Using 1-jettiness
 to Measure 2 Jets in DIS in 3 Ways

Daekyoung Kang (MIT)

In collaboration with
lain Stewart (MIT) and Chris Lee (LANL)

Outline

- Deep inelastic scattering (DIS)
- 2-jets event: 1 ISR+1 jet
- Event shape:

1-jettiness in $\mathbf{3}$ ways

H1 Event from www-h1.desy.de

- Derivation of factorization thm. to all orders in α_{s}

- Resummed predictions at NNLL
- Higher logarithmic accuracy than previous work at NLL
- Summary

Deep Inelastic Scattering

- Large Q transfer from e^{-}to proton
- Traditional factorization for large $\mathbf{Q} \gg \boldsymbol{\Lambda}_{\mathbf{Q C D}}$

$$
\sigma=f \bigotimes \sigma_{\text {parton }}
$$

DIS variables

$$
q^{2}=-Q^{2}
$$

Björken scaling:

$$
x=\frac{Q^{2}}{2 P . q}
$$

Inelasticity:

$$
\begin{aligned}
y & =\frac{Q^{2}}{x s} \\
P_{X}^{2} & =\frac{1-x}{x} Q^{2}
\end{aligned}
$$

Typical jet event

$$
\sigma \sim H \times B \otimes J \otimes S \quad B=f \otimes I^{4}
$$

Event shape: Thrust

- $e^{+} e^{-}: \tau_{e e}=1-\frac{1}{Q} \max _{\vec{n}} \sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|$
- dijet limit: $\tau_{e e} \rightarrow 0$
- $\log \tau_{e e}$ should be resummed
- Up to $\mathrm{N}^{3} \mathrm{LO}\left(\alpha_{s}{ }^{3}\right)+\mathrm{N}^{3} \mathrm{LL}$
- DIS : $\tau_{\text {DIS }}=1-\frac{1}{E_{J}} \sum_{i \in \mathcal{H}_{J}}\left|\vec{p}_{i} \cdot \vec{n}\right|$
- 2 choices for \vec{n}
- Axis minimizing thrust
- Virtual photon axis
- one hemisphere
- Up to NLO $\left(\alpha_{s}{ }^{2}\right)+N L L$

> Antonelli, Dasgupta, Salam

- Uncertainty dominated by theory $\alpha_{s}\left(m_{Z}\right)=0.1198 \pm 0.0013($ exp. $){ }_{-0.0043}^{+0.0056}($ th. $)$
- Higher precision? N²LL or higher ?

Event shape: 1-jettiness

- N-jettiness
- Generalization of thrust

$$
\tau_{N}=\frac{2}{Q^{2}} \sum_{i} \min \left\{q_{B} \cdot p_{i}, q_{1} \cdot p_{i}, \ldots, q_{N} \cdot p_{i}\right\}
$$

- N -jet limit: $\tau_{N} \rightarrow 0$
- 1-jettiness: 1 jet +1 ISR
- q_{B}, q_{j} are axes to project particle mom.

$$
\tau_{1}=\frac{2}{Q^{2}} \sum_{i \in X} \min \left\{q_{B} \cdot p_{i}, q_{J} \cdot p_{i}\right\}
$$

- Considering 3 ways to define q_{J}
- min. groups particles into 2 regions

Why 1-jettiness?

DIS thrust: Non-Global Log beyond NLL
Dasgupta, Salam
Unknown how to resum NGL
1-jettiness: No NGL, NnLL ($n>1$) accessible
derive factorization thm. by using SCET

1-jettiness in 3 ways

$\tau_{1}^{a}=\frac{2}{Q^{2}} \sum_{i \in X} \min \left\{q_{B}^{a} \cdot p_{i}, q_{J}^{a} \cdot p_{i}\right\}$
Kang, Mantry, Qiu PRD2012, 2013

- q_{J}^{a} :
- "Aligned" with jet mom.
- Determined from jet algorithm or min. procedure
- $q_{B}^{a}=x P:$ proton direction (similar for q_{B}^{b}, q_{B}^{c})

