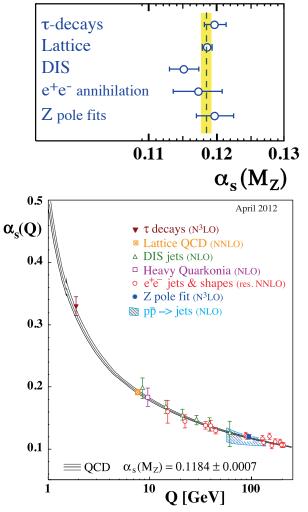


Determination of α_s Using ATLAS Multi-Jet Cross-Section Ratio Measurements

David Wardrope, on behalf of the ATLAS Collaboration

23rd April 2013, DIS2013



Motivation for Determining α_s

- Strong coupling strength, α_s , is the only free parameter in QCD (excluding m_q)
- α_s has been determined using many experimental observables
- Compatible values demonstrate
 - QCD is a correct theory of strong interactions and only one, universal coupling is needed
- Different processes allow the running of $\alpha_{s}(Q^{2})$ to be observed

Phys. Rev. D86, 010001 (2012)

00000000000000000

ATLAS Multi-Jet Ratio Measurements

Measure ratio of cross-sections for events with \geq 3 jets to \geq 2 jets Cancellation of systematic uncertainties

Allows more precise test of QCD

Measure as a function of p_T to observe the running of the coupling:

$$R_{3/2}\left(p_T^{\text{lead}}\right) = \frac{d\sigma_{N_{\text{jets}} \ge 3}}{dp_T^{\text{lead}}} / \frac{d\sigma_{N_{\text{jets}} \ge 2}}{dp_T^{\text{lead}}}$$

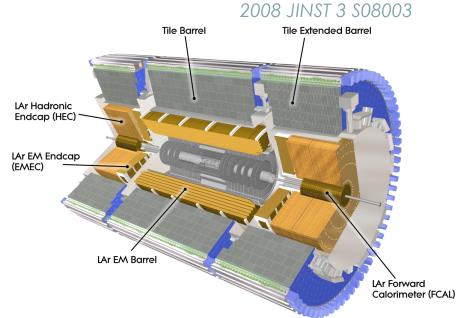
Another ratio with similar α_s sensitivity is:

$$N_{3/2}\left(p_T^{\text{all jets}}\right) = \sum_{i}^{N_{\text{jets}}} \frac{d\sigma_{N_{\text{jets}}\geq3}}{dp_{T,i}} / \sum_{i}^{N_{\text{jets}}} \frac{d\sigma_{N_{\text{jets}}\geq2}}{dp_{T,i}}$$

This alternative ratio has smaller scale dependence in phase-space studied

23rd April 2013

 $\sim \alpha_{s}$



ATLAS Detector: Measuring and Triggering Jets

ATLAS equipped with sampling calorimeters over $|\eta| < 4.9$ Determination of α_s uses region |y| < 2.8

Excellent jet energy resolution: $\sigma/E \approx 0.55/\sqrt{E} + 5/E$ Inner detector is used to reconstruct event vertices

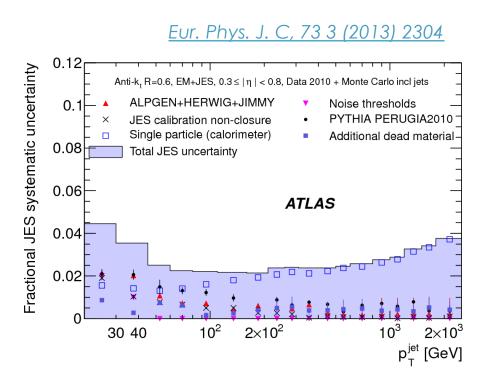
ATLAS trigger system is designed to select 200 events/second from the LHC bunch crossing rate of 40 MHz Jets are allocated some fraction of this total recording rate Trigger split into three levels, only first two were used in 2010 L1: hardware-based, identifies jets from calorimeter towers using a sliding window algorithm L2: software-based, reconstructs jets from calorimeter cells using a cone algorithm

23rd April 2013

David Wardrope

Jets

Jets defined using the anti- k_T algorithm with distance parameter R = 0.6


Constructed from 3D topological energy clusters Four-momentum recombination scheme

Dominant source of experimental uncertainty is the jet energy scale

Jets must be corrected for dead material, unclustered energy etc.

