TOP QUARK PRODUCTION IN ATLAS

C. Bertella

On behalf of the ATLAS Collaboration

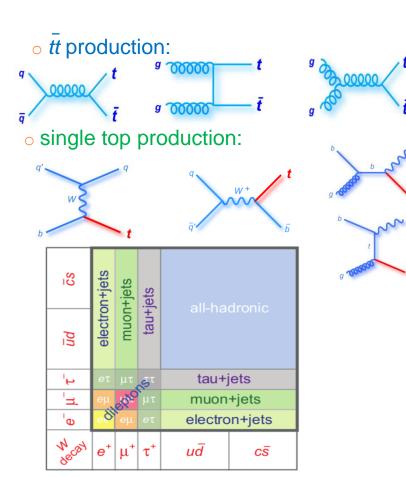
Deep Inelastic Scattering 2013


Top pair production

• Why is it interesting?

- Precision measurement of cross section, branching ratio, polarization could indicate presence of new physics
- Background to searches for new physics beyond the SM and Higgs boson production
- Direct Search for new physics:
 - Higgs associated production: $t\bar{t}H(H \rightarrow b\bar{b})$
 - Beyond Standard Model particles: *Z'* resonances, Kaluza-Klein gluon, stop production

• Detector Calibration


• Top quark presents a striking signature: possibility of identifying pure samples of electrons, muons, *b*-jets

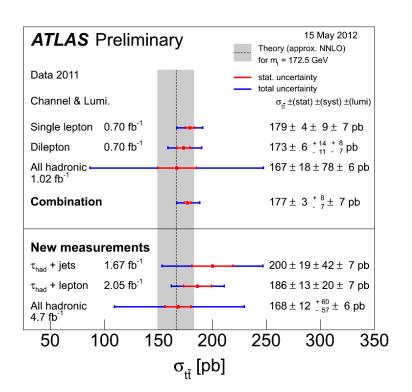
Top pair production

- In proton-proton collision, top quark can be produced in pairs or singly
 - Top pairs are produced through gluongluon fusion and quark-quark annihilation (85%/15% @ √7 TeV) → QCD production
 - Single top is produced with an extra quark in the *t* and *s*-channel diagrams or with a W boson, in the *Wt* diagram → EW production
- In the SM, the top quark decay into W boson and *b*-quarks almost 100% of the time
 - The W boson decays subsequently into
 - Lepton-neutrino (~33%)
 - Di-quark (~67%)
 - $t\bar{t}$ pair decays
 - lepton (e/μ) + jets (including τ to lepton decays) ~ 34.3%
 - dilepton (*ee*, $\mu\mu$, $e\mu$) ~ 6.4%
 - τ_{had} + jets ~ 9.8%
 - τ_{had} + lepton (e, μ , τ to e, μ) ~ 3.7%
 - all hadronic ~ 45.7%

NNLO+NNLL cross section for m _t =173 GeV[arXiv:1303.6254]		
	@ √s = 7TeV (pb)	@ √s = 8TeV (pb)
tī	172.0 _{-5.8} +4.4 _{-4.8} +4.7	245.8 _{-8.4} ^{+6.2} -6.4 ^{+6.2}
Approx. NNLO cross section for $m_t = 173 \text{ GeV}$ [arXiv: 1210.7813]		
<i>t</i> -channel	65.9 _{-0.7} + ^{2.1} -1.7 + ^{1.5}	87.2 _{-1.0} ^{+2.8} -2.2 ^{+2.0}
s-channel	$4.56 \pm 0.07_{-0.17}^{+0.18}$	5.55 ± 0.08 ± 0.21
Wt-channel	15.6 ± 0.4 ± 1.1	22.2 ± 0.6 ± 1.4

• Electron: **Object reconstruction** • Reconstructed offline using a cluster based algorithm • $|\eta| < 2.5 \text{ p}_{T} > 25 \text{ GeV}$ • Trigger: • excluding $1.37 < |\eta| < 1.52$ \circ Based on single lepton high p_T • Matched track and EM cluster • Multi jets trigger, *b*-jet triggers • Isolated in calorimeter and muon Jet 1(b) tracker neutrino W \circ Anti k_T –algorithm (R =0.4) • Jet energy calibration • η and p_T dependent proton proton correction with factors o Muon: derived from simulation • Reconstructed by and validated on data W combining track segments Ve neutrino in the ID and MS Jet 2 (b) • $|\eta| < 2.5 p_T > 20 \text{ GeV}$ electron • Isolated in calorimeter and tracker $\circ E_{T}^{miss}$:

• *b*-tagging:

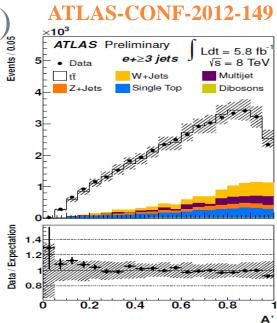

o Jets:

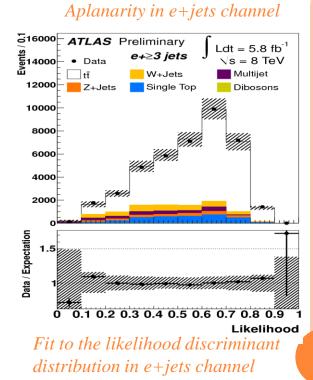
o long lifetime of B-hadrons o multivariate discriminant based on impact parameter, secondary vertex, fragmentation proprieties, resonance mass

