

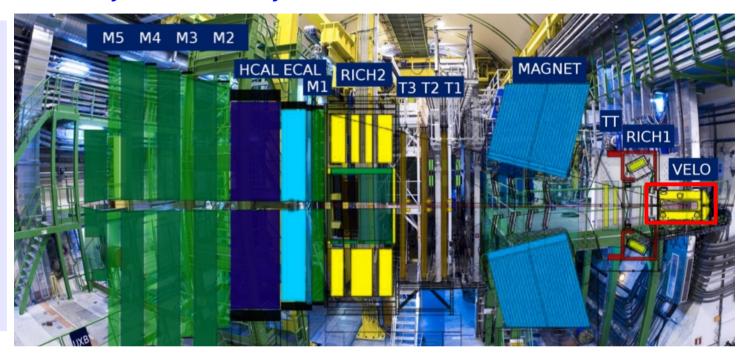
Dmytro Volyanskyy Max-Planck-Institut für Kernphysik (Heidelberg, Germany) on behalf of the LHCb collaboration

XXI International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2013), April 22-26th, 2013, Marseille, France

Outline

LHCb presentations at DIS2013

Good assortment for all tastes :-)


See conference program for more details

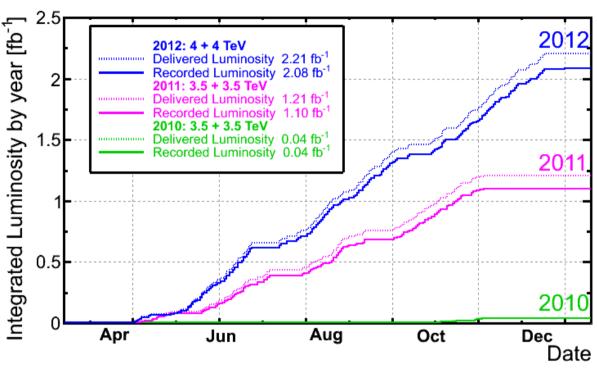
- Charm and beauty production at LHCb (by A. Kozlinskiy on 23.04.2013)
- Inclusive particle production at LHCb (by D. Volyanskyy on 23.04.2013)
- Limits on neutral Higgs production in the forward region in pp collisions at 7 TeV (by P. Ilten on 23.04.2013)
- Properties and decays of the Bc meson and b baryons (by Y. Xunao on 23.04.2013)
- Quarkonia and quarkonia-like spectroscopy at LHCb (by C. Fitzpatrick on 23.04.2013)
- Studies of excited charm and beauty mesons at LHCb (by V. Gligorov on 23.04.2013)
- Studies of quarkonia production and polarisation at LHCb (by M. Frosini on 23.04.2013)
- Electroweak boson production at LHCb (by S. Tourneur on 24.04.2013)
- Exclusive J/psi and psi(2S) production in pp collisions at 7 TeV (by R. MCnulty on 24.04.2013)
- The LHCb upgrade (by U. Marconi on 24.04.2013)

The LHCb experiment

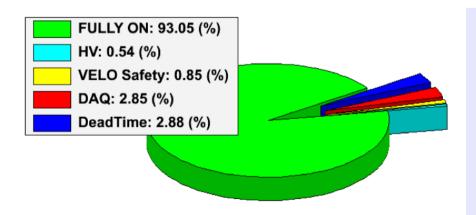
- Major physics goal: CP violation, rare decays and New Physics searches
- Forward spectrometer with planar detectors:
- \rightarrow angular coverage: 1.9 < η < 4.9
- → combination of PID and tracking detectors covering the full acceptance: unique @ LHC
- → ability to explore low-p⊤ processes at large η

- Excellent tracking performance:
- \rightarrow momentum resolution of tracks traversing the full tracking setup $\delta p/p \sim 0.4-0.6\%$
- → great invariant mass resolution and precise vertex reconstruction achieved

- High quality particle identification:
- → RICH system: efficient hadron ID over the wide momentum range unique@LHC
- \rightarrow Calorimeter and Muon Systems: robust e, γ , muon, hadron separation + trigger


Selective and flexible trigger system

JINST 3 (2008) S08005


Data taking

year	luminosity	energy (TeV)
2009	6.8 μb ⁻¹	0.9
2010	0.3 nb^{-1}	0.9
2010	37 pb ⁻¹	7
2011	0.1 pb ⁻¹	2.76
2011	1.0 fb ⁻¹	7
2012	2.0 fb^{-1}	8
2011	3.7 pb ⁻¹	2.76
2012	2.0 nb ⁻¹	5.02(pPb/Pbp)