A great deal of work has gone into reducing and quantifying these uncertainties

Found to be between 2%-3% for this analysis Validated with in situ tests e.g. using γ +jets

Data Selection

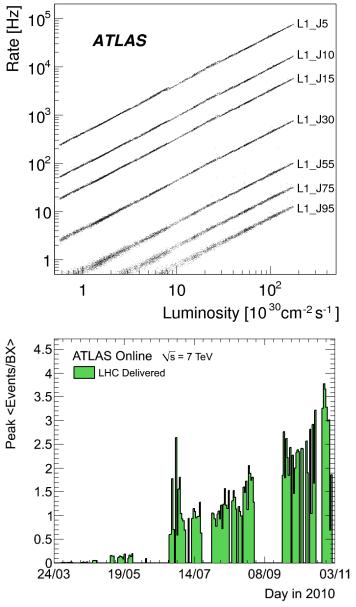
2010 $\sqrt{s} = 7$ TeV pp dataset corresponding to $\int Ldt = 36 \text{ pb}^{-1}$

Appropriate trigger chain is used for each jet p_T bin to maximise effective luminosity

Triggers used are fully efficient for that p_T bin Triggers with low jet p_T thresholds were prescaled because of high rates

Events must have ≥ 2 jets

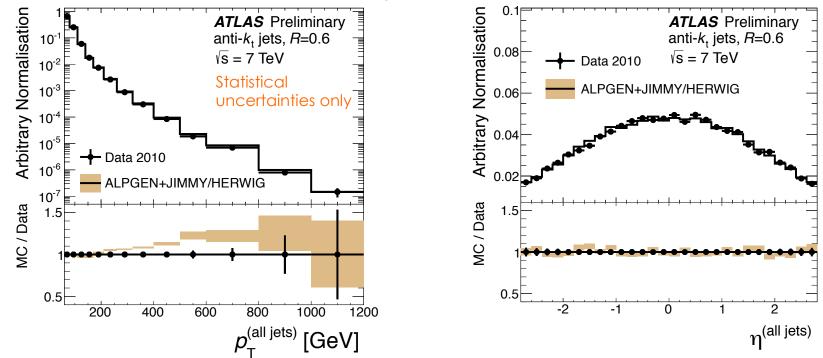
 $p_T > 40 \text{ GeV}, |y| < 2.8$


Highest p_T jet

 $p_T > 60 \text{ GeV}$

Ensures lowest trigger threshold is >99% efficient

Events must have exactly 1 reconstructed primary vertex


Reduces possible contribution of jets from other pp interactions

Jets Passing Selection and Unfolding

Kinematic distributions of jets as reconstructed:

Detector inefficiencies and resolution effects are corrected for using bin-by-bin multiplicative correction factors Obtained using ALPGEN+HERWIG/JIMMY events passed through full GEANT-4 simulation of ATLAS detector

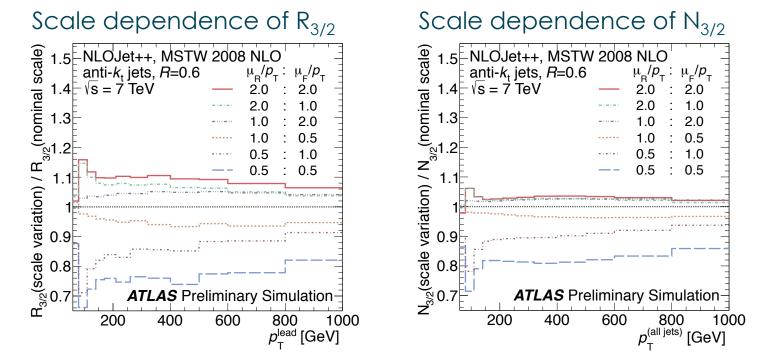
Theoretical Predictions

NLO pQCD jet p_T distributions have been generated for events with $\ge 2,3$ jets using NLOJet++ MSTW2008 NLO PDF sets used

Provides PDFs with 0.110 < $\alpha_s (M_z^2)$ < 0.130 (steps of 0.001) Predictions for R_{3/2} and N_{3/2} obtained by dividing differential cross-section distributions, e.g.