• Vector sum of transverse momenta of the reconstructed objects as well as transverse energy in calorimeter

Top pair production @ $\sqrt{s} = 7 \text{ TeV}$

- Top pair production cross section measurement in the *e/µ*+jets, dilepton final and all hadronic channels will be shown
- Combination is driven by the high precision measurement with *e*/μ in the final state
 - ATLAS-CONF-2012-024
- Measurements dominated by the systematic uncertainties



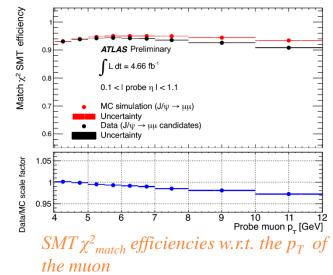

Results compared with the Standard Model prediction

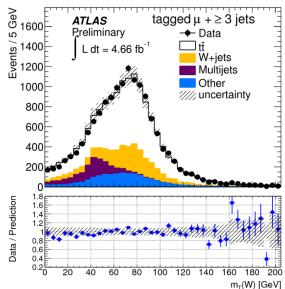
Lepton + jets cross section ($\sqrt{s} = 8 \text{ TeV}$)

- Signature: $e/\mu + E_T^{\text{miss}} + \text{jets}$
- To suppress QCD multi-jets background
 - Lepton $p_T > 40 \text{ GeV}$
 - $E_T^{\text{miss}} > 35$ (25) GeV for $e(\mu)$ -channel
 - $m_T(W) > 25 \text{ GeV} (m_T(W) + E_T^{\text{miss}} > 60 \text{ GeV})$ for $e(\mu)$ -channel
- Background:
 - W+jets: shape from Alpgen MC, normalization from the fit
 - Top quark, di-boson, Z+jets: rely on MC
 - QCD multi-jets: matrix method on data
- Extraction of $t\bar{t}$ events fraction:
 - Construct a likelihood discrimination function using two kinematic variables: lepton pseudorapidity and aplanarity
 - Aplanarity $\rightarrow t\bar{t}$ events are more isotropic than W+jets events
 - Likelihood ratio discriminant is defined as the ratio of the signal to the sum of signal and background likelihood
- Cross section is estimated by performing a likelihood fit to discriminant observed in data using the signal and all background templates

 $\sigma_{tt} = 241 \pm 2 \text{ (stat.)} \pm 31 \text{ (syst.)} \pm 9 \text{ (lumi.) pb}$

Lepton + jets cross section with a semi-leptonic *b*-decay ($\sqrt{s} = 7 \text{ TeV}$)

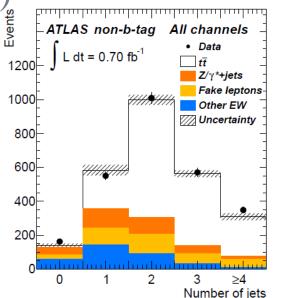

- Signature: $e/\mu + E_T^{\text{miss}} + \text{jets}$
- Soft Muon Tagging (SMT) algorithm based on the presence of a reconstructed μ within a jet
 - BR(b $\rightarrow \mu X$) ~ 20%
 - 36 % of $t\bar{t}$ events contain at least one *b*-jet that decays semi-muonically
 - The quality of the match between ID and MS tracks of the $\mu (\chi^2_{match})$ discriminates heavy flavour jets from light ones
 - $\chi^2_{\text{match}} < 3.2 \rightarrow \text{eff}_{b\text{-jets}} \sim 10\%$ and rejection_{light} ~ 200 per jet
- Cross is determined by cut-and-count method


$$\sigma_{t\bar{t}} = \frac{N_{data} - N_{bkg}}{\int L dt \cdot \varepsilon \cdot BR_{noFullHaa}}$$

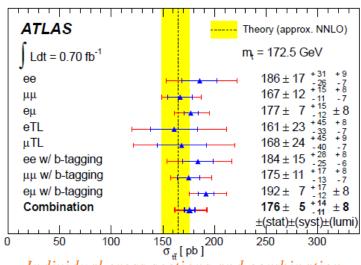
 σ_{tt} = 165 ± 2 (stat.) ± 17 (syst.) ± 3 (lumi.) pb

- Main systematic uncertainties
 - Background normalization, generator, jet energy scale and $BR(b \rightarrow \mu X)$

Transverse mass of the W in the μ +jets channel with at least three jets and at least one SMT tagged jet

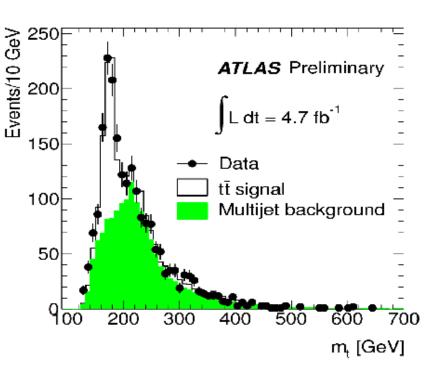

7

Dilepton cross section ($\sqrt{s} = 7 \text{ TeV}$)


• Signature:

- two isolated oppositely charged lepton (*ee*, $\mu\mu$, μe) or one lepton & one opposite charge track (μTL , eTL) + E_T^{miss} + at least 2 high p_T jets
- To reject background from vector-meson decays: $m_{ll} > 15 \text{ GeV}$
- In *ee/µµ* channel $E_T^{miss} > 60 \text{ GeV}$ and $|m_{ll} m_Z| < 10 \text{ GeV} \rightarrow \text{suppress } Z/\gamma^* + \text{jets and multi-jets}$
- In $e\mu$ channel: $H_T > 130 \text{ GeV}$
- Three samples
 - "non b-tag": no *b*-tag jets
 - "b-tag": at least one *b*-tag jet
 Relaxed cut on E_T^{miss} : E_T^{miss} > 40 GeV
 - lepton+track
 - In order to maximize acceptance for leptons
- Cross section is determined by cut-and-count method in each channel, and they are combined with profile likelihood technique
- $\sigma_{tt} = 165 \pm 2 \text{ (stat.)} \pm 17 \text{ (syst.)} \pm 3 \text{ (lumi) pb}$
- Dominant systematic uncertainties
 - Generator, Jet energy scale, lepton-related uncertainties

Jets multiplicity for all channels without the b-tagging requirement

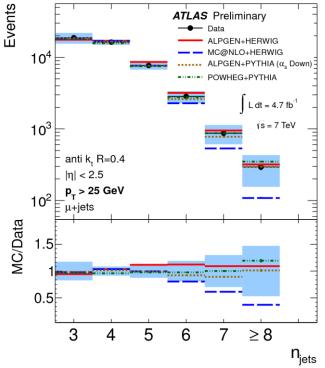


Individual cross sections and combination of non b-tagged and exclusive b-tagged channels

$t\bar{t}$ all hadronic cross section measurement ($\sqrt{s} = 7 \text{ TeV}$)

- Signature: no lepton, no E_T^{miss} , at least 6 jets, two *b*-tagged jets
- Isolation cut on the jets: $\Delta R_{jj} > 0.6$
- *tī* topology reconstructed by a kinematic likelihood fit
 - W mass and width set to known values
 - Top mass: free parameter
 - Top and anti-top masses should be equal
- Multi jet background: data-driven
 - Shape estimate in a sample without *b*-tagging requirement
- Cross section extracted using a unbinned likelihood fit to top mass reconstructed by the kinematic fit

$$\sigma_{tt} = 168 \pm 12 \text{ (stat.)}_{-57}^{+60} \text{(syst.)} \pm 7 \text{ (lumi.) pb}$$

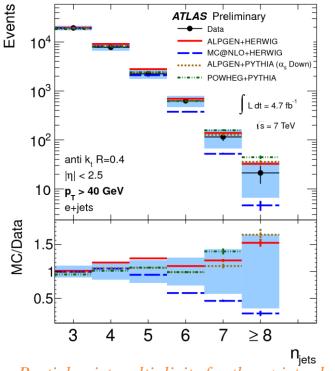


ATLAS-CONF-2012-031

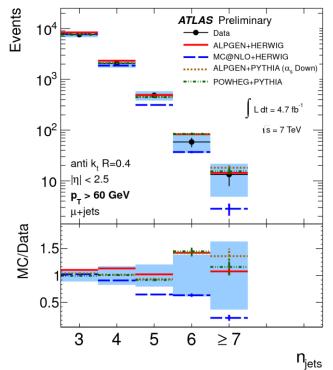
- Dominant systematic uncertainties:
 - Jet energy scale, *b*-tagging and ISR/FSR

Jet Multiplicity in $t\bar{t}$ events($\sqrt{s} = 7 \text{ TeV}$)

- Useful to constrain models of initial and final state radiation (ISR/FSR) and also provides a test of perturbative QCD
- Signature: lepton + jets + E_T^{miss}
- Strategy: Count the number of jets produced in the events with different jet p_T thresholds: 25 GeV, 40 GeV, 60 GeV and 80 GeV
- Same event selection applied to reconstructed and particle-level objects



Particle– jet multiplicity for the mu+jets channel and jet $p_T > 25 \text{ GeV}$


- Jet multiplicity corrected back to the particle-level within the selected kinematic range
 - The unfolding procedure takes into account the detector efficiencies, resolution and biases

Jet Multiplicity in $t\bar{t}$ events($\sqrt{s} = 7 \text{ TeV}$)

- Measurement limited by systematic uncertainties: background modeling, jet energy scale
- MC@NLO+HERWIG underestimate the events with ≥ 6 jets with $p_T > 25$ GeV and at low N_{jets} for high p_T
 - MC@NLO \rightarrow too soft
- POWHEG+PYTHIA, ALPGEN+HERWIG and ALPGEN+PYTHIA with α_s -down variation are consistent with data in all jet bins

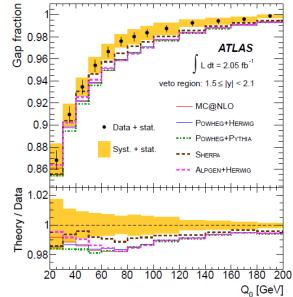
Particle– jet multiplicity for the e+jets channel and jet $p_T > 40 \text{ GeV}$

ATLAS-CONF-2012-155

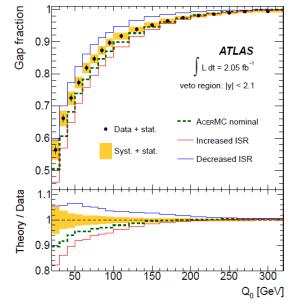
Particle– jet multiplicity for the mu+jets channel and jet $p_T > 60 \text{ GeV}$