1-jettiness in 3 ways

$\tau_{1}^{b}=\frac{2}{Q^{2}} \sum_{i \in X} \min \left\{q_{B}^{b} \cdot p_{i}, q_{J}^{b} \cdot p_{i}\right\}$

- $q_{J}^{b}:$ z-axis in Breit frame
- not aligned to jet
- Zero transverse mom.

$$
\left(p_{J}+p_{B}\right)_{\perp}=0
$$

$\tau_{1}^{b} \stackrel{\text { Breit }}{=} \frac{1}{Q}\left[\sum_{i \in \mathcal{H}_{B}} \bar{n}_{z} \cdot p_{i}+\sum_{i \in \mathcal{H}_{J}} n_{z} \cdot p_{i}\right]$
Antonelli, Dasgupta, Salam JHEP 2000

Breit frame: collision frame of proton and photon

$$
P=1 / 2 x(Q, 0,0,-Q) \quad q=(0,0,0, Q)
$$

1-jettiness in 3 ways

$\tau_{1}^{c}=\frac{2}{Q^{2}} \sum_{i \in X} \min \left\{q_{B}^{c} \cdot p_{i}, q_{J}^{c} \cdot p_{i}\right\}$

- $q_{J}^{c}: z$-axis in $\mathbf{C M}$ frame

- electron direction
- transverse mom. conservation

$$
q_{\perp}=\left(p_{J}+p_{B}\right)_{\perp}
$$

$$
\tau_{1}^{c} \stackrel{\mathrm{CM}}{=} \frac{1}{x y \sqrt{s}}\left[\sum_{i \in \mathcal{H}_{B}} \bar{n}_{z} \cdot p_{i}+\sum_{i \in \mathcal{H}_{J}} n_{z} \cdot p_{i}\right]
$$

- Small τ_{1}^{c} region
- Small $q_{\perp}=\sqrt{1-y} Q, \quad y \rightarrow 1$
- dijet events in longitudinal direction

Factorization theorems

Factorization proof using SCET

$\frac{d \sigma}{d x d Q^{2} d \tau_{1}}=L_{\mu \nu} W^{\mu \nu}\left(x, Q^{2}, \tau_{1}\right)$

$$
\begin{aligned}
W^{\mu \nu} & =\int d^{4} x e^{i q \cdot x}\langle P| J^{\dagger \mu}(x) \delta\left(\tau_{1}-\hat{\tau}_{1}\right) J^{\nu}(0)|P\rangle \\
J^{\mu}(x) & =\sum_{n_{1}, n_{2}} \int d^{3} \tilde{p}_{1} d^{3} \tilde{p}_{2} e^{i\left(\tilde{p}_{1}-\tilde{p}_{2}\right) \cdot x} C_{q \bar{q}}^{\mu} \bar{\chi}_{n_{1}, \tilde{p}_{1}} T\left[Y_{n_{1}}^{\dagger} Y_{n_{2}}\right] \chi_{n_{2}, \tilde{p}_{2}}
\end{aligned}
$$

Wilson coefficient
Quark jet field

Soft gluon Wilson line

$$
W^{\mu \nu}=2(2 \pi)^{4} Q_{J}^{2} Q_{B}^{2} \int d^{2} \tilde{p}_{\perp} \frac{2}{n_{J} \cdot n_{B}} \int d \tau_{B} d \tau_{J} d \tau_{s}^{B} d \tau_{s}^{J} \delta\left(\tau_{1}-\tau_{B}-\tau_{J}-\tau_{s}^{J}-\tau_{s}^{B}\right)
$$

$$
\times C_{q \bar{q}}^{\dagger} \frac{\mu}{q \bar{q}} C^{\nu} \text { Hard function }
$$

