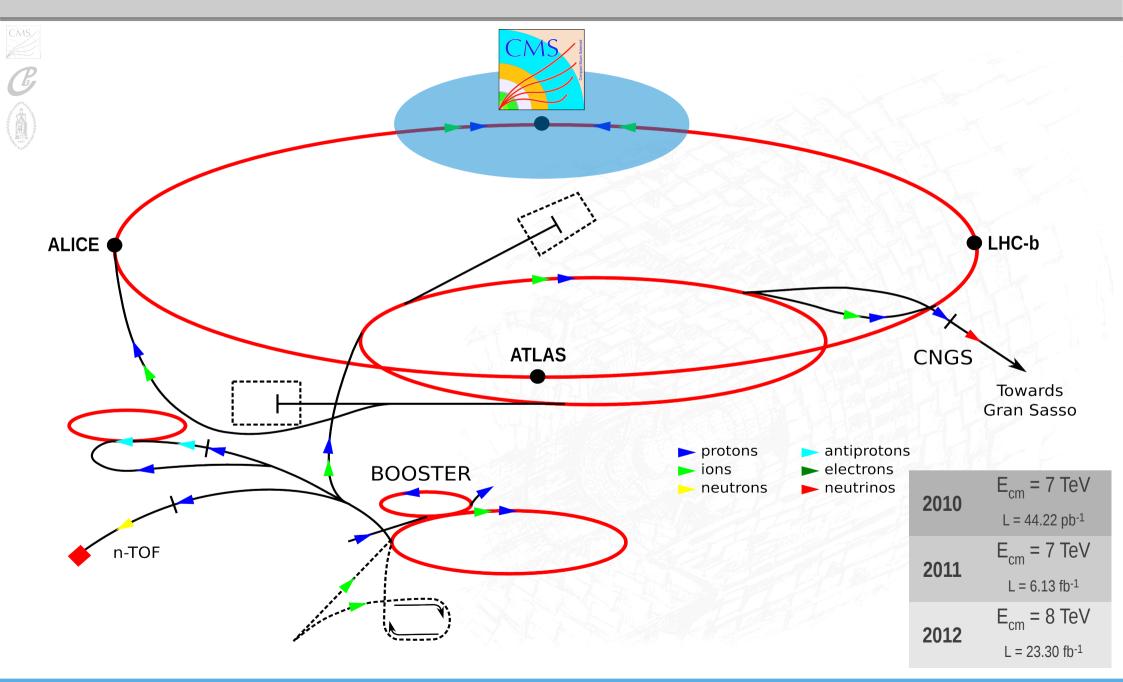


# Exclusive processes in pp collisions in CMS

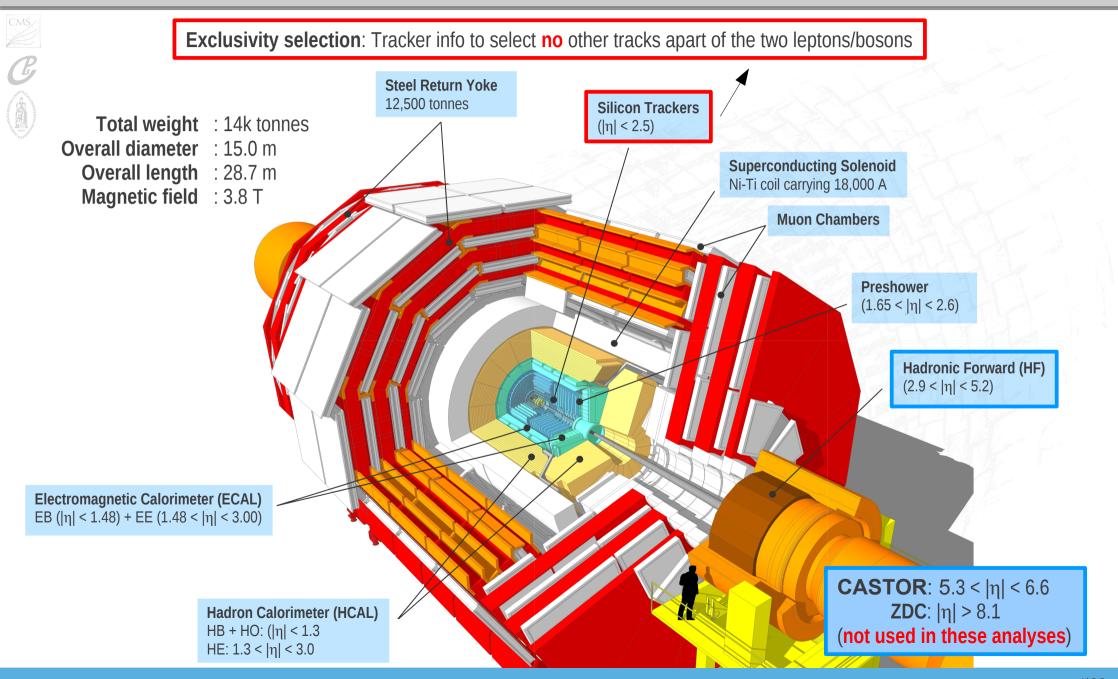
#### Gustavo Silveira

gustavo.silveira@cern.ch

#### on behalf of the CMS Collaboration


Centre for Cosmology, Particle Physics and Phenomenology (CP3) Universite catholique de Louvain (UCL), Belgium

#### **Outline**




- CMS detector and capabilities for forward physics;
- Probing central exclusive processes at high-energies;
  - Limits on central exclusive  $IPIP \rightarrow \gamma\gamma$  production;
  - Measurement of exclusive  $\gamma \gamma \rightarrow e^+e^-$ ;
  - Measurement of exclusive  $\gamma\gamma \rightarrow \mu^+\mu^-$ .
- Exclusive production of massive electroweak boson pairs;
  - Cross-checks with exclusive  $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$  at large masses;
  - Search for exclusive  $\gamma\gamma \rightarrow W^+W^-$  production;
  - Limits on anomalous quartic gauge couplings.