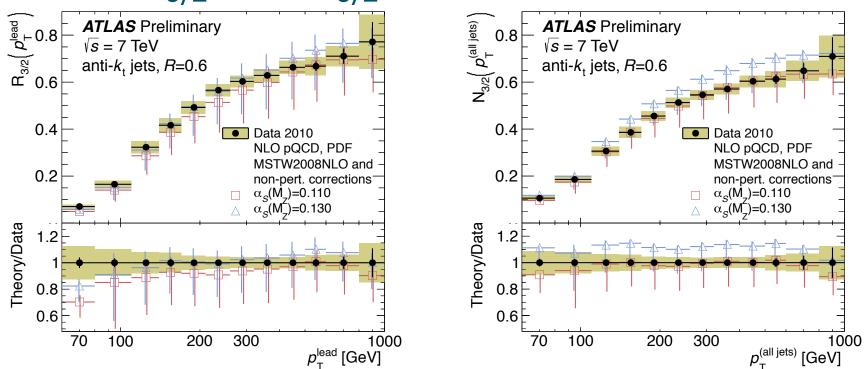
$$R_{3/2}\left(p_T^{\text{lead}}\right) = \frac{d\sigma_{N_{\text{jets}} \ge 3}}{dp_T^{\text{lead}}} / \frac{d\sigma_{N_{\text{jets}} \ge 2}}{dp_T^{\text{lead}}}$$

NLOJet makes parton-level predictions which must be corrected for non-perturbative effects, such as hadronisation and underlying event


Corrections from PYTHIA (AMBT1 tune) with MRST LO* PDFs <1% for $p_T > 200$ GeV, ~10% in 60 GeV < $p_T < 80$ GeV bin Other generators used to estimate systematic uncertainty (<2%)

Scale Dependence of pQCD Calculations

 $R_{3/2}$ predictions use renormalisation and factorisation scales set to the leading jet p_T ($\mu_R = \mu_F = p_T^{lead}$) For $N_{3/2}$ the scales are set to the p_T of each jet



 $N_{3/2}$ is more stable against the choice of scale \Rightarrow use for α_s extraction 23rd April 2013 David Wardrope

Results $R_{3/2}$ and $N_{3/2}$

Total experimental uncertainty shown in yellow band Theoretical error bars include scale, PDF and non-perturbative correction uncertainties Two ratio measurements are sensitive to different event kinematics

Extraction of α_s

 $\alpha_{\rm S}(M_{\rm Z})$ is extracted by comparison to NLOJet++ predictions made with different values of $\alpha_{\rm S}(M_{\rm Z})$

Least Squares fit to data, minimising χ^2 w.r.t. $\alpha_s(M_Z)$

Over 6 p_T bins \in [210, 800 GeV] simultaneously

Correlated systematic uncertainties included as nuisance parameters

Theoretical uncertainties estimated by altering theoretical predictions and refitting

The strong coupling is determined to be:

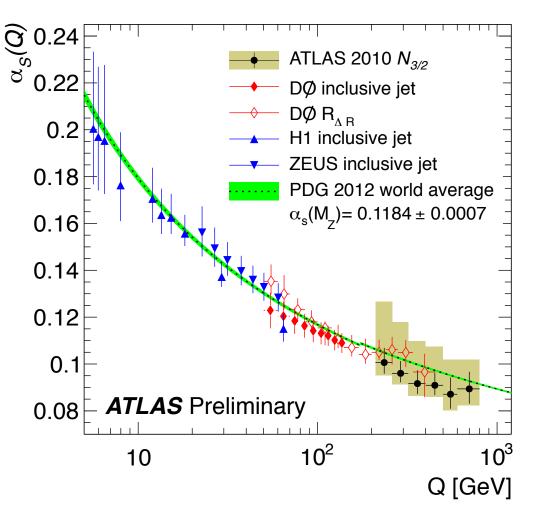
$$\alpha_S (M_Z) = 0.111 \pm 0.006 (\text{exp.})^{+0.016}_{-0.003} (\text{theory})$$

