nuSTORM

Detailed Studies of Neutrino-Nucleus Scattering with vSTORM

Dr Ian Taylor University of Warwick

Introduction

- The effect ν interactions have on ν physics.
- The inherent difficulties of ν interaction measurements.
- The idea behind a vSTORM facility:
 - Beamline
 - Detector opportunities
- Status and prospects for vSTORM.

v Oscillation Physics

- THE UNIVERSITY OF WARWICK VSTORM
- ν physics is very exciting right now:
 - 2012 saw first measurements of θ_{13} , the last unknown v mixing angle (T2K, Daya Bay, RENO, Double Chooz).
 - Measurements of δ , the CP violating phase, are within reach (LBNE, LBNO, T2HK).
- This next phase will require a large increase in sensitivity...
 - Comparing ν_{μ} -> ν_{e} and $~\bar{\nu}_{\mu}$ -> $\bar{\nu}_{e},$ or
 - Comparing 1^{st} and 2^{nd} oscillation maxima.

nuSTORM - DIS2013

T2K Oscillation Result

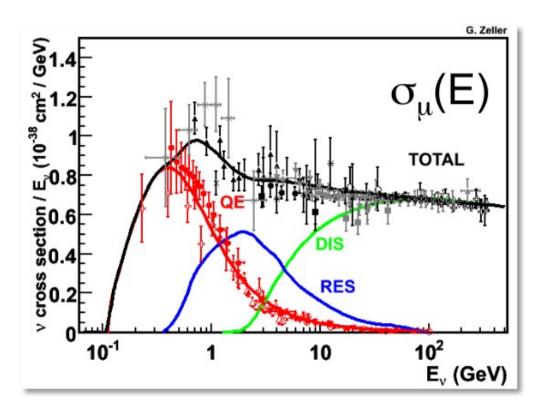
- T2K observed $\nu_{\rm e}$ app. in a ν_{μ} beam.
- Monte Carlo predicted v beam, and interaction rates at near and far detectors.

	$\sin^2 2$	$\theta_{13} =$
Error source	0	0.1
Beam flux & ν int. (ND280 meas.)	8.5	5.0
ν int. (from other exp.)		
$x_{CCother}$	0.2	0.1
x_{SF}	3.3	5.7
p_F	0.3	0.0
x^{CCcoh}	0.2	0.2
x^{NCcoh}	2.0	0.6
$x^{NCother}$	2.6	0.8
$x_{{ u}_e/{ u}_\mu}$	1.8	2.6
$W_{ m eff}$	1.9	0.8
$x_{\pi-less}$	0.5	3.2
$x_{1\pi E_{ u}}$	2.4	2.0
Final state interactions	2.9	2.3
Far detector	6.8	3.0
Total	13.0	9.9

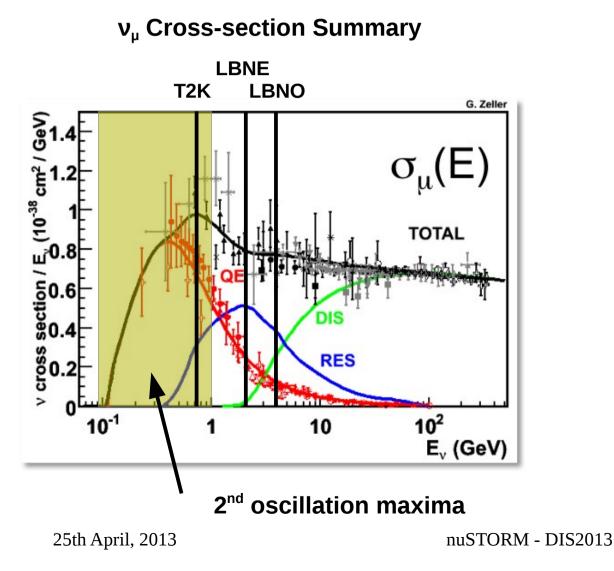
T2K Oscillation Result

WARWICK

- T2K observed $\nu_{\rm e}$ app. in a ν_{μ} beam.
- Monte Carlo predicted v beam, and interaction rates at near and far detectors.
- The dominant systematic errors come from ν int. uncertainties.
 - 7.8% (total 9.9%)