## Large Hadron Collider



### The CMS experiment

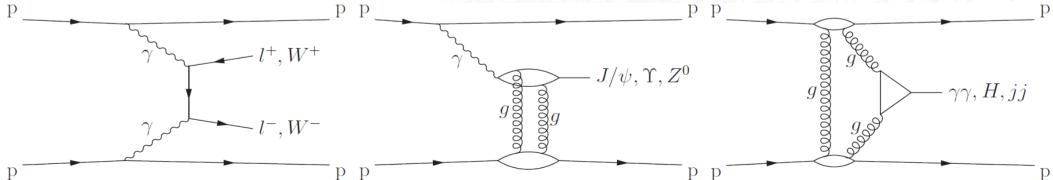


#### **Outline**



• CMS detector and capabilities for forward physics;

- Probing central exclusive processes at high-energies;
  - Limits on central exclusive  $IPIP \rightarrow \gamma\gamma$  production;
  - Measurement of exclusive  $\gamma \gamma \rightarrow e^+e^-$ ;
  - Measurement of exclusive  $\gamma\gamma \rightarrow \mu^+\mu^-$ .
- Exclusive production of massive electroweak boson pairs;
  - Cross-checks with exclusive  $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$  at large masses;
  - Search for exclusive  $\gamma\gamma \rightarrow W^+W^-$  production;
  - Limits on anomalous quartic gauge couplings.


#### **Exclusive processes at LHC**

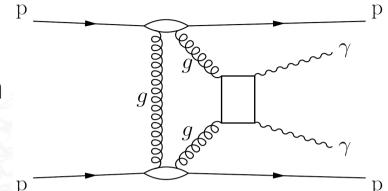


The central exclusive production of light and heavy pairs is represented by:

$$pp \to p^{(*)} + (\gamma \gamma, \ell^+ \ell^-, W^+ W^-) + p^{(*)}$$

- Intact protons in the final states, however also accounting for proton dissociation;
- No other particles in the final states;
- $\gamma\gamma$ : tests for theoretical prediction for **exclusive Higgs production** and to measure **gluon density at small-**x;
- $\ell^+\ell^-$ : comparison to precision QED predictions and to study of **proton dissociation**;
- $W^+W^-$ : study of exclusive processes at high mass and constraint of **anomalous couplings**.




#### Central exclusive $\gamma\gamma$ production

CMS-FWD-11-004 JHEP 11 (2012) 080



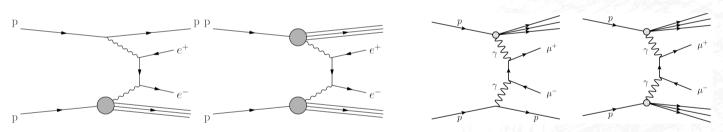
- Data collected on 2010 with **36 pb<sup>-1</sup>**;
- With the data collected in CMS it is possible to determine an upper limit cross section with **95% CL**:

$$\sigma(E_{\rm T}(\gamma) > 5.5\,{\rm GeV}, \, |\eta(\gamma)| < 2.5) < 1.18\,{\rm pb}$$



 $E_T(\gamma) > 5.5 \text{ GeV}$  $|\eta(\gamma)| < 2.5$ **ExHuME Theoretical** 0.8 MRST01-LO predictions for the elastic 0.6 production 0.4 0.2

No observed candidates with bkg. of  $1.79 \pm 0.40$  evt

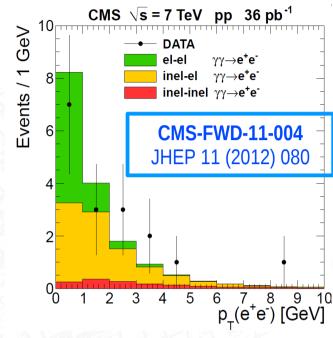

| Theoretical predictions (pb) |       |       |        |       |  |  |  |
|------------------------------|-------|-------|--------|-------|--|--|--|
| PDFs                         | MRS   | ST01  | MSTW08 |       |  |  |  |
| Accuracy                     | LO    | NLO   | LO     | NLO   |  |  |  |
| ExHuMe                       | 0.432 | 0.086 | 0.612  | 0.109 |  |  |  |
| SuperCHIC                    | -     | 0.103 | 0.472  | -     |  |  |  |
| New results†                 | -     | 0.039 | 0.18   | -     |  |  |  |

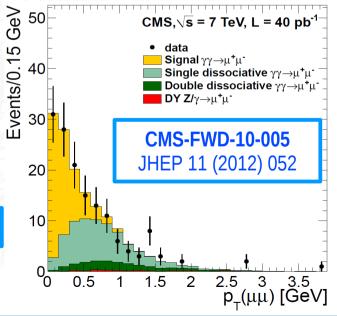
† Harland-Lang, L.A.; Khoze, V.A.; Ryskin, M.G.; Stirling, W.J.; Eur. Phys. J. C 72 (2012) 2110; arXiv:1204.4803v2 [hep-ph] (2012)

# Exclusive production of $\ell^+\ell^-$ pairs



- Selection requires vertex with two leptons tracks & nothing else;
  - $E_{\rm T}(e) > 5.5$  GeV and  $|\eta(e)| < 2.5$ ; electron/positron
  - $p_{\mathrm{T}}(\mu) > 4$  GeV,  $|\eta(\mu)| < 2.1$  and  $m(\mu^+\mu^-) > 11.5$  GeV; muons
- MC predictions include elastic processes and contribution from proton dissociation:





- In the exclusive production of  $e^+e^-$  pairs, it has been observed 17 (semi-)exclusive events (36 pb<sup>-1</sup>);
- Measurement of exclusive  $\mu^+\mu^-$  pairs results in (40 pb<sup>-1</sup>):

$$\sigma({\rm pp} 
ightarrow {\rm p} \mu^+ \mu^- {\rm p}) = 3.38^{+0.58}_{-0.55}~{
m (stat.)} \pm 0.16~{
m (syst.)} \pm 0.14~{
m (lumi.)}~{
m pb}$$

DIS 2013 XXI International Workshop on Deep-Inelastic Scattering and Related Subjects – Marseille, France

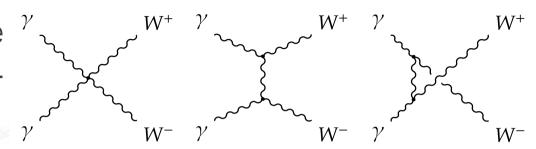
Good agreement between LPAIR and the data.





#### **Outline**




- CMS detector and capabilities for forward physics;
- Probing central exclusive processes at high-energies;
  - Limits on central exclusive  $IPIP \rightarrow \gamma\gamma$  production;
  - Measurement of exclusive  $\gamma \gamma \rightarrow e^+e^-$ ;
  - Measurement of exclusive  $\gamma\gamma \rightarrow \mu^+\mu^-$ .
- Exclusive production of massive electroweak boson pairs;
  - Cross-checks with exclusive  $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$  at large masses;
  - Search for exclusive  $\gamma\gamma \rightarrow W^+W^-$  production;
  - Limits on anomalous quartic gauge couplings.

#### Exclusive $\gamma\gamma \rightarrow W^+W^-$ : theory

CMS-FSQ-12-010



The  $\gamma \gamma \to W^+ W^-$  coupling is present in the SM Lagrangian: quartic coupling plus t- and u-channel W exchange;

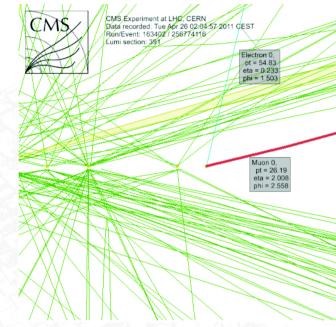


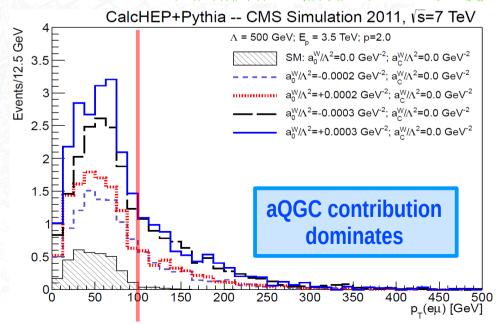
Extension to consider the anomalous quartic gauge couplings (aQGC):

$$L_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha},$$

$$L_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} - W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \Theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta},$$

**└**→ Parameters for the genuine aQGC<sup>†</sup>


Form factors are included in order to tame the rising of the cross section:

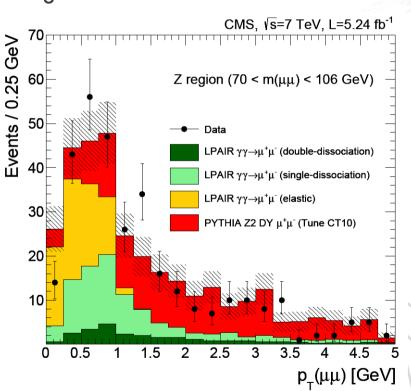

$$a_{0,C}^{W}(W_{\gamma\gamma}^{2}) = \frac{a_{0,C}^{W}}{\left(1 + \frac{W_{\gamma\gamma}^{2}}{\Lambda^{2}}\right)^{p}} \xrightarrow{p = 2} \text{ (dipole form factor)}$$

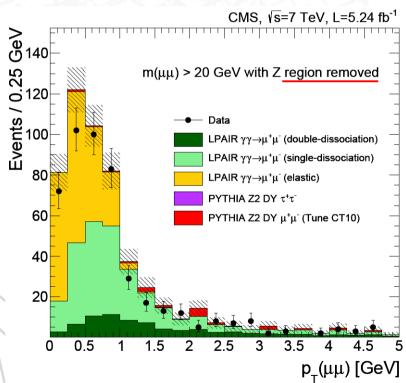
• For  $a_0^W/\Lambda^2$ ,  $a_C^W/\Lambda^2 \sim 10^{-5}$ : unitairy bound reached, so  $\Lambda$  = 500 GeV.



- Data collected in 2011 at 7 TeV:
  - Opposite-sign and flavor  $\mu e$  events in **5.05** fb<sup>-1</sup>;
  - $\mu^+\mu^-$  events in **5.24 fb<sup>-1</sup>**.
  - Asymmetric triggers with thresholds of 17 & 8 GeV;
  - No extra tracks at the vertex apart of the leptons;
- Selection requires leptons and pairs with:
  - $p_{\rm T}(\ell)$  > 15 GeV and  $|\eta(\ell)|$  < 2.4;
  - $m(\ell^+\ell^-) > 20 \text{ GeV}$  and  $p_T(\ell^+\ell^-) > 30 \text{ GeV}$ .
- aQGC are studied in a kinematical region with  $p_T(\mu e) > 100 \text{ GeV}$ .