Jet Veto Gap Fraction ($\sqrt{s} = 7 \text{ TeV}$)

- Motivation: constrain the uncertainties arising from theoretical description of q/g radiation in simulation
- Analysis performed in dilepton channel
- Jet veto \rightarrow quantify the jet activity coming from q/g radiation with ttbar system


• Gap fraction
$$f(Q_0) = \frac{\sigma(Q_0)}{\sigma}, f(Qsum) = \frac{\sigma(Qsum)}{\sigma}$$

- σ : total cross section for *tt* events
- $\sigma(Q_0)$: cross section for $t\bar{t}$ events without additional jets with $p_T > Q_0$ in the central region
 - Estimated as a function of Q_0 (transverse momentum of one additional jet) or Q_{sum} (scalar transverse momentum sum of additional jets)


• Data compared with MC@NLO, POWHEG, ALPGEN, SHERPA

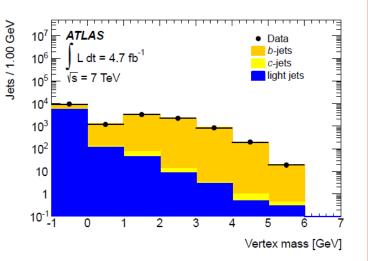
- Simulation predicts too much jet activity in the most forward rapidity interval $(1.5 < |\eta| < 2.1)$
- Data compared to the ACERMC+PYTHIA ISR/FSR predictions
 - Data allows for a reduction on the parameter variation used to estimate ISR/FSR uncertaities

Gap fraction as a function of Q_0

$t\bar{t}$ + heavy flavor quarks ($\sqrt{s} = 7 \text{ TeV}$)

- Motivation: $t\bar{t}+b/c+X$ events are main background to $t\bar{t}H(H \rightarrow b\bar{b})$
 - *cc/bb* are produced in association with top via gluon splitting from ISR/FSR
- Signature: two opposite sign leptons $+ E_T^{\text{miss}} + at$ least two jets
 - $t\bar{t}$ +HF: at least 3 *b*-tagged jets
 - $t\bar{t}$ +jets: at least 2 *b*-tagged jets (at least 3 jets)

• Background:

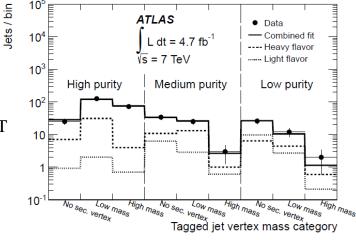

C

- Di-boson, Z+jets, single top: rely on simulation
- fake leptons: data-driven from same sign lepton sample
- *b*-tag jets from mistagged LH jets:
 - $t\bar{t}$ +jets: MC simulation
 - $t\bar{t}$ +HF: fit to the vertex mass of b-tagged jets
- Strategy: quote the R_{HF} ratio between the $t\bar{t}$ +HF cross section and $t\bar{t}$ +jets one in a fiducial volume

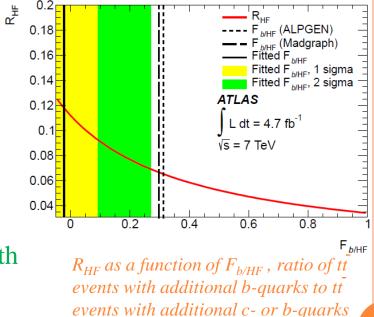
$$R_{HF} = \frac{\sigma_{fid}^{(tt+HF)}}{\sigma_{fid}^{(tt+j)}} \Longrightarrow \sigma_{fid}^{(tt+X)} = \frac{N_X}{\int Ldt \cdot \varepsilon}$$

- N_X : the number of additional *b*-tagged jets for the $t\bar{t}$ +HF selection; number of selected dilepton events for the $t\bar{t}$ +jets selection
- Fiducial volume: two leptons from top decay with $p_T > 25(20)$ GeV for $e(\mu)$ and $|\eta| < 2.5$ and at least 3 (2) *b*-jets for $t\bar{t}$ + HF ($t\bar{t}$ + jets) and at least 3 jets for $t\bar{t}$ +HF

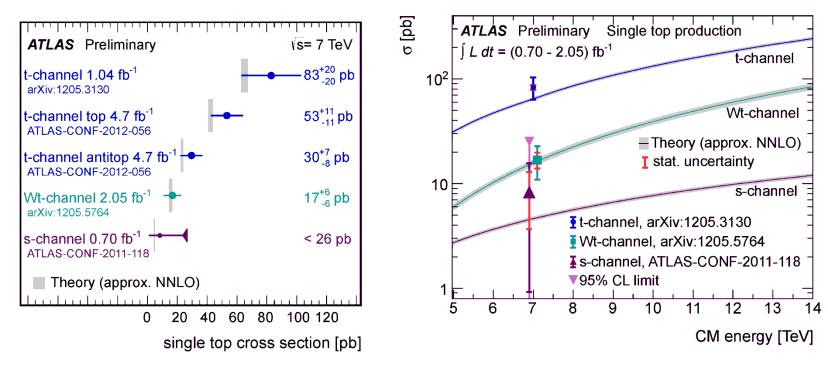
<u>NEW</u>: To be submitted to Phys. R. D