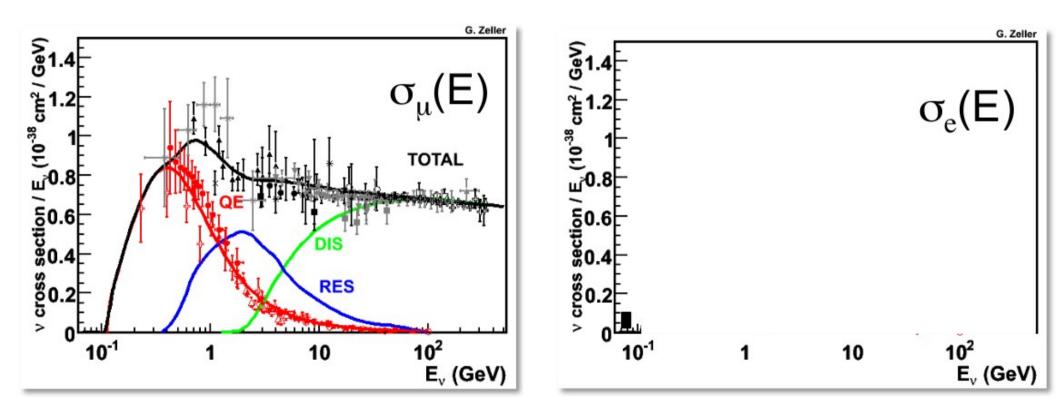

 $\sin^2 2\theta_{13} =$ Error source 0 0.1Beam flux & ν int. (ND280 meas.) 8.55.0 ν int. (from other exp.) 0.20.1 $x_{CCother}$ 3.35.7 x_{SF} 0.30.0 p_F x^{CCcoh} 0.20.2 r^{NCcoh} 2.00.6 $r^{NCother}$ 2.60.82.61.8 x_{ν_e/ν_μ} $W_{\rm eff}$ 0.81.93.20.5 $x_{\pi-less}$ 2.02.4 $x_{1\pi E_{\nu}}$ 2.92.3Final state interactions Far detector 6.83.0Total 13.09.9