The dimuon channel is used as a benchmark to validate the exclusivity criteria;

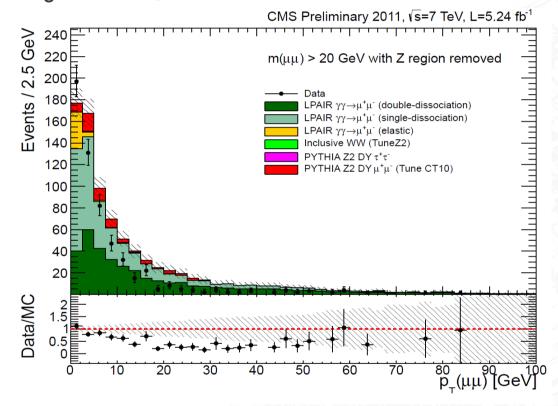
Good agreem

Inelastic **Elastic** (quasi-exclusive)  $1-|\Delta\varphi(\ell^+\ell^-)/\pi| < 0.1$  $1 - |\Delta \varphi(\ell^+ \ell^-)/\pi| > 0.1$  $|\Delta p_{\rm T}(\ell^+\ell^-)| < 1.0$  $|\Delta p_{\mathrm{T}}(\ell^+\ell^-)| > 1.0$ 

Kinematic regions:






| Region       | Data            | Simulation        | Data/Simulation   |
|--------------|-----------------|-------------------|-------------------|
| Elastic      | $820 \pm 28.6$  | $906.2 \pm 30.1$  | $0.905 \pm 0.044$ |
| Dissociation | $1312 \pm 36.2$ | $1829.5 \pm 42.8$ | $0.717 \pm 0.026$ |
| Total        | $2132 \pm 46.2$ | $2735.7 \pm 52.3$ | $0.779 \pm 0.023$ |

28% deficit observed in the data compared to MC

# Benchmark with $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ (II)

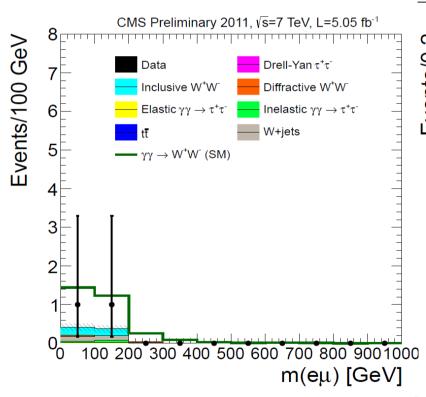


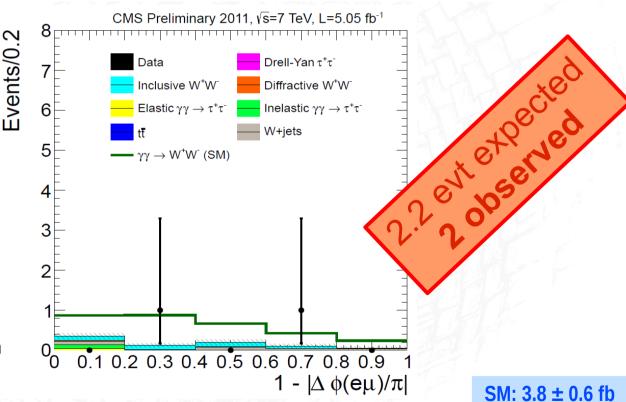
• Comparing the data to the simulation, we observe a deficit in data that is **not** predicted by the Monte Carlo event generation;



ullet We estimate a scale factor for masses larger than the W-pair mass as:

$$F = \frac{N_{\mu\mu \ data} - N_{DY}}{N_{elastic}} \bigg|_{m(\mu^{+}\mu^{-}) > 160 \text{ GeV}} = 3.23 \pm 0.50 \text{ (stat.)} \pm 0.36 \text{ (syst.)}$$

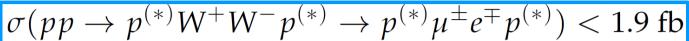

# Signal from W+W $^ \rightarrow \mu^{\pm}e^{\mp}\nu\bar{\nu}$



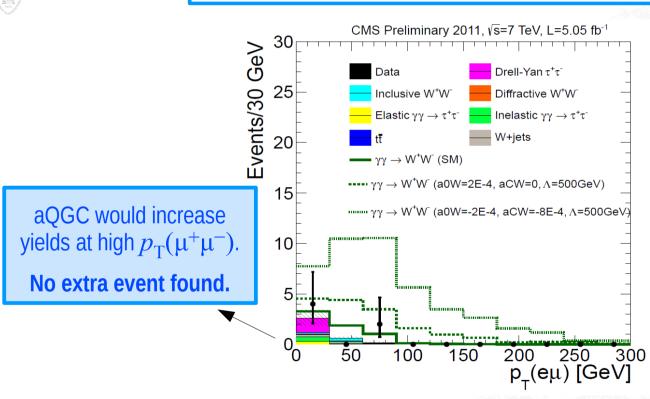

ullet Events passing all the requirements:  $oxedsymbol{\mathbb{I}}$ 

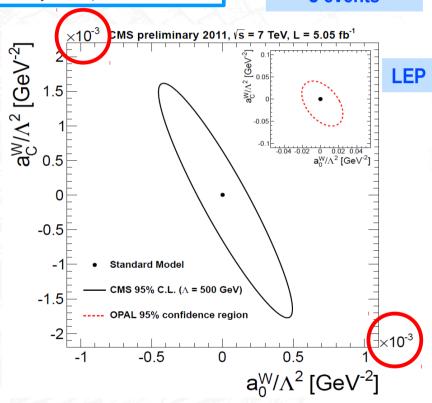
Signal: **2.2 ± 0.5 evt** Bkg: **0.84 ± 0.13 evt** 

| Selection step                                       | Signal $\epsilon \times A$ | Events in data |
|------------------------------------------------------|----------------------------|----------------|
| Trigger and preselection                             | 28.5%                      | 9086           |
| $m(\mu^{\pm}e^{\mp}) > 20 \text{ GeV}$               | 28.0%                      | 8200           |
| Muon ID and Electron ID                              | 22.6%                      | 1222           |
| $\mu^{\pm}e^{\mp}$ vertex with 0 extra tracks        | 13.7%                      | 6              |
| $p_{\mathrm{T}}(\mu^{\pm}e^{\mp}) > 30 \mathrm{GeV}$ | 10.6%                      | 2              |