LHCb Efficiency breakdown pp collisions 2010-2012

Results shown here were obtained with low pile-up data and microbias trigger

- ~93 % data taking efficiency
- ~99% r/o channels operational
- ~99% of accumulated data are useful for physics analysis
- Luminosity leveling to moderate interaction rate
- In 2011&2012, high luminosity (up to 4.0× 10³² cm⁻² s⁻¹) running
- LHCb design luminosity: 2.0 × 10³² cm⁻² s⁻¹
- Smooth data taking by LHCb despite strong challenge for the trigger and offline data processing

Forward Energy Flow: outline

- Energy Flow (EF):
 - \rightarrow average energy created in a particular η interval per inelastic pp interaction

$$\frac{1}{N_{\rm int}} \frac{dE_{tot}}{d\eta} = \frac{1}{\Delta \eta} \left(\frac{1}{N_{\rm int}} \sum_{i=1}^{N_{part,\eta}} E_{i,\eta} \right)$$

- EF is sensitive to the amount of parton radiation and multi-parton interactions (MPI)
- → strongly needed for a precise description of the UE
- → possibility to discriminate between MPI models
- \rightarrow great input for MC tuning
- improve the existing constraints on ultra high energy cosmic-ray interaction models:
 - \rightarrow LHC provides first possibility to compare cosmicray showering models at E_{lab} of up to ~10¹⁷eV

- EF is measured for the following event classes:
 - → inclusive MB: at least 1 track in $1.9 < \eta < 4.9$ with p > 2 GeV
 - → hard scattering: at least 1 track in 1.9< η <4.9 with p_{τ} > 3 GeV
 - \rightarrow diffractive enriched: inclusive MB with no backward tracks in $-3.5 < \eta < -1.5$
 - \rightarrow non-diffractive enriched: inclusive MB with at least 1 backward track in $-3.5 < \eta < -1.5$
- Charged EF: tracks traversing the full setup Neutral EF: data-constrained MC estimate
- Data corrected for detector effects & compared to PYTHIA-based+cosmic-ray models
- Systematic effects decrease towards large η

arXiv:1212.4755 [hep-ex] accepted by EPJC

Forward Energy Flow: results (1)

LHCD

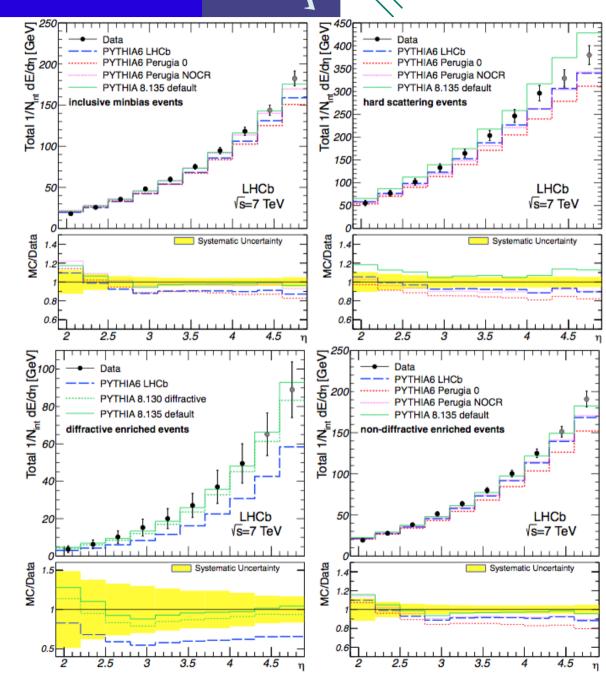
MAX-PLANCK-INSTITUT

FÜR KERNPHYSIK

HEIDELBERG

• EF increases with the momentum transfer in an underlying pp process:

$$EF_{\text{hard}} > EF_{\text{non-diffr}} > EF_{\text{incl}} > EF_{\text{diffr}}$$


- PYTHIA6-based models underestimate
 EF at large η and overestimate it at low η in case of all event classes
- PYTHIA8 gives excellent description of the inclusive, diffractive and non-diffractive enriched EF at large η