arXiv:1304.0841


Current Status of v Cross-Sections

 ν_{μ} Cross-section Summary

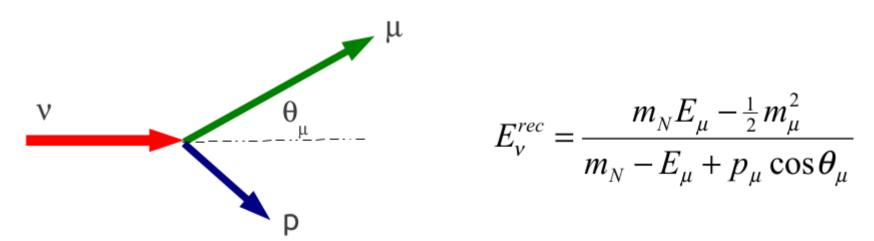
Current Status of v Cross-Sections


THE UNIVERSITY OF WARWICK

Current Status of v Cross-Sections

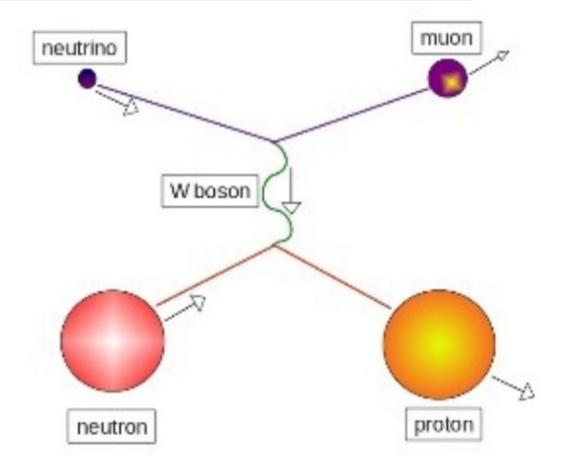
ν_{μ} Cross-section Summary

 v_{e} Cross-section Summary

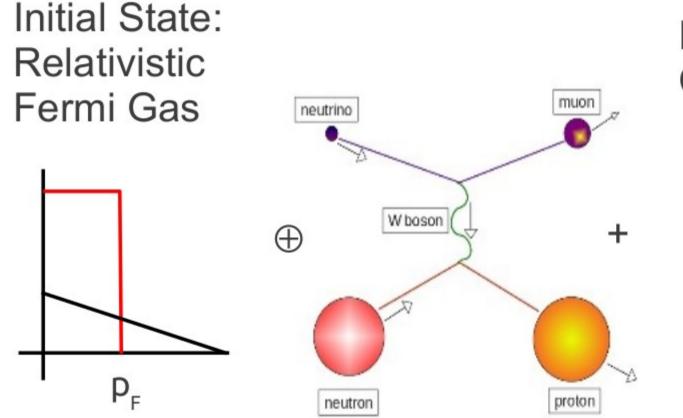

All $\sigma_{ve}(E)$ are inferred from $\sigma_{v\mu}(E)$

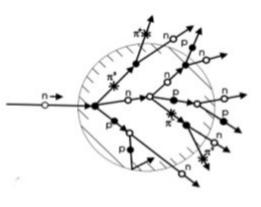
nuSTORM - DIS2013

QE: "Quasi-Elastic" $v_{\mu} + n \rightarrow \mu + p$

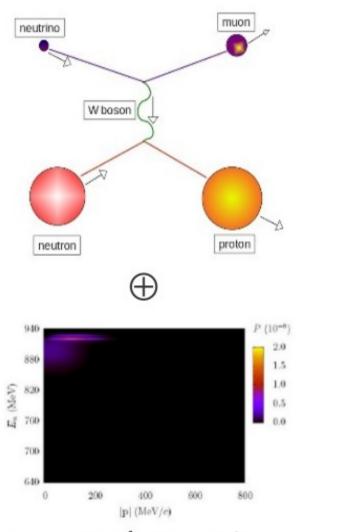

- Very useful interaction:
 - Sometimes considered a "Standard Candle"
 - Used to normalise other processes
- Neutrino energy is reconstructable:

QE: "Quasi-Elastic" $v_{\mu} + n \rightarrow \mu + p$




First I was told it was this...

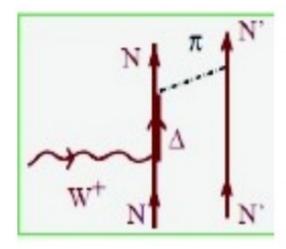
QE: "Quasi-Elastic" $v_{\mu} + n \rightarrow \mu^{-} + p$



... then they said it was this...

QE: "Quasi-Elastic" $v_{\mu} + n \rightarrow \mu + p$

 \oplus



2p-2h effects

THE UNIVERSITY OF

K

vSTORM

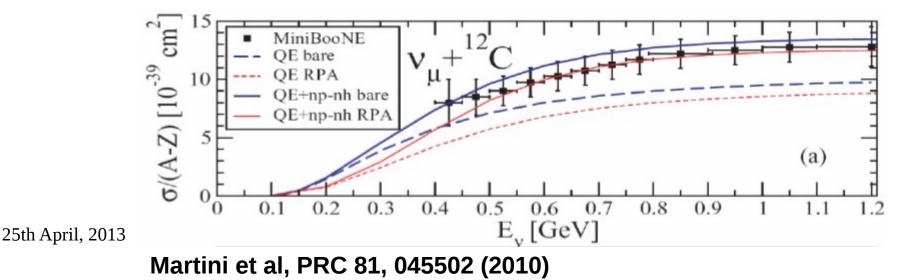
+

Cascade Models In-medium effects

25th Apr Spectral Functions ... but it is probably this (I hope).