σ · BR with 95% CL:  $\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^\pm e^\mp p^{(*)}) = 2.1^{+3.1}_{-1.9} \text{ fb}$ 


### Limits on aQGC

The upper limit on the cross section times Branching fraction is found as



Upper limit of 3 events





$$-0.00017 < a_0^W / \Lambda^2 < 0.00017 \text{ GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \Lambda = 500 \text{ GeV}),$$

$$-0.0006 < a_C^W / \Lambda^2 < 0.0006 \text{ GeV}^{-2} \ (a_0^W / \Lambda^2 = 0, \Lambda = 500 \text{ GeV})$$

$$-2.80 \times 10^{-6} < a_0^W / \Lambda^2 < 2.80 \times 10^{-6} \text{ GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \text{no form factor}),$$

$$-1.02 \times 10^{-5} < a_C^W / \Lambda^2 < 1.02 \times 10^{-5} \text{ GeV}^{-2} \ (a_0^W / \Lambda^2 = 0, \text{no form factor})$$

Limits 2 orders of magn. more stringent than those from LEP

#### Summary



- CMS has successifully measured exclusive processes at low and high masses;
- The observed cross sections are in agreement with the theoretical QED predictions for the exclusive  $\gamma\gamma \rightarrow \ell^+\ell^-$  production:

17 (semi-)exclusive events in exclusive production of 
$$e^+e^-$$
 pairs  $\sigma(pp\to p\mu^+\mu^-p)=3.38^{+0.58}_{-0.55}~(stat.)\pm0.16~(syst.)\pm0.14~(lumi.)~pb$ 

• Upper limit cross section on the exclusive central  $IP IP \rightarrow \gamma \gamma$  production with 95% CL:

$$\sigma(E_{\rm T}(\gamma) > 5.5\,{\rm GeV},\, |\eta(\gamma)| < 2.5) < 1.18\,{\rm pb}$$

• Two potential candidates for the exclusive production of W pairs with observed cross section in agreement with the SM expectation:

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 2.1^{+3.1}_{-1.9} \text{ fb}$$

- aQGC limits:
- $-0.00017 < a_0^W / \Lambda^2 < 0.00017 \text{ GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \Lambda = 500 \text{ GeV}),$  $-0.0006 < a_C^W / \Lambda^2 < 0.0006 \text{ GeV}^{-2} \ (a_0^W / \Lambda^2 = 0, \Lambda = 500 \text{ GeV})$ 
  - Two orders of magnitude more stringent than those determined by the LEP results.

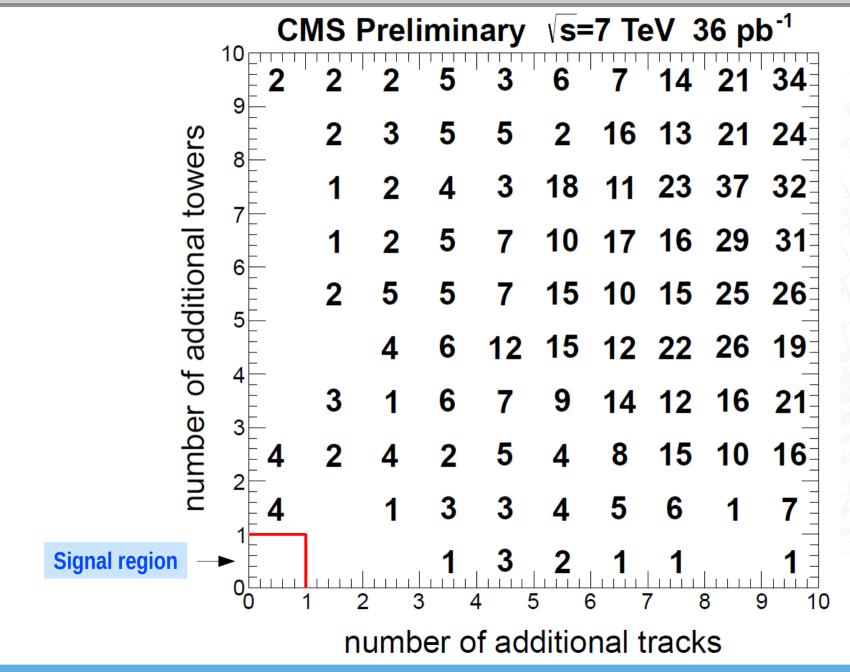


# Backup slides

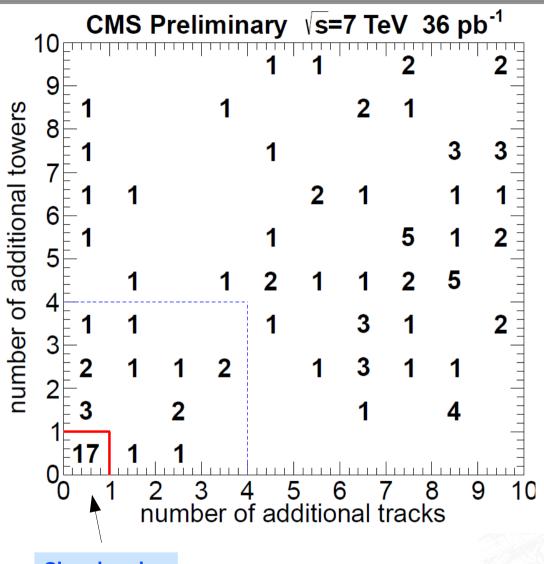
# $IPIP \rightarrow \gamma \gamma$ and $\gamma \gamma \rightarrow e^+e^-$ : cutflow & efficiency