J. of Phys. : Conf. Ser. 331 (2011) 032023.

Phys. Rev. D82 (2010) 074018, arXiv:1005.3457

Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820

arXiv:1212.4755 [hep-ex] accepted by EPJC

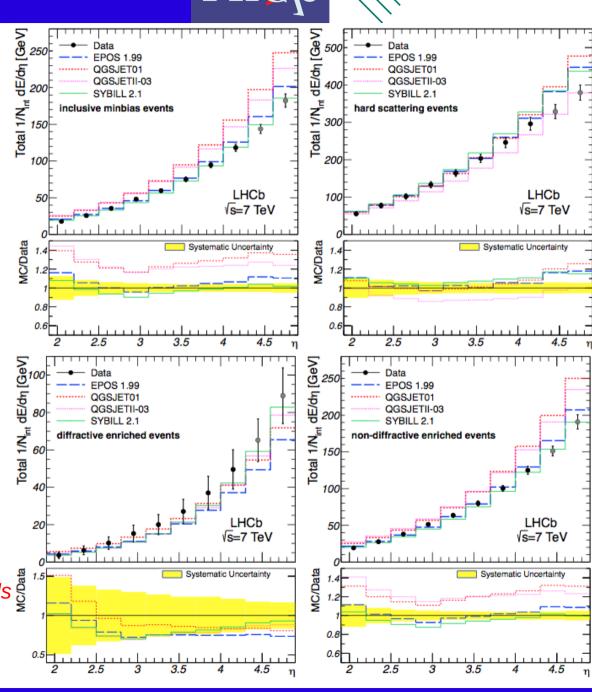
Forward Energy Flow: results (2)

- LHCD
- MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

- EPOS 1.99, SYBILL 2.1, QGSJET01, QGSJETII cosmic ray interaction models
 - → soft processes via Pomeron exchanges (Gribov's Reggeon Field Theory)
 - → hard processes: pQCD or exchanges of semi-hard Pomerons
 - → models are not tuned to LHC data
 - → thanks to Ralf Ulrich and Colin Baus from KIT for providing these predictions

Astropart. Phys. 35 (2011) 98, arXiv:1101.5596.

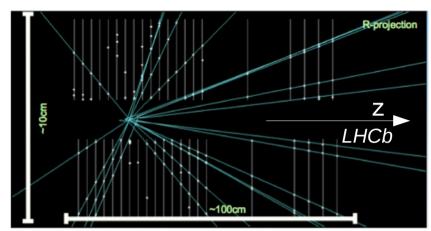
J. Phys.: Conf. Ser. 60 (2007) 167, arXiv:astro-ph/0610788.

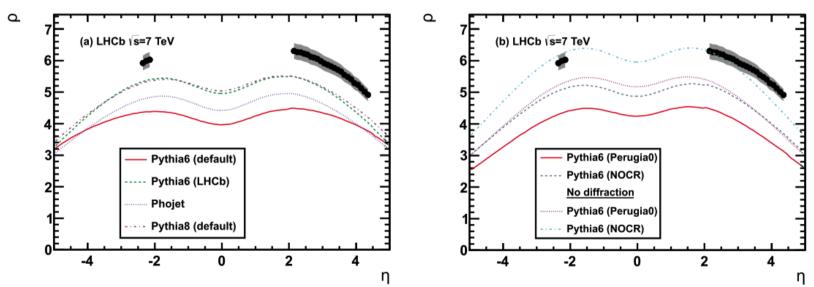

AIP Conf. Proc. 928 (2007) 118.

Nucl. Phys.Proc. Suppl. 196 (2009) 102, arXiv:0905.1198.

Phys. Rev.D80 (2009) 094003, arXiv:0906.4113.