Nuclear Effects

RWICK VSTORM


13

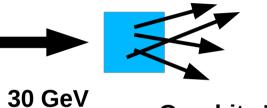
UNIVERSITY

• The events we observe in detectors are:

 $Y_{ ext{c-like}}(E) \propto \Phi(E' \geq E) \otimes \sigma_{ ext{c,d,e..}}(E' \geq E) \otimes ext{Nuc}_{ ext{c,d,e..}
ightarrow ext{c}}(E' \geq E)$

- The last two terms are the effective cross-section, convolving:
 - the initial ν +nucleon interaction, and
 - the nuclear effects (getting particles out of a nucleus!)

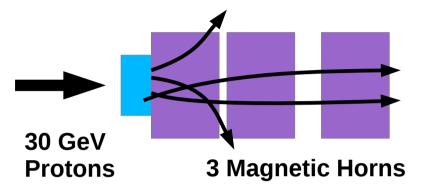
Recent Cross-Section Measurements



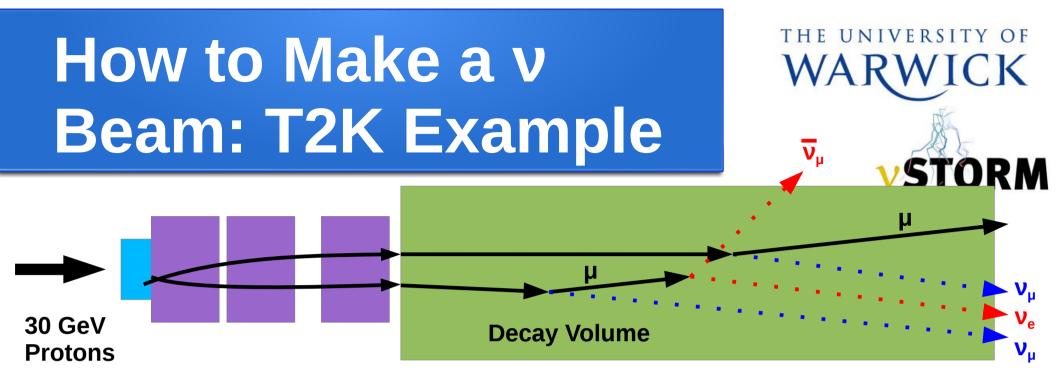
UNIVERSITY OF

- MiniBooNE and T2K have recently produced some very nice cross-section measurements:
 - Double differential wrt momentum and angle of produced particle.
 - Precise on particles measured
- Limited by Statistics and Beam Uncertainties.