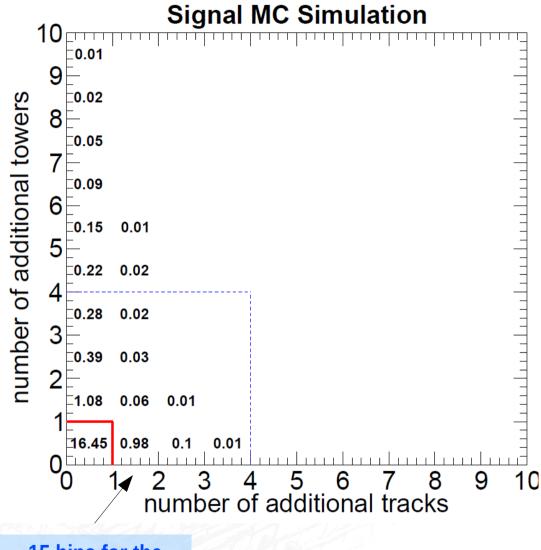


| exclusive diphoton analysis |                  | exclusive dielectron analysis |                  |
|-----------------------------|------------------|-------------------------------|------------------|
| selection criterion         | events remaining | selection criterion           | events remaining |
| Trigger                     | 3 023 496        | Trigger                       | 3 023 496        |
| Photon reconstruction       | 1 683 526        | Electron reconstruction       | 132 271          |
| Photon identification       | 40 692           | Electron identification       | 2648             |
| Cosmic ray rejection        | 32775            | Cosmic ray rejection          | 2 023            |
| Exclusivity requirement     | 0                | Exclusivity requirement       | 17               |


| exclusive $\gamma\gamma$ analysis |                     |                                     | exclusi             | ve $e^+e^-$ analysis |                     |
|-----------------------------------|---------------------|-------------------------------------|---------------------|----------------------|---------------------|
| EXCIT                             | isive / / ariarysis |                                     | el-el               | inel-el              | inel-inel           |
| $\varepsilon_{\gamma\gamma}$      | $0.485 \pm 0.067$   | $\varepsilon_{\mathrm{e^{+}e^{-}}}$ | $0.371 \pm 0.037$   | $0.438 \pm 0.035$    | $0.430 \pm 0.030$   |
| $\varepsilon_{\cos}$              | $0.979 \pm 0.009$   | $\varepsilon_{\cos}$                | $0.979 \pm 0.009$   | $0.822 \pm 0.008$    | $0.639 \pm 0.006$   |
| $\varepsilon_{\mathrm{fsr}}$      | $0.972 \pm 0.003$   | $\varepsilon_{\mathrm{fsr}}$        | $0.927 \pm 0.002$   | $0.666 \pm 0.016$    | $0.299 \pm 0.009$   |
| $\varepsilon_{ m exc}$            | $0.145 \pm 0.008$   | $\varepsilon_{ m exc}$              | $0.145 \pm 0.008$   | $0.145 \pm 0.008$    | $0.145 \pm 0.008$   |
| ε                                 | $0.0669 \pm 0.0100$ | ε                                   | $0.0488 \pm 0.0056$ | $0.0348 \pm 0.0035$  | $0.0119 \pm 0.0011$ |

# $IPIP \rightarrow \gamma \gamma$ and $\gamma \gamma \rightarrow e^+e^-$ : bkg expectation



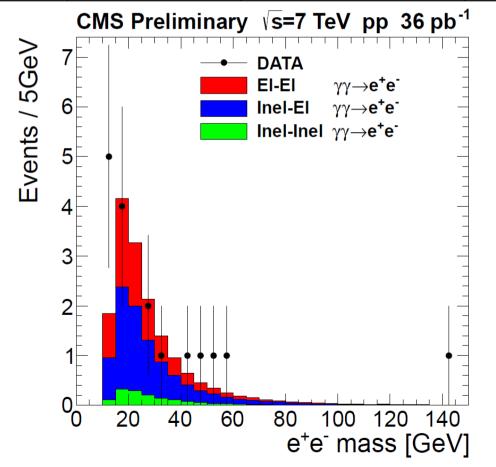


| exclusive $\gamma\gamma$ production     |                 | exclusive e <sup>+</sup> e <sup>-</sup> production                |                 |  |
|-----------------------------------------|-----------------|-------------------------------------------------------------------|-----------------|--|
| Background                              | Events          | Background                                                        | Events          |  |
| exclusive e <sup>+</sup> e <sup>-</sup> | $0.11 \pm 0.03$ | exclusive Y(1S,2S,3S) $\rightarrow$ e <sup>+</sup> e <sup>-</sup> | negligible      |  |
| cosmic ray                              | negligible      | cosmic ray                                                        | $0.04 \pm 0.01$ |  |
| non-exclusive                           | $1.68 \pm 0.40$ | non-exclusive                                                     | $0.80 \pm 0.28$ |  |
| exclusive $\pi^0\pi^0$ and $\eta\eta$   | negligible      | exclusive $\pi^+\pi^-$                                            | negligible      |  |
| Total                                   | $1.79 \pm 0.40$ | Total                                                             | $0.84 \pm 0.28$ |  |

