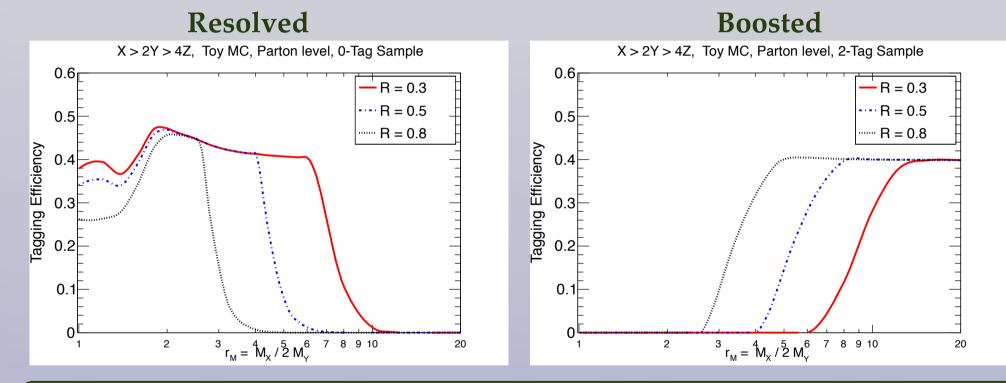

$$\epsilon_{2-\text{tag}}^{\text{lim}} \equiv \epsilon_{2-\text{tag}} \left(r_M \gg 1 \right) = \left(1 - \frac{2y_{\text{cut}}}{1 + y_{\text{cut}}} \right)^2 \cdot \frac{\exp(\Delta y_{\text{max}}) - 1}{\exp(\Delta y_{\text{max}}) + 1} \sim 0.40$$

Scale-invariant tagging: with a single analysis, explore simultaneously both the boosted and resolved regimes, with a smooth interpolation for intermediate masses

Scale-invariant tagging

Fagging efficiency is also **independent of the value of jet radius**

The relative classification of the events in 0-tag, 1-tag and 2-tag depends on **R**, but the total tagging efficiency is reasonably **R-independent**


Scale-invariant tagging: with a single analysis, explore simultaneously both the boosted and resolved regimes, with a smooth interpolation for intermediate masses

Radius-independent tagging: Results are resilient against choice of R

Scale-invariant tagging

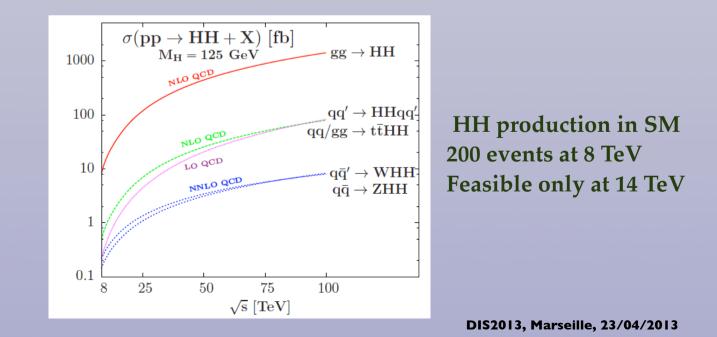
Fagging efficiency is also **independent of the value of jet radius**

The relative classification of the events in 0-tag, 1-tag and 2-tag depends on **R**, but the total tagging efficiency is reasonably **R-independent**

Scale-invariant tagging: with a single analysis, explore simultaneously both the boosted and resolved regimes, with a smooth interpolation for intermediate masses

Radius-independent tagging: Results are resilient against choice of R

Application to Searches for Enhanced Higgs Pair production in the 4b Final State


New physics in Higgs pair production

Solution As a first application of the general scale-invariant strategy, we study **resonant Higgs pair production** in the **4b final state**

$$pp \to X \to 2Y \to 4z$$
General kinematics $pp \to X \to 2H \to 4b$ Specific application

Higgs pair production is **small in SM**, but **enhanced** in many BSM scenarios

For the provide first a **model-independent analysis**, and then interpret the results in the context of **radion and graviton production** in warped extra dimension models