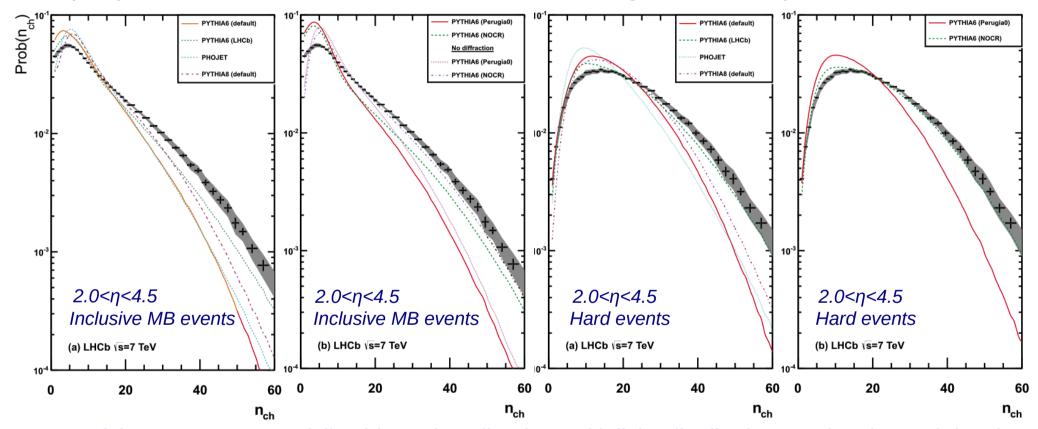
- SYBILL 2.1 gives the best description of the inclusive and non-diffractive EF
- None of the models are able to describe the EF measurements for all event classes:
 - → valuable input for MC tuning and MPI/UE models


arXiv:1212.4755 [hep-ex] accepted by EPJC


Charged Particle Multiplicities (1)

- Measurement of the charged particle multiplicities :
 - → sensitivity to the underlying QCD dynamics
 - → charged particles counted using reconstructed tracks in the VELO (no magnetic field – tracks are straight lines)
 - → measurements with minimum bias and hard interaction (at least 1 long track with p_T>1 GeV) events

- Charged particle density per event vs η for the data and models:
 - → normalized to events with at least 1 charged particle in the forward acceptance


→ large discrepancy between the data and model predictions: Perugia NOCR without diffraction gives the best description of the measurements

Eur. Phys. J. C 72 (2012) 1947

Charged Particle Multiplicities (2)

• multiplicity distributions for inclusive MB and hard events vs generator level predictions:

- ullet none of the generators are fully able to describe the multiplicity distributions or the charged density distribution as a function of η in the LHCb acceptance
- models underestimate the charged particle production in the forward region
 - → valuable input for MC tuning and UE models

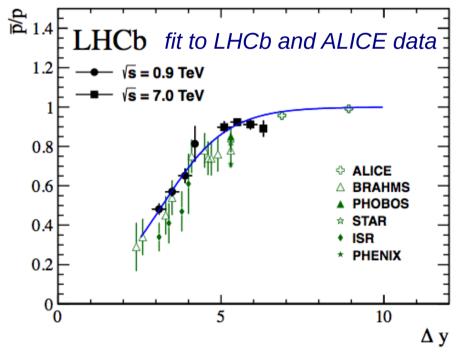
Hadron Production Ratios (1)

Ratios of prompt hadrons at 0.9 TeV and 7 TeV

$$\frac{\overline{p}}{p}$$
, $\frac{K^{-}}{K^{+}}$, $\frac{\pi^{-}}{\pi^{+}}$, $\frac{p+\overline{p}}{\pi^{+}+\pi^{-}}$, $\frac{K^{+}+K^{-}}{\pi^{+}+\pi^{-}}$, $\frac{p+\overline{p}}{K^{+}+K^{-}}$

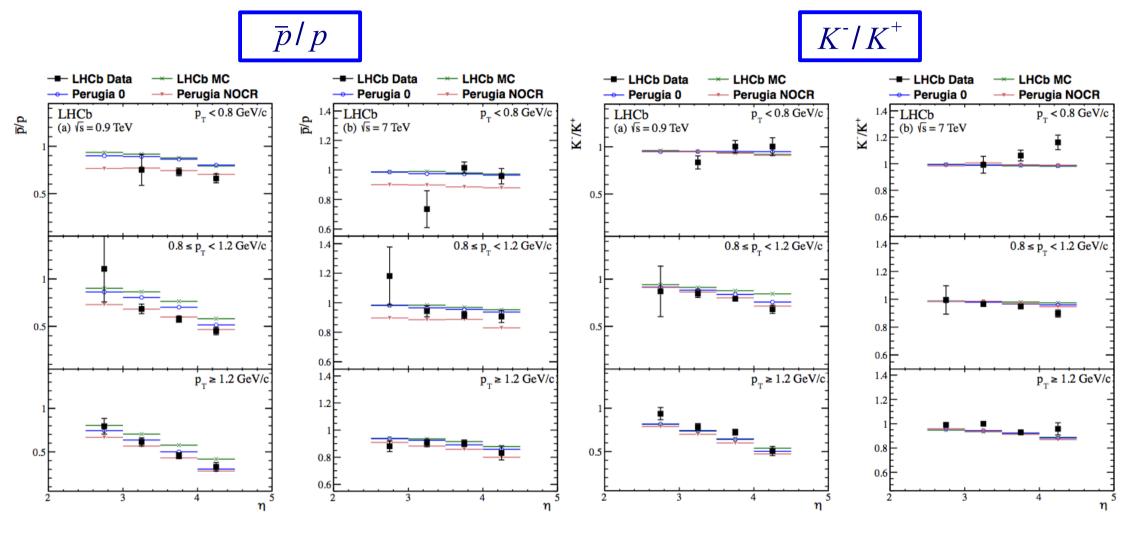
as a function of pseudorapidity and transverse momentum:

- → sensitive test of hadronisation and baryon number transport
- → very important measurements for MC tuning
- \rightarrow RICH-based analysis: π /K/p separation over a wide momentum range
- → PID efficiency and purity estimated from data using tag and probe method on:


$$K_{\rm S}^0 \rightarrow \pi^+ \pi^-$$
, $\phi \rightarrow K^+ K^-$, $\Lambda \rightarrow \pi p$

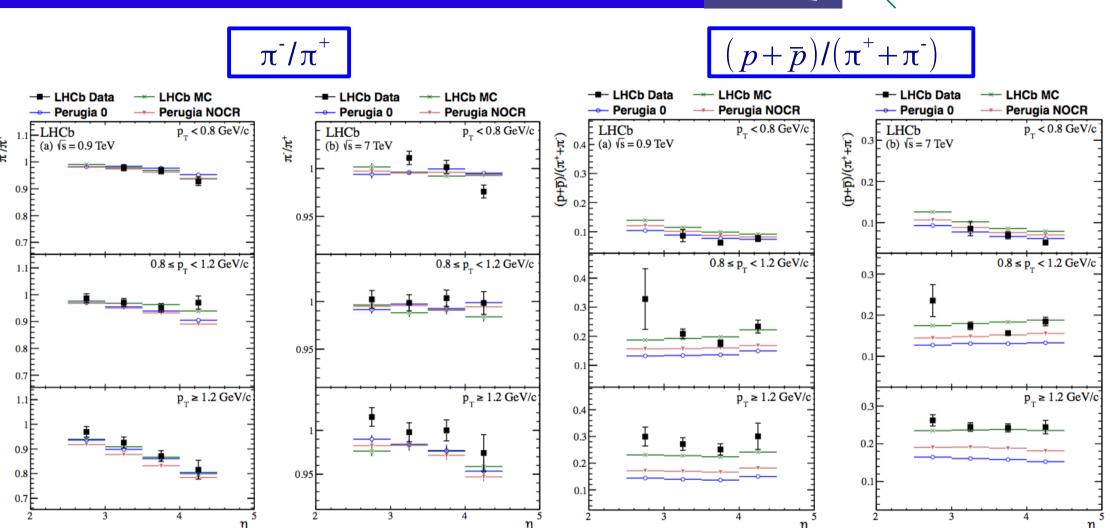
ullet Ratio \overline{p}/p is also measured as a function of rapidity loss

$$\Delta y = y_{\text{beam}} - y_{\text{particle}}$$
, $y_{\text{beam}} = 8.9(6.9)$ at $\sqrt{s} = 7(0.9)$ TeV