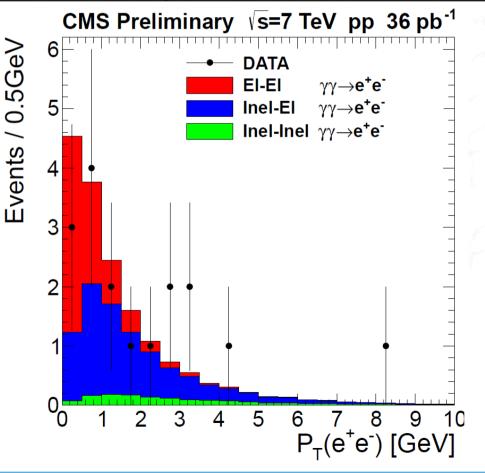
#### $IPIP \rightarrow \gamma \gamma$ : extra tracks



#### $\gamma\gamma \rightarrow e^+e^-$ : extra tracks







**Signal region** 

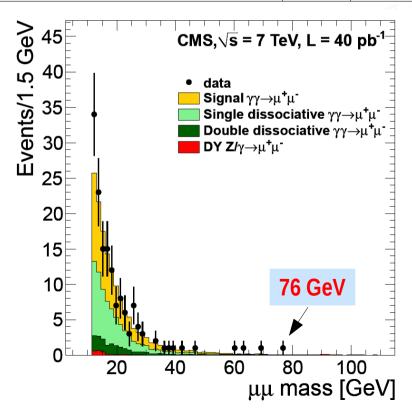
15 bins for the Non-exclusive bkg

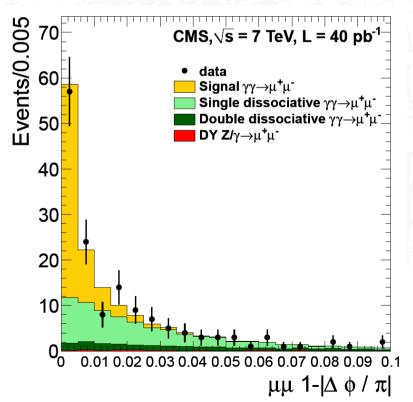
#### $\gamma\gamma \rightarrow e^+e^-$ : observed events

| Process   | $\mathcal{L}$           | σ                                 | ε                   | nEvents                                 |
|-----------|-------------------------|-----------------------------------|---------------------|-----------------------------------------|
| el-el     | $36\pm1.4{\rm pb}^{-1}$ | 3.74±0.04 pb                      | $0.0488 \pm 0.0056$ | $6.57\pm0.07$ (theo.) $\pm0.80$ (syst.) |
| inel-el   | $36\pm1.4{\rm pb}^{-1}$ | $3.34\pm0.67 \text{ pb} \times 2$ | $0.0348 \pm 0.0035$ | $8.37\pm1.68$ (theo.) $\pm0.90$ (syst.) |
| inel-inel | $36\pm1.4{\rm pb}^{-1}$ | 3.52±0.70 pb                      | $0.0119 \pm 0.0011$ | $1.51\pm0.30$ (theo.) $\pm0.15$ (syst.) |
| Total     |                         |                                   |                     | $16.5\pm1.7$ (theo.) $\pm1.2$ (syst.)   |



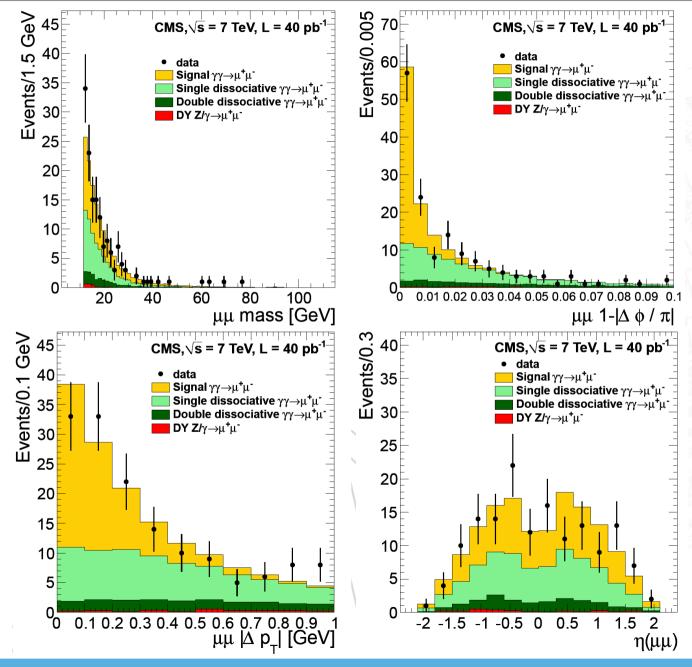



# $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ : cutflow




|--|

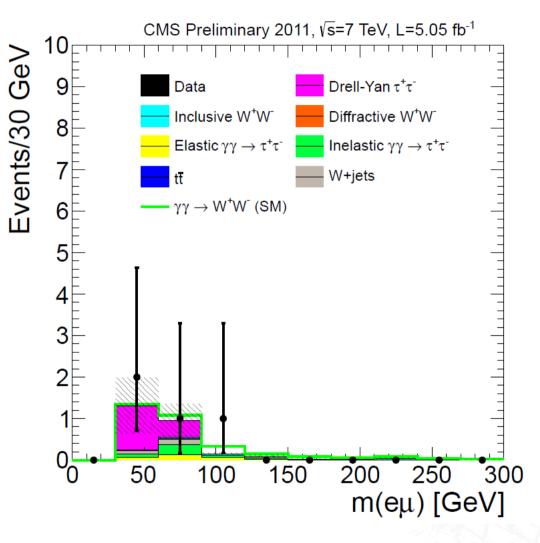
| Event pileup |
|--------------|
| Muon ID      |
| Trigger eff. |
| Tracker eff. |