Vertex mass for b-tagged jets

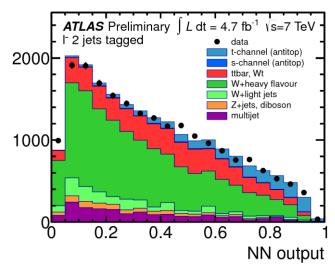

 $t\bar{t}$ + heavy flavor quarks ($\sqrt{s} = 7 \text{ TeV}$)

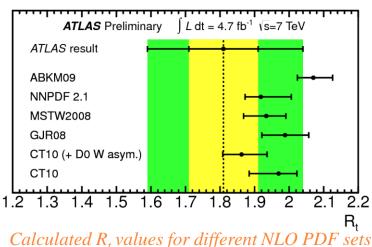
- Fraction of HF jets extracted by a binned maximum likelihood template fit on the vertex mass distribution
 - To increase the sensitivity \rightarrow 2D p.d.f. (p_T vertex mass)
 - Three exclusive bins of *b*-jet purity: $\varepsilon_{b-tag} = 60\%, 60\%$ to 70%, 70% to 75%
 - To differentiate between *b*'s, light flavor and *c*'s
- $\sigma_{\rm HF}(t\bar{t}+{\rm HF})=0.18\pm0.03({\rm stat.})~{\rm pb}$
- $\sigma_{\rm HF}(t\bar{t}+jets) = 2.55 \pm 0.07(stat.) \, pb$
- $R_{HF} = [7.1 \pm 1.3(\text{stat.})_{-2.0}^{+5.3} \text{ (syst.)}]\%$
 - Dominant uncertainty: fiducial flavor composition
- Result consistent at 1.4σ level with LO SM prediction from ALPGEN and at 0.6σ level with approx. NLO result from POWHEG



Template fit results to vertex mass

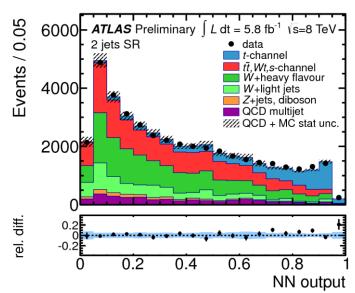
Single top quark production


- Single tops are produced in *t*-, *Wt*-, *s* channel
- ATLAS has:
 - Observed the *t*-channel
 - Evidence for *Wt* channel in dilepton mode @ $\sqrt{s} = 7$ TeV
 - Upper limits in *s*-channel

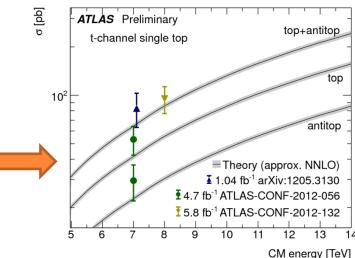

Single Top Production: *t*-channel ($\sqrt{s} = 7 \text{ TeV}$)

- Measurement of single top and single anti-top 0 production (u or d quark induced)
 - measurements sensitive to the PDFs of the u/d- quarks 0
- Events / 0.05 2 channels for each charge lepton: 2 or 3 jets, with 1 b-0 tagged jets
- To reduce QCD multi-jets $\rightarrow E_T^{\text{miss}} > 30 \text{ GeV}, m_T (W) >$ 30 GeV
- Signal and background separeted by a NN discriminant 0
- Extract the R_t (cross section ratio) perform a binned 0 maximum likelihood fit on NN output distribution
 - Background normalization from fit, constrained with 0 theoretical uncertainties or uncertainties from DD methods
- $\sigma_{top} = 53.2 \pm 1.7 \text{ (stat.)} \pm 10.6 \text{ (syst.) pb}$
- $\sigma_{anti-top} = 29.5 \pm 1.5 \text{ (stat.)} \pm 7.3 \text{ (syst.) pb}$
- $R_t = 1.81 \pm 0.10 \text{ (stat.)}_{-0.20} + 0.21 \text{ (syst.) pb}$ 0
- Dominant systematic uncertainties for the ratio: Jet 0 energy scale, *b*-tagging and background normalization
- The analysis, performed with 1.04 fb⁻¹, gives a results 0 on the coupling at the W-t-b vertex
 - $|V_{tb}| = 1.13_{-0.13}^{+0.14}$ and the 95% CL lower limit on CKM 0 matrix element is 0.75
 - Phys. Lett. B 717 (2012) 330-350 0

NN output distribution normalized to the fit result in 2-jets tagged l⁻

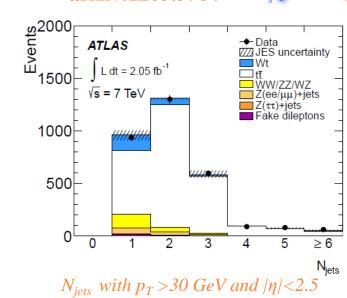


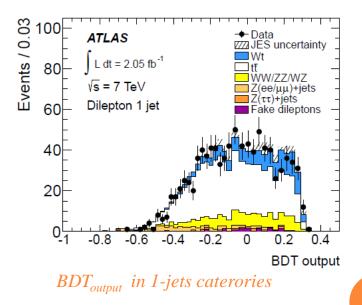
Single Top Production: *t*-channel ($\sqrt{s} = 8 \text{ TeV}$) ATLAS-CONF-2012-132


- Similar selection implemented in 2011 data analysis
- NN trained on 11 kinematic variables

