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The Higgs Boson in the 
Standard Model

 Higgs mechanism responsible 
for electroweak symmetry 
breaking

 Interactions with Higgs field
gives particles their masses

 Standard Model does not 
predict the Higgs mass 

 CMS and ATLAS announced the discovery of a 
Higgs-like boson in the H → ZZ and H → γγ 
channels in July 2012.
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Standard Model Higgs Boson at LHC
 The ATLAS and CMS 

collaborations announced 
the discovery of a new, 
Higgs-like particle at a 
mass of ~125 GeV in July 
2012

 So far all properties are 
consistent with the SM 
Higgs boson.
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The DØ Experiment
 A multipurpose 

particle detector
 Innermost detectors are 

the trackers, followed 
by calorimetry and 
muon chambers
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Higgs Production at the Tevatron
 The Higgs at Tevatron 

produced by gluon fusion 
(gg→H), associated 
production (qq→W/Z+H), 
and vector boson fusion 
(qq→qqH)
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Higgs Decay Modes

 The Higgs decays primarily 
to bottom quarks at low mass, 
WW at higher mass

 The searches for the Higgs at 
the Tevatron focus on H→bb 
at low mass, H→WW at high 
mass.

 Also use H → ττ, H → γγ due 
to low backgrounds
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Higgs Backgrounds

 The rate of Higgs production 
is small compared to 
backgrounds
– Bottom decays swamped by 

QCD background except for 
associated ZH/WH production

– WW cleaner, but still large 
backgrounds

 These backgrounds are 
modeled with Alpgen+Pythia, 
Pythia, and CompHEP
– Multijet and some other 

backgrounds modeled with data
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Signal vs. Background

 Once we have a good background model, we look 
for differences between signal and background

 Example from H→WW – ∆φ between leptons
 The Higgs is a spin-0 

particle; W is spin-1
⇒ small opening angle in 

leptons from the W decays 
 Leptons from WW 

isotropic; from Z back-to-
back
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Signal vs. Background

 Once we have a good background model, we look 
for differences between signal and background

 Example – ∆φ between leptons
 The signal to background ratio is so small that any 

one variable will not be sufficient to isolate the 
Higgs

 Instead, we look at many variables associated with 
each event at once – multivariate analysis
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S vs. B in VH → Vbb

Before
b-tagging

2 loose
tags

s/b 1/7000 1/1400

 Important:
– Jet energy resolution ∆m/m~15%
– b-tagging
– Multivariate techniques
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Multivariate Analysis

 Take multiple variables, each of which has some 
separating power

 Combine them into one variable that separates the 
signal and background 

14 variables + 
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, (link)

http://arxiv.org/abs/1303.3276
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb, (link)

http://arxiv.org/abs/1301.6122
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb, ZH→ννbb, 

(link)

http://dx.doi.org/10.1016/j.physletb.2012.08.034
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν, (link)

http://arxiv.org/abs/1301.1243
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν,  H→WW→lνqq', (link) 

http://arxiv.org/abs/1301.6122
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν,  H→WW→lνqq', 
VH→trileptons and e+µ+, (link)

http://arxiv.org/abs/1302.5723
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν,  H→WW→lνqq', 
VH→trileptons and e+µ+, VH→lνqqqq', (link)

http://arxiv.org/abs/1301.6122
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν,  H→WW→lνqq', 
VH→trileptons and e+µ+, VH→lνqqqq', H→ττ,(link)

http://arxiv.org/abs/1211.6993
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν,  H→WW→lνqq', 
VH→trileptons and e+µ+, VH→lνqqqq', H→ττ, and 
H→γγ (link)

http://arxiv.org/abs/1301.5358
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DØ Combination

 We have limited sensitivity in any one final state
– We therefore look at ZH→llbb, WH→lνbb,ZH→ννbb, 

H→WW→lνlν,  H→WW→lνqq', 
VH→trileptons and e+µ+, VH→lνqqqq', H→ττ, and 
H→γγ
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VH → Vbb Results