$$
\times\left\langle P_{n_{B}}\right| \bar{\chi}_{n_{B}} \delta\left(Q_{B} \tau_{B}-n_{B} \cdot \hat{p}_{n_{B}}\right)\left[\delta\left(\bar{n}_{B} \cdot q-\bar{n}_{B} \cdot \mathcal{P}\right) \delta^{2}\left(\tilde{p}_{\perp}-\mathcal{P}_{\perp}\right) \chi_{n_{B}}\right]\left|P_{n_{B}}\right\rangle
$$

$$
\times\langle 0| \chi_{n_{J}} \delta\left(Q_{J} \tau_{J}-n_{J} \cdot \hat{p}_{n_{J}}\right)\left[\delta\left(\bar{n}_{J} \cdot q+\bar{n}_{J} \cdot \mathcal{P}\right) \delta^{2}\left(q_{\perp}+\tilde{p}_{\perp}+\mathcal{P}_{\perp}\right) \bar{\chi}_{n_{J}}\right]|0\rangle \text { Jet function }
$$

$$
\langle 0|\left[Y_{n_{B}}^{\dagger} Y_{n_{J}}\right] \delta\left(Q_{J} \tau_{s}^{J}-n_{J} \cdot \hat{p}_{J}^{s}\right) \delta\left(Q_{B} \tau_{s}^{B}-n_{B} \cdot \hat{p}_{B}^{s}\right)\left[Y_{n_{B}}^{\dagger} Y_{n_{J}}\right]|0\rangle \text { Soft functión }
$$

Factorization theorems

©

$$
\begin{aligned}
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d x d Q^{2} d \tau_{1}^{a}}=H_{q}(\mu) \int d t_{B} d t_{J} d k_{s} \delta\left(\tau_{1}^{a}-\frac{t_{B}}{Q^{2}}-\frac{t_{J}}{Q^{2}}-\frac{k_{s}}{Q}\right) \\
& \times B_{q}\left(t_{B}, x, \mu\right) J_{q}\left(t_{J}, \mu\right) S\left(k_{s}, \mu\right)+(q \leftrightarrow \bar{q}) \\
& \text { Kang, Mantry, Qiu PRD2012, } 2013 \\
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d x d Q^{2} d \tau_{1}^{b}}=H_{q}(\mu) \int d t_{B} d t_{J} d k_{s} \delta\left(\tau_{1}^{a}-\frac{t_{B}}{Q^{2}}-\frac{t_{J}}{Q^{2}}-\frac{k_{s}}{Q}\right)
\end{aligned}
$$

Resummation and RGE

- Fourier transformation
$y:$ conjugate variable of τ_{1}

$$
\frac{d \tilde{\sigma}}{d y}=\int d \tau_{1} e^{-i y \tau_{1}} \frac{d \sigma}{d \tau_{1}}=H(\mu) \widetilde{B}_{q}(y, x, \mu) \widetilde{J}_{q}(y, \mu) \widetilde{S}(y, \mu)
$$

$\ln \frac{d \tilde{\sigma}}{d y}=L \sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\alpha_{s} \sum_{k=0}^{\infty}\left(\alpha_{s} L\right)^{k}+\cdots$

$$
L=\log (i y)
$$

- Resumming large logs
- No large logs in each function at its natural scale μ_{i}
- RG evolution from μ_{i} to common scale μ

$\mathrm{O}\left(\alpha_{\mathrm{s}}\right)+$ NNLL Predictions

All functions H, B, J, S are known up to $O(\alpha s)$
Cusp and non-cusp anomalous dim. are known to up to $\mathrm{O}\left(\mathrm{a}_{\mathrm{s}}{ }^{3}\right)$ and $\mathrm{O}\left(\mathrm{a}_{\mathrm{s}}{ }^{2}\right)$

$\tau_{1}{ }^{a}$ distribution

total at NLO

Cumulant cross section

$$
\sigma_{\mathrm{c}}\left(x, Q^{2}, \tau_{1}\right)=\frac{1}{\sigma_{0}} \int_{0}^{\tau_{1}} d \tau_{1}^{\prime} \frac{d \sigma}{d x d Q^{2} d \tau_{1}^{\prime}}
$$