In agreement with

PDG value $\alpha_S\left(M_{
m Z}
ight)=0.1184\pm0.0007$

D0 value $\alpha_S(M_Z) = 0.1191^{+0.0048}_{-0.0071}$

CDF value $\alpha_S(M_Z) = 0.1178 \pm 0.0001(\exp.)^{+0.0081}_{-0.0095}(\text{syst.})$ Theoretical uncertainties dominated by scale uncertainty



The Running of α_s

 $\alpha_{s}(Q)$ is determined by extracting $\alpha_{s}(M_{z})$ from each p_{T} bin individually These $\alpha_{s}(M_{z})$ are transformed to $\alpha_{s}(Q)$ using 2-loop approximate RGE solution

 $Q = average jet p_T for that bin$

Scale probed is extended beyond previous measurements to Q = 800 GeV

Conclusion

ATLAS has made its first determination of α_s , using ratio measurements for events with ≥ 3 jets to ≥ 2 jets

 $N_{\rm 3/2}$ is a new observable found to have reduced scale dependence in kinematic phase space studied

 $\alpha_S(M_Z) = 0.111 \pm 0.006(\exp.)^{+0.016}_{-0.003}$ (theory)

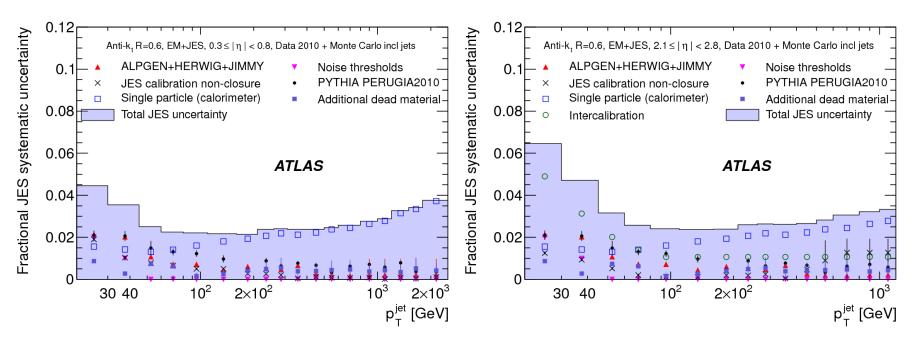
Running of $\alpha_s(Q)$ was observed up to Q= 800 GeV Both results are consistent with world averages

Improvements are possible on experimental aspects of the determination of α_s

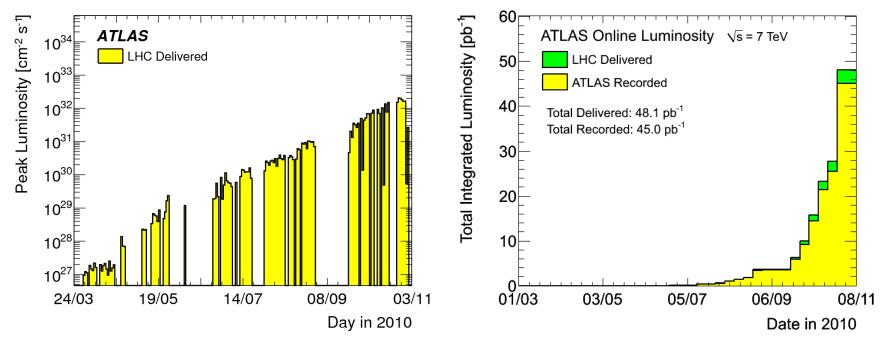
Results using a different physical observable and the full 2012 dataset are coming soon from ATLAS

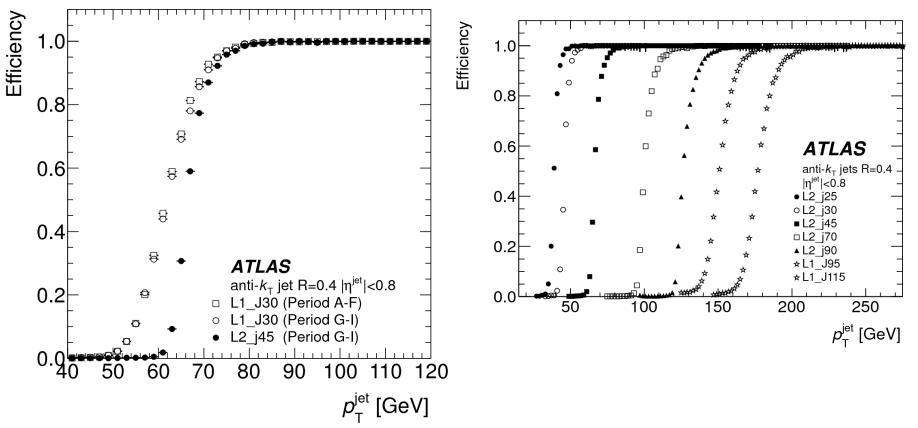
Largest uncertainty came from theory NNLO predictions would be extremely welcome!