How to Make a v Beam: T2K Example

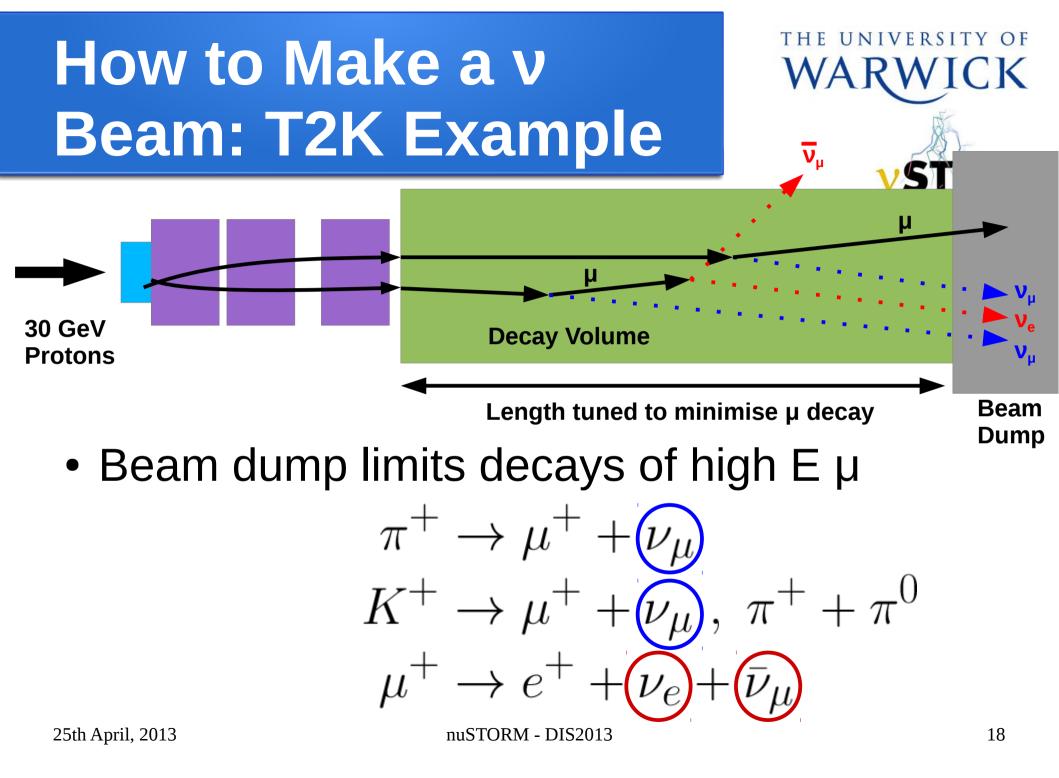

Protons

Graphite Target


• 30 GeV Protons hit a graphite target. $p + p \rightarrow \pi^{\pm} + K^{\pm}$

How to Make a v Beam: T2K Example

• Focus +ve particles, defocus -ve. π^+ K^+


- Particles decay in flight, producing $\boldsymbol{\nu}$

$$\pi^+ \to \mu^+ + \nu_\mu$$

$$K^+ \to \mu^+ + \nu_\mu , \ \pi^+ + \pi^0$$

$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

nuSTORM - DIS2013

Beam Uncertainties

- Characterising beams relies on complicated MC and indirect measurements (e.g. μ from π decay)
- Therefore, large systematic uncertainties in:
 - the absolute number of neutrinos, and
 - the energy distribution of the neutrinos.
- These are an irreducible limit on cross-section measurements.
 - MiniBooNE anti-v flux: 9.6%
 - T2K ν flux: 10.9%

UNIVERSITY

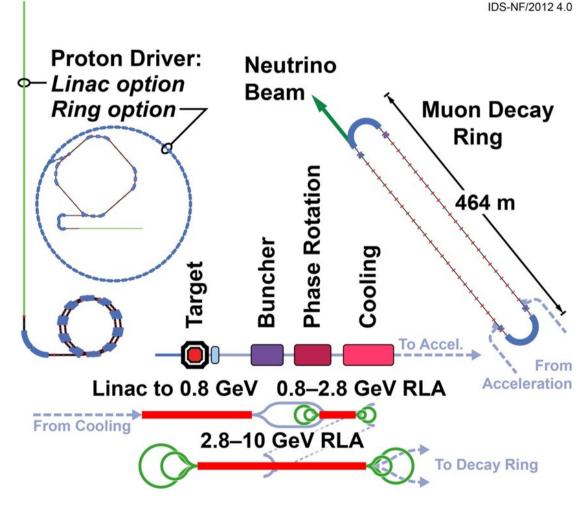
Beam Uncertainties

 Characterising beams relies on complicated MC and indirect measurements (e.g. μ from π decay)