Differential cross section

- Resummation cures singular behavior in NLO
- Good convergence LL, NLL, NNLL
- Small nonsingular corrections

Nonperturbative effect

Convolution with NP shape function

$$
\begin{gathered}
\int d k \sigma_{\text {pert }}\left(\tau_{1}-\frac{k}{Q}\right) F(k) \\
F(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{N} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2} \\
\text { Ligeti, Tackmann, Stewart }
\end{gathered}
$$

- $\mathrm{N}=0$ for illustration
- Tail region:
power correction

- Universality of Ω including hadron mass: $\Omega=\Omega_{1}^{a}=\Omega_{1}^{b}=\Omega_{1}^{c}$
- Independence of axes q_{B}, q_{J}
- Interesting to measure the universality

τ_{1} distributions

Summary

- Factorization thms for three 1-jettiness $\quad \tau_{1}^{a} \tau_{1}^{b} \tau_{1}^{c}$

$$
\sigma \sim I \times B \otimes J \otimes S \quad B=f \otimes I
$$

- Systematically improving accuracy with higher order functions
- NNLL+O(α_{s}) predictions: $x, Q, 1$-jettiness spectrum
- Universal nonperturbative correction
- Useful for $\boldsymbol{\alpha}_{\mathrm{s}}$ determination, measurement of universal hadronization effects, improved (nuclear) PDF extraction

Kang, Mantry, Qiu

- Higher precision? $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ terms, $\mathrm{N}^{3} \mathrm{LL}$
- Beyond 1-jettiness: \boldsymbol{N}-jettiness factorization ($\mathrm{N}>1$)

Backup

Choice of scales

- For $\Lambda_{Q C D} \ll \tau \ll 1$

$$
\begin{aligned}
& \mu_{H}=Q \quad \mu_{B, J}=\sqrt{\tau} Q \\
& \mu_{S}=\tau Q
\end{aligned}
$$

- For $\tau \sim \Lambda_{Q C D} / Q$
significant nonperturbative effect soft scale freezing at $\mu_{S} \sim \Lambda_{Q C D}$

$$
\mu_{B, J} \sim \sqrt{\Lambda_{Q C D} Q}
$$

- For $\tau \sim 1$ no hierarchy in scales no large logs

$$
\mu_{H} \sim \mu_{B, J} \sim \mu_{S} \sim Q
$$

Nonpertubative Effect

- Estimating nonperturbative part of soft function
- For $\tau \gg \Lambda_{Q C D} / Q$

OPE gives power correction with $\mathcal{O}\left(\Lambda_{Q C D} / \tau Q\right)$ suppression

$$
\sigma(\tau)=\sigma_{\mathrm{pert}}(\tau)-\frac{2 \Omega}{Q} \frac{d \sigma_{\mathrm{pert}}(\tau)}{d \tau} \approx \sigma_{\mathrm{pert}}(\tau-2 \Omega / Q)
$$

- $\Omega \sim \Lambda_{Q C D}$: nonpertubative matrix element
- For $\tau \geq \Lambda_{Q C D} / Q$
significant nonpertubative effect convolving shape function consistent with power correction

$$
\begin{align*}
& \sigma(\tau)=\int d k \sigma_{\mathrm{pert}}(\tau-k / Q) F(k) \\
\rightarrow & \sigma_{\mathrm{pert}}(\tau)-\left(\int d k \frac{k}{Q} F(k)\right) \frac{d \sigma_{\mathrm{pert}}(\tau)}{d \tau} \tag{21}
\end{align*}
$$

$$
F(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{N} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