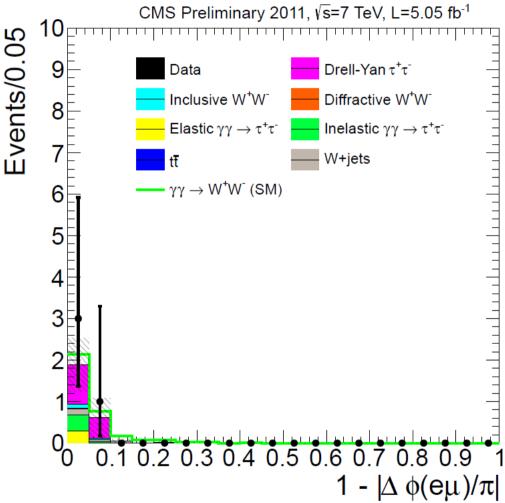

| Selection                                    | Data | Signal | Single-pdiss. | Double-pdiss. | DY | Total |
|----------------------------------------------|------|--------|---------------|---------------|----|-------|
| Vertex and track-exclusivity                 | 921  | 247    | 437           | 197           | 56 | 937   |
| Muon ID                                      | 724  | 193    | 336           | 160           | 53 | 741   |
| $p_{ m T} > 4$ GeV, $ \eta  < 2.1$           | 438  | 132    | 241           | 106           | 20 | 499   |
| $m(\mu^+\mu^-) > 11.5 \text{GeV}$            | 270  | 95     | 187           | 86            | 13 | 380   |
| $3D$ angle $< 0.95\pi$                       | 257  | 87     | 178           | 83            | 12 | 361   |
| $1- \Delta\phi/\pi <0.1$                     | 203  | 87     | 126           | 41            | 8  | 263   |
| $ \Delta p_{\mathrm{T}}  < 1.0~\mathrm{GeV}$ | 148  | 86     | 79            | 16            | 3  | 184   |





# $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$ : distributions



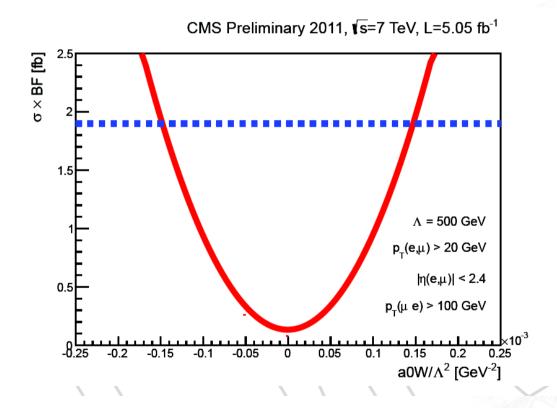

## Comparing the data with $\gamma\gamma \rightarrow \tau^+\tau^-$

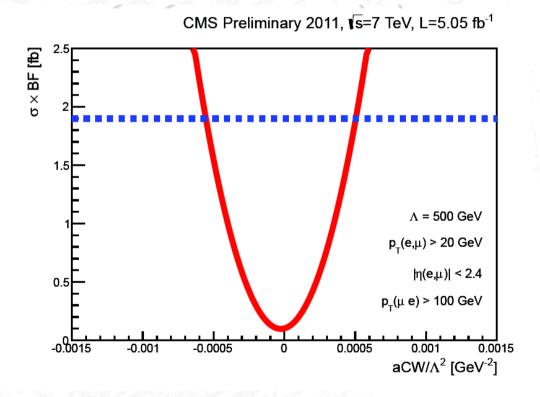
CMS-FSQ-12-010





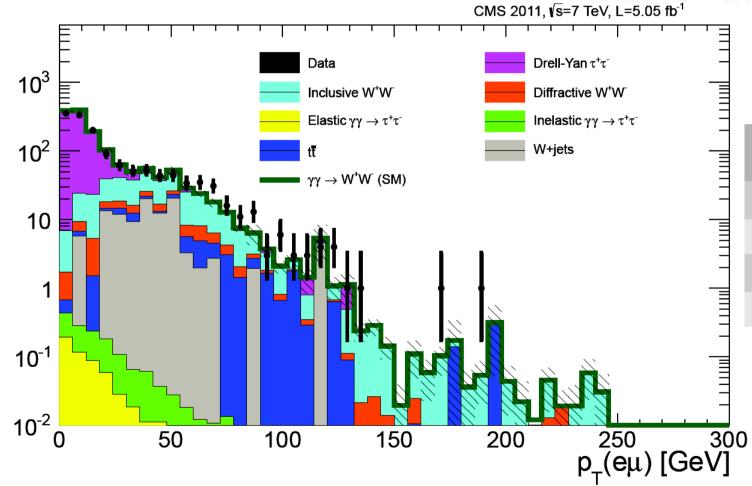



## $\gamma\gamma \rightarrow W^+W^-$ : summary of uncertainties




|                                   | Uncertainty |
|-----------------------------------|-------------|
| Trigger and lepton identification | 4.2%        |
| Luminosity                        | 2.2%        |
| Vertexing efficiency              | 1.0%        |
| Exclusivity and pileup dependence | 10.0%       |
| Proton dissociation factor        | 20.0%       |

### $\gamma\gamma \rightarrow W^+W^-$ : Exclusion plots








# Signal from W+W $^ \rightarrow \mu^{\pm} e^{\mp} \nu \bar{\nu}$

• Events are requires to pass trigger and preselection requirements, and lepton identification:



| Process  | # extra<br>Tracks | $p_{ m T}$ (GeV) |
|----------|-------------------|------------------|
| γγ→ττ    | 0                 | < 30             |
| Signal   | U                 | > 30             |
| DY ττ    | 1-6               | < 30             |
| Incl. WW | 1-0               | > 30             |

Events/6 GeV