ADDITIONAL SLIDES

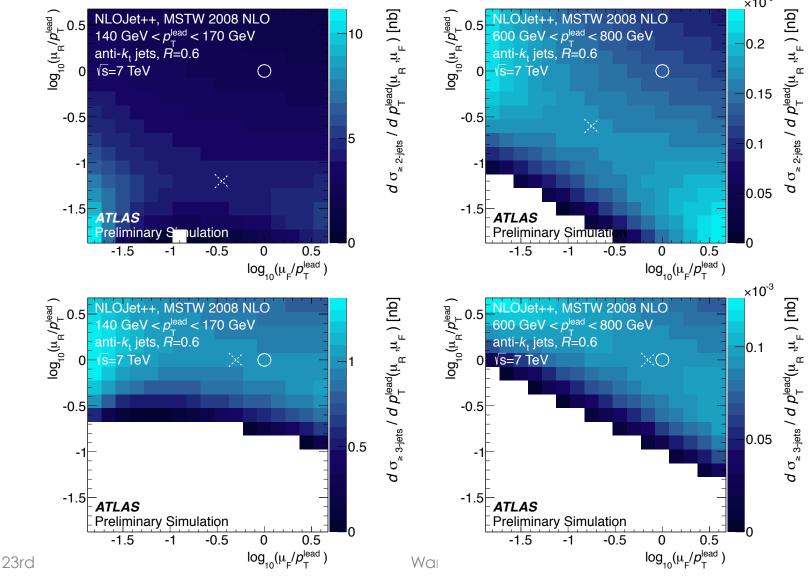

23rd April 2013

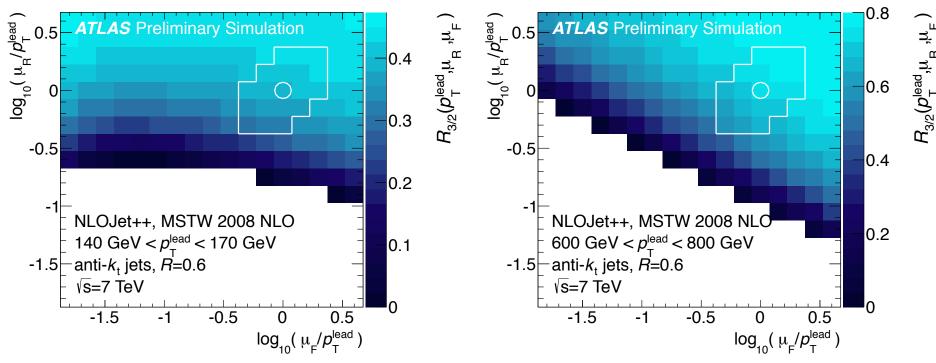
David Wardrope


Jet Energy Scale Uncertainty


Luminosity in 2010

Trigger Efficiencies


Eur.Phys.J. C72 (2012) 1849


18

Scale Variations – Cross-Section Changes

Scale Variations – R_{3/2} Changes

Downward shifts in μ_R or μ_F from chosen nominal value result in a larger change in $R_{3/2}$ than upwards shifts

This is manifest as the asymmetric theoretical uncertainty on the final result

David Wardrope

PDF Uncertainties

PDF uncertainties are estimated following the prescription in Rept. Prog. Phys. 70 (2007) 89 As an additional cross-check, the extraction is carried out using the following PDFs:

PDF	$\alpha_s(M_Z)$
MSTW08	0.111 ± 0.006
CT10	0.109 ± 0.006
HERAPDF 1.5	0.114 ± 0.005
ABM11	0.116 ± 0.005
NNPDF 2.3	0.112 ± 0.005

(Uncertainties quoted are experimental uncertainties alone)