• $\sigma_t = 95 \pm 2(\text{stat.}) \pm 18(\text{syst.}) \text{ pb}$

- Dominant systematic uncertainties: ISR/FSR, *b*-tagging and jet energy scale
- Coupling at the W-t-b vertex is $|V_{tb}| = 1.04_{-0.11}^{+0.10}$
- 95% C.L. lower limit on the CKM matrix element $|V_{tb}|$ is 0.80
- Results for the cross section @ $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV compared to the SM prediction


NN output distribution for the two-jets sample in the signal region



23/04/2013 DIS 2013

Single Top Production: *Wt*-channel ($\sqrt{s} = 7$ TeV)

- Signature: 2 lepton+ jets + E_T^{miss}
- No *b*-tagging is used
- In $ee/\mu\mu$ channel m_{ll} 10 GeV way from m_Z \rightarrow suppress contamination from Z
- $\Delta \varphi(l_1, E_T^{\text{miss}}) + \Delta \varphi(l_2, E_T^{\text{miss}}) > 2.5 \rightarrow$ suppress $Z \rightarrow \tau \tau$
- BDT used to discriminate Wt-channel and top pairs
 - Most discriminant variable: p_T system
- A likelihood fit performed on the BDT output to extract the cross section
- $\sigma_{Wt} = 16.8 \pm 2.9(stat.) \pm 4.9(syst.) \text{ pb}$
 - Ensemble tests performed on pseudoexperiments
 - Observed significance is 3.3 σ for an expected sensitive of 3.4 σ
- Determination of $|V_{tb}| = 1.03_{-0.19}^{+0.16}$
- Dominant systematic uncertainties: Jet energy scale, parton shower and generator

Summary

- High precision inclusive cross section measurements are in agreement with theoretical prediction
- Large data samples allow possibility to probe radiation in top events
- Single top cross section measurement are performed in t- and Wt channel and the coupling strength at the W-t-b vertex is determined in both channel
- More information on the analyses are available at the following link
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
- Most of the analysis are updating the results using the approximately 20 fb⁻¹ of data collected in 2012
 - More results soon!!

Thanks for your attention!

Top quark analyses

- $t\bar{t}$ cross section measurements
 - *e*/μ+ jets inclusive: [ATLAS-CONF-2011-121] [ATLAS-CONF-2012-149]
 - e/μ + jets cross section using SMT [ATLAS-CONF-2012-131]
 - *ee, eμ, μμ* [JHEP 1205 (2012) 059]
 - $t\bar{t}$ all hadronic cross section [ATLAS-CONF-2012-031]
 - Jet multiplicity in lepton+jets decay [ATLAS-CONF-2012-155]
 - Jet veto gap fraction [Eur. Phys. J. C72 (2012) 2043]
- Single top cross section measurements
 - *t*-channel [ATLAS-CONF-2012-056] [ATLAS-2012-132][Phys. Lett. B 717 (2012) 330-350]
 - Evidence for *Wt*-channel [Phys. Lett. B 716 (2012) 142.159] [arXiv:1205.5764]
- Not mentioned in the talk
 - Relative differential cross sections [Eur. Phys. J.C (2013) 73:2261]
 - *τ*+ jets [Eur. Phys. J. C 73 (2013) 2328]
 - $\tau + e/\mu + \text{ jets [Phys. Lett B717(2012) 89-108]}$
 - Search for CP violation in single top [ATLAS-CONF-2013-032]
 - *b** search/single top *Wt* final state [Phys. Lett. B 721 (2013) 171-189]
 - Search for *tb* resonances [Phys. Rev. Lett. 109 (2012) 081801]
 - *s*-channel search [ATLAS-CONF-2011-118]
 - Single top FCNC search [arXiv:1203.0529]

ATLAS Detector

Inner Detector ($|\eta| < 2.5$):

Si-pixel, Semiconductor Tracker, Transition radiation Tracker
Tracking and vertexing,e/π separation
σ(p_T)/p_T ~ 0.038% pT (GeV) + 1.5%

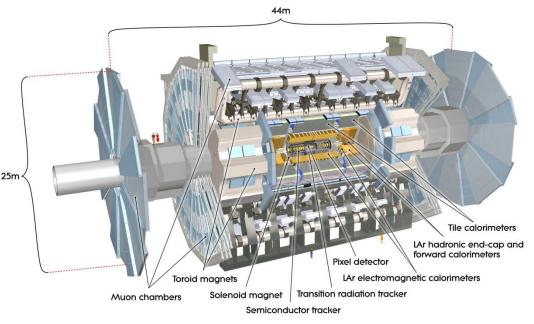
HAD calorimeter ($|\eta| < 2.5$):

• Fe/scintillator tiles (central) • Cu/W LAr (fwd) • Trigger, jets and Etmiss • $\sigma(E)/E \sim 50\%/\sqrt{E} + 3\%$ (central) • $\sigma(E)/E \sim 100\%/\sqrt{E} + 10\%$ (fwd)

Muon spectrometer ($|\eta|$ <2.7):

• Air cores toroids with gas-based chambers.

•Trigger and measurement.