Juan Rojo

13

b-tagging

Final state comes from QCD multijet production

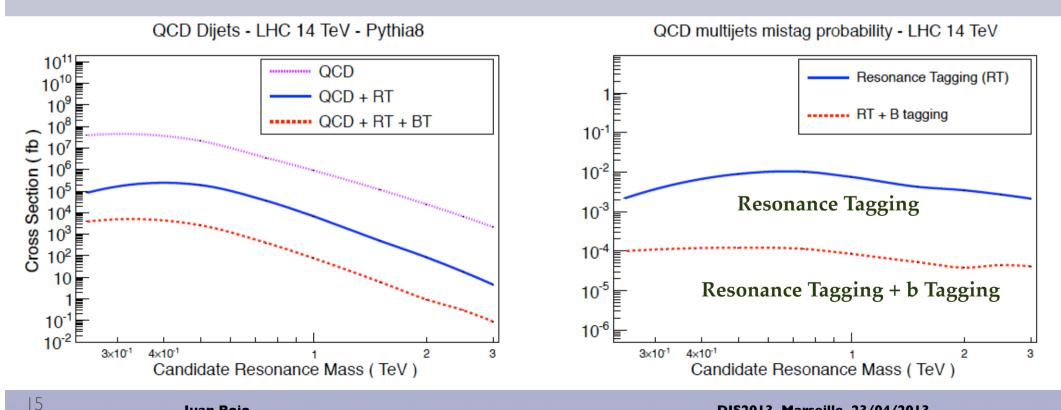
In order to reduce it we need to perform **b-tagging**

- Determine the number of *b*-quarks within each of the two Higgs candidates' jets. Such candidate jets can be a single anti- k_T jet with radius R (in the boosted regime) or a jet composed by the sum of two different anti- k_T jets (in the resolved limit).
- A Higgs candidate jet is considered to be *b*-tagged if it contains at least one *b* quark with $p_{T,b} \ge p_{T,b}^{\min} = 10$ GeV. The *b*-tag efficiency is denoted by f_b . $f_b = 0.75$
- A Higgs candidate jet which does not fulfill the previous condition, but contains at least one c quark with $p_{T,c} \ge p_{T,b}^{\min}$, will be b-tagged with a mistag probability f_c .
- A Higgs candidate jet which contains only light quarks and gluons will be *b*-tagged with a mistag probability f_l .¹² $f_l = 0.03$
- b-tagged events are those for which the two Higgs candidates' jets have been both b-tagged.

A single b-quark in each Higgs candidate enough to consider event as tagged
Also explored double b-tagging, with two tags per Higgs. Challenging in the boosted limit

Juan Rojo

14

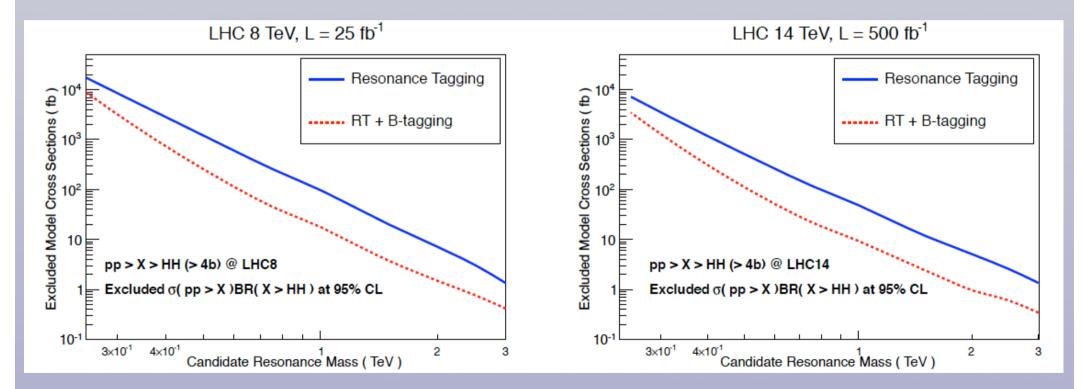

Background rejection rates

Final state comes from QCD multijet production, estimated with Pythia8 dijets

 \bigvee For any value of the heavy resonance X mass M_X, define QCD dijet cross section as the number of events where invariant mass of the leading two jets is in a window of 15% around M_X