10% Errors on Flux

Only produces v_{μ} / \bar{v}_{μ}

ν_{e} / $\overline{\nu}_{e}$ are still out of reach


- MiniBooNE anti-v flux: 9.6%
- T2K ν flux: 10.9%

THE UNIVERSITY OF

CK

WARWI

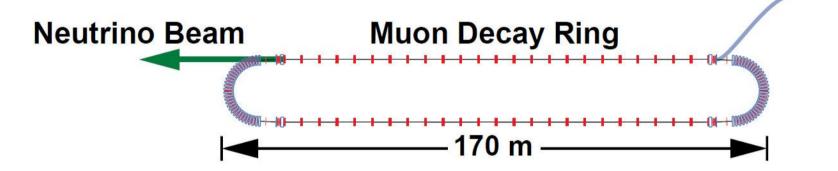
A Better v Beam: Neutrino Factory

- Accelerate Protons
- Protons + Target make pions

THE UNIVERSITY OF

vSTORM

- Pions decay to Muons
- Muons are cooled + bunched, then accelerated
- Muons enter a decay ring with straight sides.
- Muons decay in flight to produce muon neutrinos and electron anti-neutrinos.

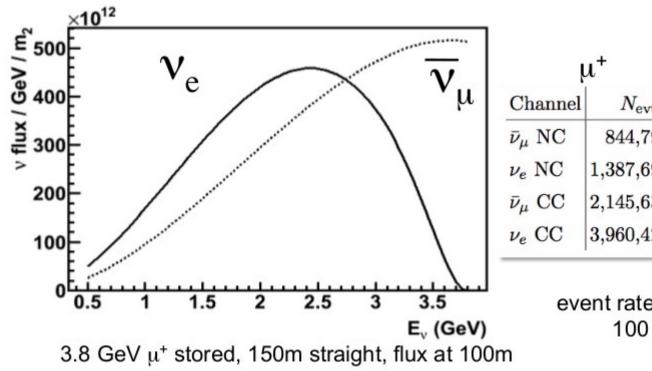

A Better v Beam: Neutrino Factory

THE UNIVERSITY OF

Simplest 'Neutrino Factory'

- π^+ enter ring, decay to μ^+
- Only μ^+ make it around the ring.
 - Second 'lap' is pure muons, which decay.

THE UNIVERSITY OF


vSTORM

Target

Very Precise Beam

• The vSTORM beam will provide a very wellknown ($\delta \Phi(E) \le 1\%$) beam of v and \overline{v} .

$$\mu^+
ightarrow ar{
u}_\mu +
u_e + e^+$$
 or $\mu^-
ightarrow
u_\mu + ar{
u}_e + e^-$

 μ^{-} Channel Nevts Nevts $\bar{\nu}_e$ NC 709,576 844,793 1,387,698 ν_{μ} NC 1,584,003 2,145,632 $\bar{\nu}_e$ CC 1,784,099 3,960,421 ν_{μ} CC 4,626,480

event rates per 1E21 POT -100 tons at 50m Equivalent to 4-5 yr

THE UNIVERSITY OF

vSTORM @ FNAL

THE UNIVERSITY OF WARWICK

A CERN based proposal is also being prepared, either site is feasible.

25th April, 2013

nuSTORM - DIS2013

FNAL LOI: arXiv:1206.0294

CERN EOI: SPSC-EOI-009

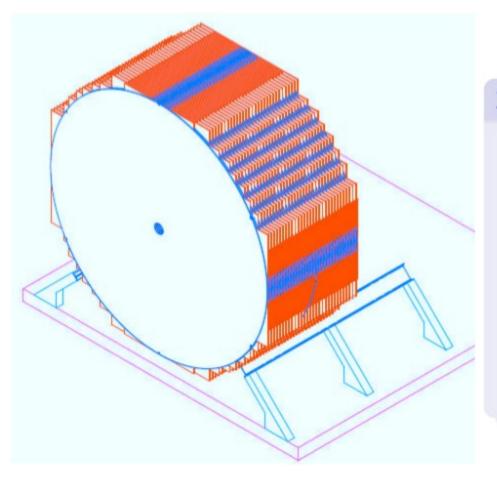
vSTORM: 3 Goals

- An accelerator and detector technology test bed:
 - Toward Neutrino Factory & Muon Collider
- A final answer to the sterile ν anomaly of LSND & MiniBooNE.
- ν cross-section measurements:
 - Improvements for all neutrino types.
 - Especially true for v_{e} .
 - A ν "Light Source".