 \circ Momentum resolution <10% up to E_{μ} ~1 TeV

Trigger:

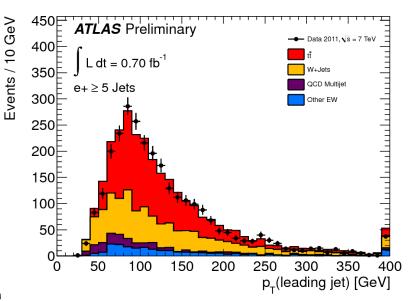
o first level: hardware

o second and third level: ~400 Hz output

EM calorimeter ($|\eta| < 3.2$): • Pb/Lar accordion • Trigger, e/ γ reco and ID • $\sigma(E)/E \sim 10\%/\sqrt{E} + 0.7\%$

•Pseudorapidity (η) is define as $-\ln\left(\tan\frac{\theta}{2}\right)$ • θ is the polar angle, measured from zaxis (beam direction)

Lepton + jets cross section ($\sqrt{s} = 7 \text{ TeV}$)


- Signature: e/μ , E_T^{miss} , jets
- To suppress QCD multi-jets background
 - $+ E_T^{\text{miss}} > 35 (25) \text{ GeV for } e(\mu)\text{-channel} \frac{1}{2}$
 - $m_T(W) > 25 \text{ GeV} (m_T(W) + E_T^{\text{miss}} > 60 \overset{\text{b}}{\square} \text{GeV})$ for $e(\mu)$ -channel

• Background:

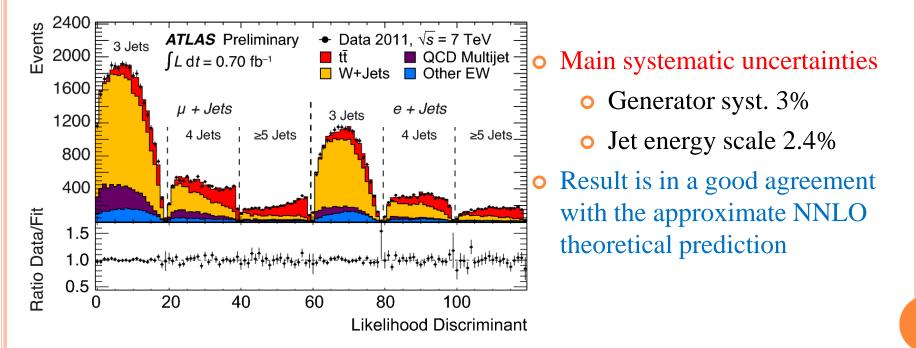
- W+jets: shape from Alpgen MC, normalization from data-driven estimation based on charge asymmetry of W boson production
- Top quark, di-boson, Z+jets: rely on MC
- QCD multi-jets: matrix method on data

• Extraction of $t\bar{t}$ events fraction:

- Construct a likelihood discrimination function using the pseudorapidity of the lepton, leading jet p_T , aplanarity A, $H_{T,3p}$ (ratio of transverse to longitudinal momenta)
 - Aplanarity is defined as 1.5 times the smallest eigenvalue of the momentum tensor calculated using the momenta of all jets and the lepton

ATLAS-CONF-2011-121

 $\begin{array}{l} \textit{leading jet } p_{T} \textit{ in } e + \textit{jets channel in the } N_{\textit{jet}} > \\ 4 \textit{ bin} \end{array}$

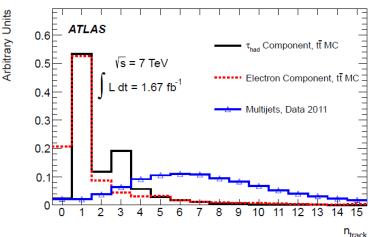

- Data/MC agreement checked in signal (≥3jets) region and in control region (=2 jets)
- Information from 3, 4, ≥ 5 jet bins are used to extract the cross section

Lepton + jets cross section ($\sqrt{s} = 7 \text{ TeV}$) ATLAS-CONF-2011-121

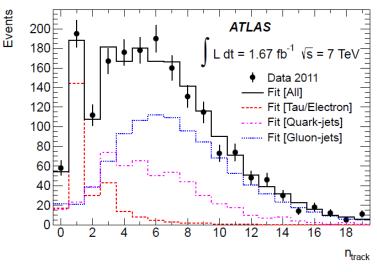
- The $t\bar{t}$ cross section is estimated by performing a maximum likelihood fit to discriminant observed in data using the signal and all background templates
- The measured cross section is:

 $\sigma_{tt} = 179.0 \pm 3.9 \text{ (stat.)} \pm 9.0 \text{ (syst.)} \pm 6.6 \text{ (lumi.)}$

• The systematic uncertainties are included in the fit via nuisance parameters


τ_{had} + jets Analysis ($\sqrt{s} = 7 \text{ TeV}$)

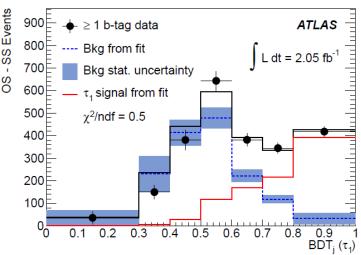
- Difficult final state to reconstruct, suffers from large background
- Events collected with a *b*-jet trigger:
 - 4 jets of which 2 *b*-tagged jets
- To reduce all hadronic $t\bar{t}$ decay and multi jets background $\rightarrow E_T^{\text{miss}} / (0.5 * \sqrt{\sum E_T}) > 8$
- τ lepton decays hadronically 65% of the time
 - Signature: calorimeter energy deposition matched with 1/3 charged tracks
 - Use the sum of the tracks to separate τ candidate from quark/gluon jets
- Extended binned likelihood fit to templates used to extract the number of τ+jets & e+jets events