missing particles in forward region

$$
\eta=-\ln (\tan \theta / 2)
$$

- Proton remnants and particles moving very forward region out of detector coverage: $0<\theta<\theta_{\text {cut }}, \eta>\eta_{\text {cut }}$
- H1: $\theta_{\text {cut }}=4^{\circ}\left(0.7^{\circ}\right)$ and $\eta_{\text {cut }}=3.4(5.1)$ for main cal. (PLUG cal.)
- ZEUS: $\theta_{\text {cut }}=2.2^{\circ}$ and $\eta_{\text {cut }}=4.0$ for FCAL
- Boost to CM frame: $\eta^{\mathrm{CM}}=\eta-\Delta \eta \quad \Delta \eta=\ln \frac{E_{p}^{\mathrm{lab}}}{E_{p}^{\text {CM }}}=\ln \frac{920}{157}=1.8$
- $\mathrm{H} 1: \eta_{\mathrm{cut}}^{\mathrm{CM}}=1.6(3.3), e^{-\eta_{\mathrm{cut}}^{\mathrm{CM}}}=0.2(0.04)$
- ZEUS: $\eta_{\mathrm{cut}}^{\mathrm{CM}}=2.2, \quad e^{-\eta_{\mathrm{cut}}^{\mathrm{CM}}}=0.1$
- Maximum missing measurement: $\tau_{\text {miss }}=\frac{2 q_{B} \cdot p_{\text {miss }}}{Q^{2}}=\frac{m_{T}}{Q_{B}} e^{-\eta}$

$$
m_{T}^{\max }=E_{p}^{\mathrm{lab}} \sin \theta_{\mathrm{cut}}
$$

$$
Q_{B}=\sqrt{y / x} Q, x Q
$$

about $64(11) \mathrm{GeV}$ for H 1 and 32 GeV for ZEUS

1-jettiness from jet region

- If only jet region $\left(\mathcal{H}_{J}\right)$ can be measured

Use mom. conservation of two hemispheres

- τ_{1}^{b} and τ_{1}^{c} can be exactly reproduced

$$
\begin{aligned}
\tau_{1}^{b} & \stackrel{\text { Breit }}{=} \frac{1}{Q} \sum_{i \in X} \min \left\{n_{z} \cdot p_{i}, \bar{n}_{z} \cdot p_{i}\right\} \\
& =\frac{1}{Q}\left[\sum_{i \in \mathcal{H}_{J}^{b}}\left(E_{i}-p_{z i}\right)+\sum_{i \in \mathcal{H}_{B}^{b}}\left(E_{i}+p_{z i}\right)\right] \\
& =\frac{1}{Q}\left[\sum_{i \in X}\left(E_{i}+p_{z i}\right)-2 \sum_{i \in \mathcal{H}_{J}^{b}} p_{z i}\right], \\
\tau_{1}^{b} & \stackrel{\text { Briit }}{=} 1-\frac{2}{Q} \sum_{i \in \mathcal{H}_{J}^{b}} p_{z i}
\end{aligned}
$$

Antonelli, Dasgupta, Salam JHEP 2000

$$
\begin{aligned}
& \tau_{1}^{c} \stackrel{\mathrm{CM}}{=} \frac{1}{x y \sqrt{s}} \sum_{i \in X} \min \left\{n_{z} \cdot p_{i}, \bar{n}_{z} \cdot p_{i}\right\} \\
&=\frac{1}{x y \sqrt{s}}\left[\sum_{i \in X}\left(E_{i}+p_{z i}\right)-2 \sum_{i \in \mathcal{H}_{J}^{c}} p_{z i}\right] \\
& \tau_{1}^{c} \stackrel{\mathrm{CM}}{=} \frac{1}{x}\left(1-\frac{2}{y \sqrt{s}} \sum_{i \in \mathcal{H}_{J}^{c}} p_{z i}\right)
\end{aligned}
$$

- τ_{1}^{a} can be reproduced for dijet limit $\quad \tau_{1}^{a}=\tau_{1}^{b}+\frac{2}{Q^{2}} \sum_{i \in \mathcal{H}_{J}^{b}}\left(q_{J}^{a}-q_{J}^{b}\right) \cdot p_{i}+\mathcal{O}\left(\lambda^{3}\right)$

Beam, Jet, Soft functions

from Chris Lee's talk

in SCET 2013