THE UNIVERSITY OF

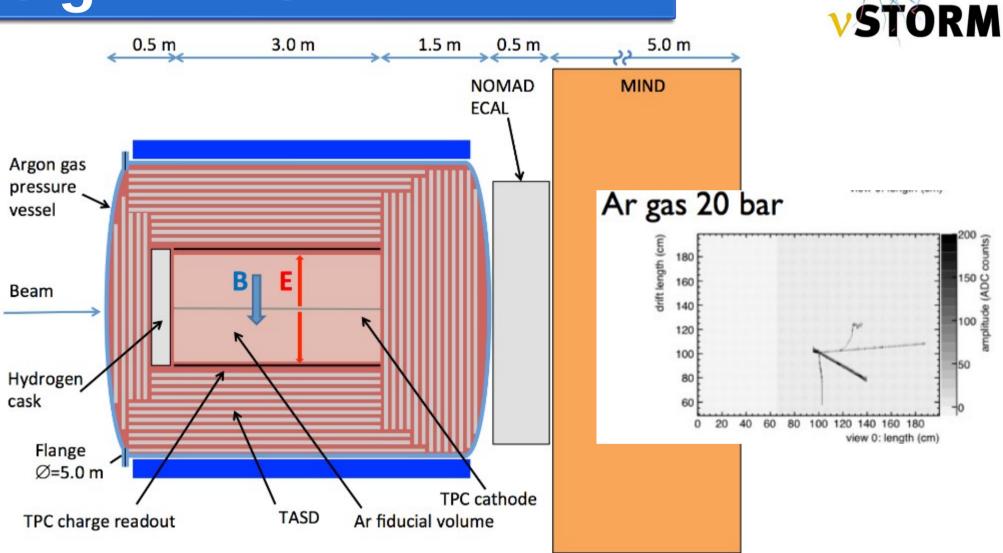
Cross-Section Measurement Facility

- The vSTORM Facility would have three near detector slots
 - @ 20m FNAL, @300m CERN.
- Experimental collaborations would construct and install detectors.


Detector Slots

- Sterile v search near detector.
- Test of ND for future long baseline experiment.
- Dedicated to v cross-section detectors, each potentially only running for shorter periods of time (~2 years).

Sterile v detector: SuperBIND



SuperBIND Detector

- Steel-scintillator calorimeter
- 6 m diameter; 16 m length
- 1.5 cm steel plates.
- Sci planes provide space points
 2 layer of 1×1 cm² bars.
- Double ended readout with SiPM.

Long Baseline ND: e.g. LBNO ND

Cross-Section Detectors

- Multiple detectors over the life of the facility
 - Different detector technologies
 - Targeted designs for specific cross-sections
 - 200 MeV $\pi^{\scriptscriptstyle 0}$ ID very different from 2 GeV μ
- Multiple targets
 - Nuclear effects depend on nucleus, so match targets of other v experiments (C, H₂O, Ar).

One Crazy Suggestion

- Rapid Cycling H₂ Bubble Chamber
 - A hydrogen target removes all nuclear effects, directly accesses initial v+p interaction.
 - Fast CMOS detectors makes this possible, given the cycling rate of a vSTORM beam.
 - Fully instrumented detector, great for vertex activity and particle identification.
- Obvious safety issues of working with H₂, under investigation.

Summary

- A vSTORM facility would allow for world leading ν interaction measurements.
 - − µ decay beam gives precise flux, $\delta \Phi(E) \leq 1\%$
- Proposals are being prepared for facilities at either FermiLab or CERN.
- Opportunities to fully understand nuclear effects in ν physics, by comparing results from different targets.
- Interested parties: please get in touch...

- Bross@FNAL.GOV, Elena.Wildner@CERN.CH 25th April, 2013 nuSTORM - DIS2013

THE UNIVERSITY OF