 $\sigma_{tt} = 194 \pm 18 \text{ (stat.)} \pm 46 \text{ (syst.) pb}$

• Uncertainties are dominated by the ISR/FSR, generator modeling and *b*-tagging efficiency

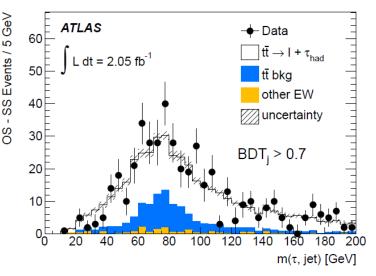
Eur. Phys. J.C73 (2013) 2328

Distribution of n_{track} for τ_{had} and electron for MC tt events, for jets in multijets events in data


 n_{track} for τ_{had} candidates

Phys. Lett B717(2012) 89-108

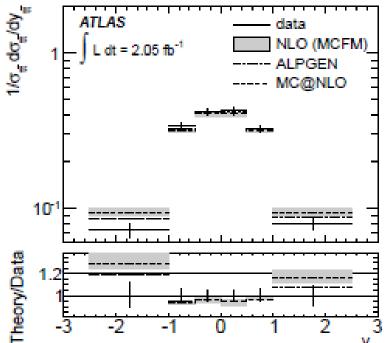
$\tau + e/\mu + jeta \text{ NALYSIS } (\sqrt{s} = 7TeV)$


$\circ \tau$ identification performed with a multivariate discriminants (BDT)

- BDT_e trained to separate τ candidate from fake τ from electrons
- BDT_i used to separate τ leptons in τ candidates with one or more tracks from such jets
- Events divided in two channels depending on the lepton charges
 - Same sign (SS): almost pure background
 - Opposite sign (OS): contain real τ leptons
- Background template extracted in the 0 0 *b*-tagged sample
- Cross section is derived from template fit to the number of observed (OS-SS) signal events in the ≥ 1 *b*-tag sample
 - Signal template derived from MC simulation
 - $\sigma = 186 \pm 13$ (stat.) ± 20 (syst.) ± 7 (lumi) pb
- Dominant systematic uncertainties: 0
 - *b*-tagging, ISR/FSR

SS

BDT (OS-SS) distribution of $l + \tau$ in $the \geq l \ b$ -tagged sample

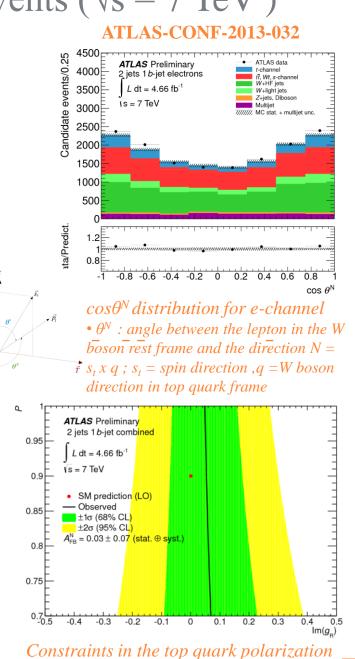


OS-SS invariant mass of jet and τ candidate in the ≥ 1 b-tagged sample Relative differential measurement ($\sqrt{s} = 7 \text{ TeV}$)

- Signature: lepton+ jets+ E_T^{miss}
 - at least one *b*-tagged jet
- Background:
 - W+jets, fake lepton
 - EW background estimate from simulation
 - Diboson, Z+jets and single top
- tt topology reconstruction performed using a likelihood fit of the measurement objects to a LO representation of the $t\bar{t}$ system
 - Cut on the kinematical likelihood function to select events which are consistent with *tt* hypothesis
- Use migration matrices to 'unfold' the results to truth parton-level
 - Cross section extraction:
 - Subtracting background B_i , correcting bin migration M^{-1} , acceptance A_i and dividing by the luminosity L

$$\sigma_j = \frac{\sum_i (M^{-1})_{ji} (N_i - B_i)}{A_j L}$$

Eur. Phys.J.C(2013) 73:2261


- Cross section measured as a function of observable sensitive to QCD prediction mass, p_T, rapidity y of tt system
- Measurement uncertainties range between 10% and 20%
 - dominated by systematics
- No deviation from SM expectation

CP violation in single top quark events ($\sqrt{s} = 7 \text{ TeV}$)

• Motivation: measure the forward-backward asymmetry A_{FB}^{N} to probe the anomalous coupling g_R

• SM prediction : $g_R = (-7.17 - 1.23i) \times 10^{-3}$

- Signature: one lepton + E_T^{miss} + two jets (1 b-tag)
- To compute $\theta^N \rightarrow$ reconstruct the four vector of top quark and W boson
- To separate signal and background
 - Light jets in $|\eta|{>}2,~H_T{>}210$ GeV, 150 GeV $< m_t$ $<\!190$ GeV, $\Delta\eta(light{-}jet,~b{-}jets){>}1$
- A_{FB}^{N} computed from θ^{N} distribution
 - Two-bin distribution to avoid problems due to the statistics
- $\cos \theta^N$ distribution is distorted to detector effects \rightarrow unfolded to parton
- $A_{FB}^{N} = 0.031 \pm 0.065 \text{ (stat.)}_{-0.031}^{+0.029} \text{ (syst.)}$
 - First experimental limit of [-0.20, 0.30] on imaginary part of g_R at 95% CL

versus imag g_R plane from A_{FB}^N