Expected sensitivity @125 GeV:
 2.3×SM; observed 3.5×SM
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H→WW Result
Dilepton only:
Exclude 159–176 GeV
For 125 GeV, exp. 3.4×SM,  
                       obs. 4.1×SM

Full H→WW:
Exclude 157–-178 GeV
For 125 GeV, exp. 2.9×SM,     
                      obs. 4.6×SM

15% improvement over dilepton alone15% improvement over dilepton alone
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H → ττ and H → γγ Results

H → ττ :

For 125 GeV, exp 7.25×SM
                   obs 10.4×SM

H → γγ:
Expect a narrow resonance, 

but small branching ratio
For 125 GeV, exp 8.7×SM

                   obs 12.8×SM
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DØ Combination

The blue 
dashed line is 
the expected 
LLR for 
background + 
Higgs boson 
signal having a 
mass of 
125 GeV with 
expected SM 
cross section. 
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DØ Combination

We expect a 95% CL limit of 1.66x SM expectation at mH = 125 GeV, 
measure a limit of 2.92x SM expectation

Exclude 157 to 178 GeV

Exclude 90 to 101 GeV
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Magnitude of Excess

 Between MH 
120–145 GeV, 
up to a 2σ excess
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Favored Cross Sections

 With MH=125 GeV, 
best fit cross-section 
is 1.4× SM cross-section

– Excess in all 4 main
subchannels
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Conclusions
 Have set limits on SM Higgs 

boson production at DØ

Sub. to PRD (arXiv:1303.0823)
 With MH=125 GeV, best fit 

cross-section is 1.4× SM 
cross-section
– Excess seen in all four main 

subchannels
 DØ excludes Higgs boson 

masses between 90–101 GeV 
and 157 – 178 GeV @ 95% CL

http://arxiv.org/abs/1303.0823
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Backup Slides
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Indirect Measurements

Because of quantum mechanics, 
the Higgs bosons can influence 
other particles without being 
directly detected 

More mass  more interactions ⇒
with virtual Higgs bosons

Measuring the mass of the W 
boson and top quark can tell 
us about the Higgs boson

tt
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Indirect Measurements

Fit to the precision EW data

Prefers a low mass Higgs

 ⇒ MH  ≈  94 GeV

 ⇒ MH ≤ 152 GeV at 95% CL

tt
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Electrons, Photons
 Lighter particles (e, γ) are 

stopped in the first few 
layers of the the calorimeter 

 Hadrons make it farther 
into the detector

 Only charge particles 
leave tracks

 Track matching allow us 
to distinguish e from γ
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Hadronic Jets
 When a high momentum 

quark or gluon is produced 
in a collision, results in a jet 
of hadronic particles into 
the detector
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Muons
 Muons can pass through our 

entire detector
– µ are massive enough not to 

be stopped like e or γ in EM 
calorimeter

– Don't feel strong force, so 
hard interactions are rare

 Muons are charged, so they 
leave tracks

 Place trackers outside the 
calorimeter to detect 
passage, and match to a 
track in inner tracker
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Missing Transverse Energy
 Neutrinos do not interact 

with our detector
– Infer their presence through 

missing transverse energy
– Transverse = ⊥ to beamline

 To conserve momentum,

 vector sum pT = 0

– If non-zero, then either
• Energy Mis-measurement
• Missed one or more particles (usually neutrinos) 

electron

METMET

jet

muons
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How We Set Limits
 Based on log-likelihood ratio

– L is the Poisson likelihood that the 
s+b  (b) correctly models the data

– θ represents the systematic 
uncertainties on the measurements (luminosity, 
energy scale, etc.)

 Calculate probability density of LLR based on models 
of signal and background



James Kraus, University of Mississippi 38

How We Set Limits
 Based on log-likelihood ratio

 

 CLb and CLs+b are given by the 
integrals of the b and s+b LLR 
distributions above observed LLR
– Represents how well the given model agrees with data

 We vary the signal content of the s+b model to find 
where CLs = CLs+b/CLb < 0.05

– We exclude those points at the 95% Confidence Level (CL)
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