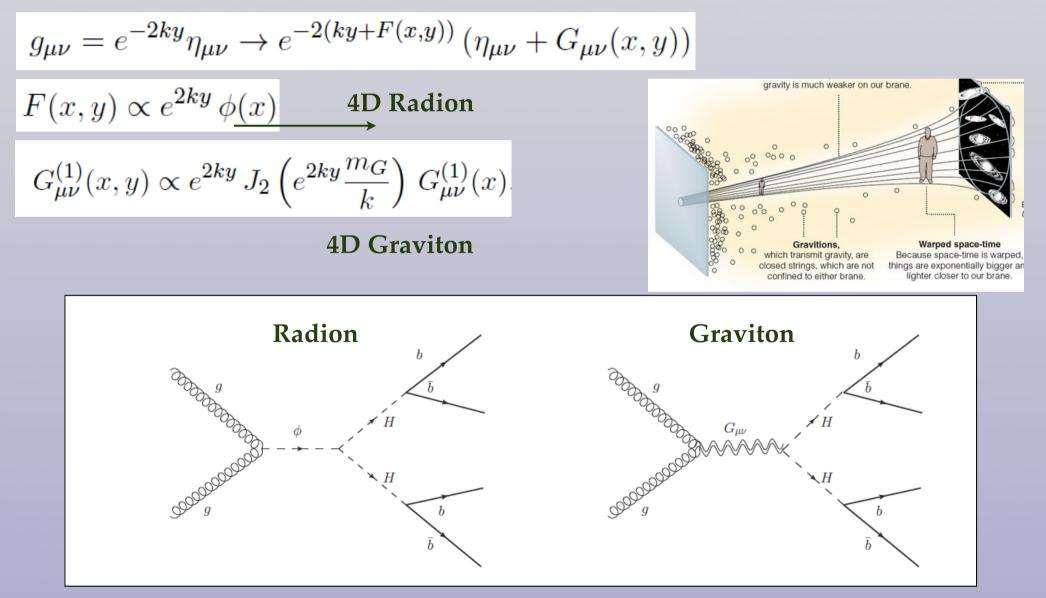
As the tagging efficiency, the **background rejection rate is scale invariant**: 10⁻⁴ for all masses. Substantial background rejection!

The **2b dijet tagged cross section** is below 1 fb above 2 TeV at LHC14



Model independent limits

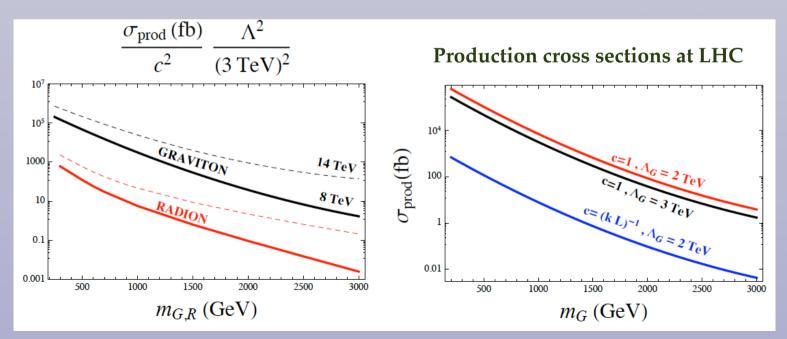
♀ We can define **model-independent limits** for BSM excluded cross sections for **pp->X->HH->4b** at the 95% CL


 $\stackrel{\scriptstyle \odot}{}$ At the LHC 14 TeV, cross sections as small as 10 (1) fb can be excluded for $M_X = 1$ (2) TeV

- SM Higgs-pair production (non-resonant) has a cross section of 20 fb at LHC 14 TeV
- Free **tagged 2b jet cross section** is thus a potentially relevant channel for BSM searches

Radion and Graviton production

 $\stackrel{\circ}{\Rightarrow}$ A particular example of **pp->X->HH->4b** appears when **X** is a **radion** φ or a **graviton G** in the context of **warped extra dimensions** scenarios