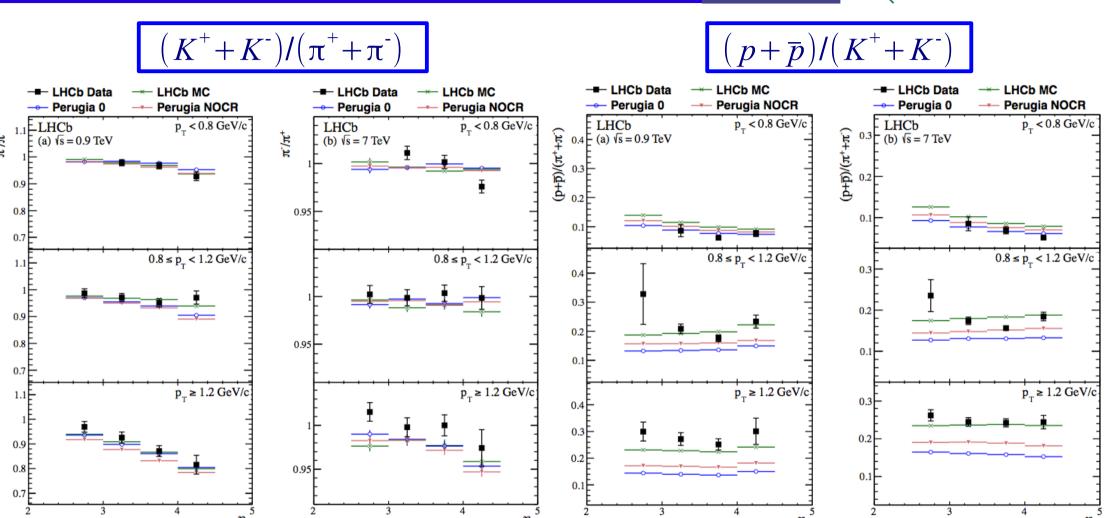
ightarrow no significant dependence on pau and \sqrt{s}

Hadron Production Ratios (2)



- \rightarrow largest uncertainty at low pT and η
- → data is compared to predictions given by various PYTHIA6-based models

Hadron Production Ratios (3)

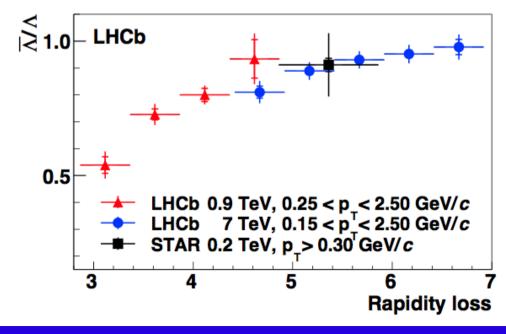


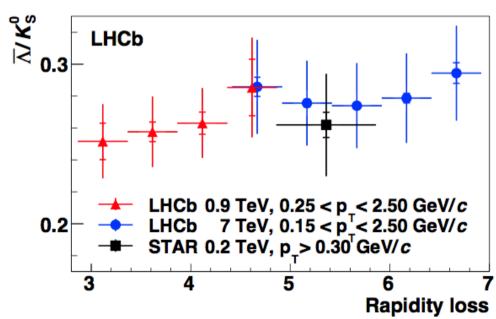
→ discrepancy between data and MC is observed in the majority of bins

Hadron Production Ratios (4)

→ none of the models are able to describe the measurements for all phase space bins: valuable input for MC tuning

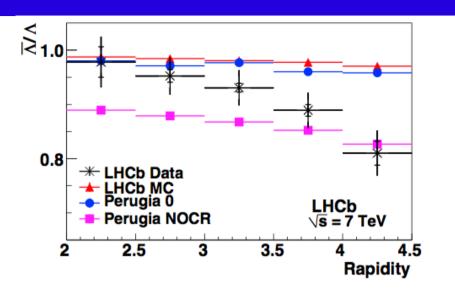
Strangeness Production (1)

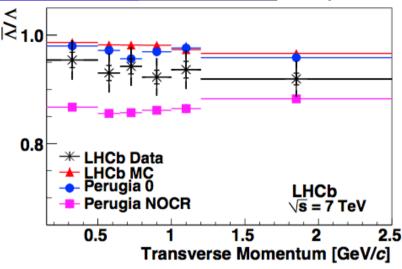

• V^0 production ratios at 0.9 TeV and 7 TeV:

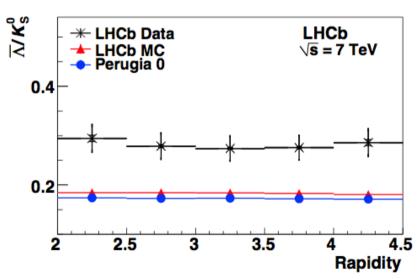

JHEP 08 (2011) 034

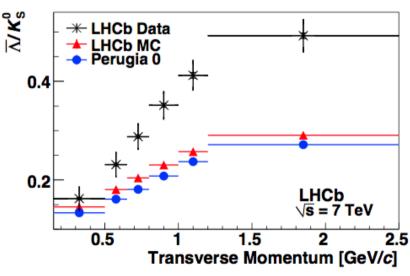
$$\frac{\bar{\Lambda}}{K_{\rm S}^0} = \frac{\sigma(pp \to \bar{\Lambda} X)}{\sigma(pp \to K_{\rm S}^0 X)} \qquad \frac{\bar{\Lambda}}{\Lambda} = \frac{\sigma(pp \to \bar{\Lambda} X)}{\sigma(pp \to \Lambda X)}$$

as a function of rapidity and transverse momentum:


- → Baryon Number Transport and Baryon/Meson suppression: sensitive test of hadronisation models
- $\to K_S^0 \to \pi^+ \pi^-$, $\Lambda \to p \pi^-$, $\bar{\Lambda} \to \bar{p} \pi^+$: decays for reconstruction
- → reduced systematic uncertainties due to the ratios
- Ratios are also measured as a function of rapidity loss:
 - → good agreement between 0.9 and 7 TeV data and the STAR measurement

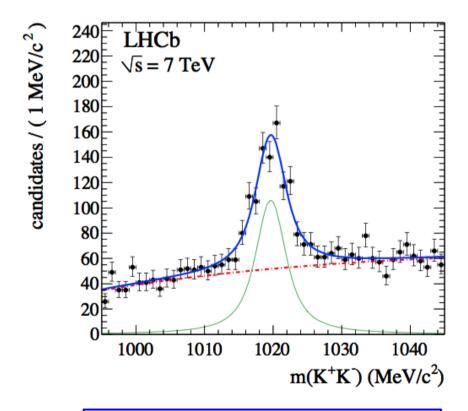




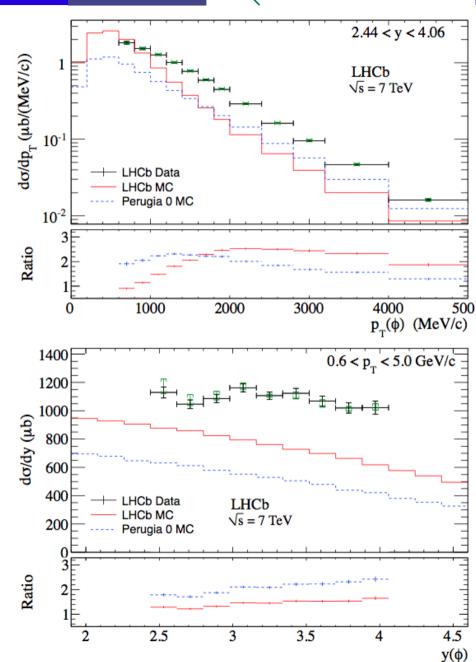

Strangeness Production (2)

- → Baryon Number Transport is underestimated by PYTHIA6-based models (except for NOCR model), while Baryon/Meson suppression is overestimated: valuable input for MC tuning
- → similar behavior at 0.9 TeV

JHEP 08 (2011) 034


Strangeness Production (3)

HEIDELBERG


MAX-PLANCK-INSTITUT
FÜR KERNPHYSIK
HEIDELBERG

- Inclusive ϕ differential production cross-section:
 - → PYTHIA6-based models significantly underestimate the measured cross-section

$$2.44 < y(\phi) < 4.06, 0.6 < p_T < 5 \text{ GeV/c}$$

 $\sigma(pp \to \phi X) = 1758 \pm 19 (\text{stat})_{-14}^{+43} (\text{syst}) \pm 182 (\text{scale}) \mu \text{ b}$

Phys. Lett. B 703 (2011) 267-273

Summary

- LHCb instrumentation permits high-precision studies of particle production in a unique, previously unexplored kinematic range:
 - → smooth running of the detector over 2009-2013
 - \rightarrow 3 fb⁻¹ of high quality data is accumulated
 - \rightarrow possibility to perform analyses using pp collisions at \sqrt{s} = 0.9,2.76,7.0,8.0 TeV and in pPb and Pbp interactions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV
- Different inclusive particle production measurements are performed for pp collisions at \sqrt{s} = 0.9,7.0 TeV
- Great input to theory is delivered by the forward energy flow, charged particle multiplicity, hadron and strangeness production measurements
- Analyses at other collision energies are currently ongoing

Stay tuned for further results!