Radion and Graviton production

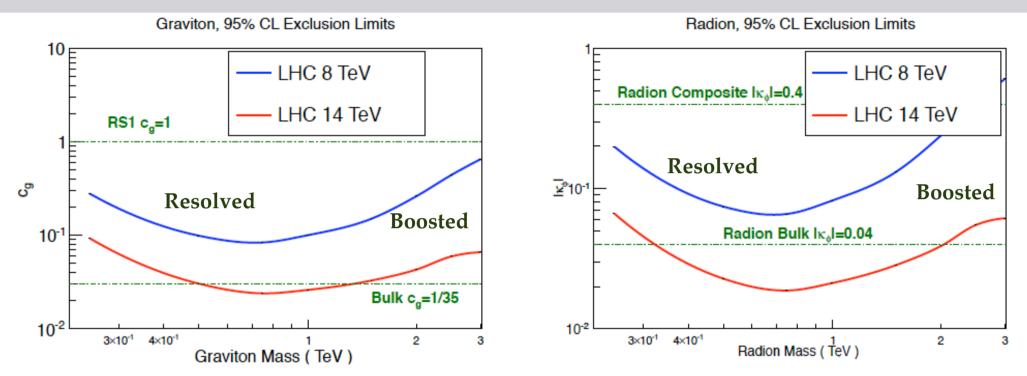
 $\stackrel{\circ}{\Rightarrow}$ A particular example of **pp->X->HH->4b** appears when **X** is a **radion** φ or a **graviton G** in the context of **warped extra dimensions** scenarios

 $\stackrel{\scriptstyle \bigcirc}{\scriptstyle \Theta}$ Cross sections scale quadratically with the **coupling to gluons c** and with the **UV scale** Λ

We assume production via **gluon fusion**, and a branching ratio of 25% into Higgs pairs

$$\sigma_G\left(M_G, \Lambda_G, c_g\right) = \left(\frac{c_g}{\Lambda_G}\right)^2 \left(\frac{\widetilde{\Lambda}_G}{\widetilde{c}_g}\right)^2 \sigma_G\left(M_G, \widetilde{\Lambda}_G, \widetilde{c}_g\right)$$

Radion and Graviton production


Benchmark scenarios

			Due de etter		
	radion Production				
	Scenario	$ \kappa^{\phi}_{g} $		Λ_ϕ	$BR(\phi \to 2H)$
	radion Bulk (R-Bulk)	$ -\alpha_s b_3/8\pi - 1/4kL \sim 0.04$		$2 { m TeV}$	1/4
	radion Composite (R-Comp)	0.4		$2 { m TeV}$	1/4
	graviton Production				
	Scenario	c_g		Λ_G	$BR(G \to 2H)$
	graviton RS1 (G-Brane)	1		$2 { m TeV}$	1/4
	graviton Bulk (G-Bulk)	1	kL = 1/35	$2 { m TeV}$	1/4
Expected number of events					
	LHC 8 TeV, L = 25 fb ⁻¹	LHC 14 TeV, $L = 500 \text{ fb}^{-1}$			
Number of Events 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	108 Resonance TaggIng + b-taggIng 108 Graviton Brane 107 Graviton Bulk		10° pp > G/R > HH > 4b @ LHC14 Resonance tagging + b-tagging 10° Graviton Brane 10° Graviton Bulk Graviton Bulk		
10 ⁴ 10 ² 10 10	3×10 ⁻¹ 4×10 ⁻¹ Radion/Graviton Mass (TeV)		stino bo 10 ³ 10 ⁴ 10 ³ 10 ² 10 ² 10 ² 10 ² 10 ² 10 ² 10 ² 10 ²		

Few radion events at 8 TeV, unless coupling to gluons enhanced (composite models) The whole graviton/radion parameter space accessible at 14 TeV

Exclusion limits

We can perform exclusion scans for **specific model parameters**

At 8 TeV, we can exclude a ratio with couplings a factor 2 the default value
 The 4b channel for graviton is competitive at 8 TeV with other experimental signatures
 At 14 TeV, the whole parameter space of ration and graviton production accessible
 The boosted and resolved regimes are being explored simultaneously

Summary and outlook

Scale-invariant resonance tagging is a new theoretical development in jet physics which allows to efficiently combine separate searches (resolved vs boosted) into a common analysis

Using these methods, **4b final state** is competitive for searches of **enhanced Higgs pair production**, a generic feature of many BSM scenarios

♀ In the context of radion and graviton models, a substantial fraction of parameter space can be excluded

Now extending the feasibility analysis for the **bb yy final state**

Similar ideas can be applied to **top pair production**, to combine the boosted and resolved regimes in a common BSM searches