arXiv:1303.6952

1

Using 1-jettiness to Measure 2 Jets in DIS in 3 Ways

Daekyoung Kang (MIT)

In collaboration with **lain Stewart** (MIT) and **Chris Lee** (LANL)

April 24, 2013

Outline

- Deep inelastic scattering (DIS)
 - 2-jets event: 1 ISR+1 jet
- Event shape:
 - **1**-jettiness in **3** ways

H1 Event from www-h1.desy.de

- Derivation of *factorization thm.* to all orders in $\alpha_{\rm s}$ $\sigma \sim H \times B \otimes J \otimes S$
- Resummed predictions at NNLL
 - Higher logarithmic accuracy than previous work at NLL

Summary

Deep Inelastic Scattering

3

Typical jet event

Event shape: Thrust

•
$$e^+e^-$$
: $\tau_{ee} = 1 - \frac{1}{Q} \max_{\vec{n}} \sum_i |\vec{p}_i \cdot \vec{n}|$

- dijet limit: $au_{ee}
 ightarrow 0$
- $\log au_{ee}$ should be resummed
- Up to N³LO(α_s^3)+N³LL

• **DIS**:
$$\tau_{\text{DIS}} = 1 - \frac{1}{E_J} \sum_{i \in \mathcal{H}_J} |\vec{p}_i \cdot \vec{n}|$$

- 2 choices for $ec{n}$
 - Axis minimizing thrust
 - Virtual photon axis
- one hemisphere
- Up to NLO(α_s²)+NLL
 Antonelli, Dasgupta, Salam
- Uncertainty dominated by theory $\alpha_s(m_Z) = 0.1198 \pm 0.0013(\text{exp.}) \begin{array}{c} +0.0056 \\ -0.0043(\text{th.}) \end{array}$

 p_B

• *Higher precision?* N²LL or higher ?

Event shape: 1-jettiness

- N-jettiness
 - Generalization of thrust
 - N-jet limit: $au_N o 0$

$$\tau_N = \frac{2}{Q^2} \sum_i \min\{q_B \cdot p_i, q_1 \cdot p_i, \dots, q_N \cdot p_i\}$$
Stewart, Tackmann, Waalewijn

• **1-jettiness:** 1 jet + 1 ISR

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$
om.

- q_B , q_J are axes to project particle mom.
- Considering 3 ways to define q_j
- min. groups particles into 2 regions

Why 1-jettiness?

DIS thrust: Non-Global Log beyond NLL Dasgupta, Salam Unknown how to resum NGL 1-jettiness: No NGL, NⁿLL (n>1) accessible derive factorization thm. by using SCET accuracy systematically improved with higher order ME's

Kang, Mantry, Qiu

1-jettiness in 3 ways

- q^a_{.I}:
 - "Aligned" with jet mom.

PRD2012, 2013

- Determined from jet algorithm or min. procedure
- $q^a_B = xP$: proton direction (similar for $q^b_B, \, q^c_B$)

1-jettiness in 3 ways

1-jettiness in 3 ways

- q_J^c : *z*-axis in **CM** frame
 - electron direction
 - transverse mom. conservation $q_{\perp} = (p_J + p_B)_{\perp}$

$$\tau_1^c \stackrel{\text{CM}}{=} \frac{1}{xy\sqrt{s}} \left[\sum_{i \in \mathcal{H}_B} \bar{n}_z \cdot p_i + \sum_{i \in \mathcal{H}_J} n_z \cdot p_i \right]$$

- Small au_1^c region
 - Small $q_\perp = \sqrt{1-y}Q$, $y \to 1$
 - dijet events in longitudinal direction

Factorization theorems

Factorization proof using SCET

$$\frac{d\sigma}{dx \, dQ^2 \, d\tau_1} = L_{\mu\nu} W^{\mu\nu}(x, Q^2, \tau_1)$$

$$W^{\mu\nu} = \int d^4x e^{iq \cdot x} \langle P | J^{\dagger \, \mu}(x) \delta(\tau_1 - \hat{\tau}_1) J^{\nu}(0) | P \rangle$$

$$J^{\mu}(x) = \sum_{n_1, n_2} \int d^3 \tilde{p}_1 d^3 \tilde{p}_2 e^{i(\tilde{p}_1 - \tilde{p}_2) \cdot x} C^{\mu}_{q\bar{q}} \bar{\chi}_{n_1, \tilde{p}_1} T [Y^{\dagger}_{n_1} Y_{n_2}] \chi_{n_2, \tilde{p}_2}$$
Wilson coefficient Quark jet field Soft gluon Wilson line
$$W^{\mu\nu} = 2(2\pi)^4 Q_J^2 Q_B^2 \int d^2 \tilde{p}_{\perp} \frac{2}{n_J \cdot n_B} \int d\tau_B d\tau_J \, d\tau_s^B d\tau_s^J \delta(\tau_1 - \tau_B - \tau_J - \tau_s^J - \tau_s^B)$$

$$\times C^{\dagger \, \mu}_{q\bar{q}} C^{\mu}_{q\bar{q}} \text{ Hard function}$$

$$\times \left[P_{n_B} | \bar{\chi}_{n_B} \, \delta(Q_B \tau_B - n_B \cdot \hat{p}_{n_B}) \left[\delta(\bar{n}_B \cdot q - \bar{n}_B \cdot \mathcal{P}) \, \delta^2(\bar{p}_{\perp} - \mathcal{P}_{\perp}) \chi_{n_B} \right] |P_{n_B} \right] Beam func. (PDF + ISR)$$

$$\times \left(0 | \chi^{\dagger}_{n_B} Y_{n_J}] \, \delta(Q_J \tau_J^J - n_J \cdot \hat{p}_J) \left[\delta(\bar{n}_J \cdot q + \bar{n}_J \cdot \mathcal{P}) \, \delta^2(q_{\perp} + \tilde{p}_{\perp} + \mathcal{P}_{\perp}) \, \bar{\chi}_{n_J} \right] |0 \rangle \text{ Soft function}$$

Factorization theorems

$$\begin{aligned} \frac{1}{\sigma_0} \frac{d\sigma}{dx \, dQ^2 \, d\tau_1^a} &= H_q(\mu) \int dt_B \, dt_J \, dk_s \, \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{Q^2} - \frac{k_s}{Q}\right) \\ &\times B_q \left(t_B, x, \mu\right) \quad J_q \left(t_J, \mu\right) \quad S \left(k_s, \mu\right) + \left(q \leftrightarrow \bar{q}\right) \\ &\quad \text{Kang, Mantry, Qiu} \quad \text{PRD2012, 2013} \end{aligned}$$

$$\begin{aligned} \frac{1}{\sigma_0} \frac{d\sigma}{dx \, dQ^2 \, d\tau_1^b} &= H_q(\mu) \int dt_B \, dt_J \, dk_s \, \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{Q^2} - \frac{k_s}{Q}\right) \\ &\times \int d^2 \vec{p}_\perp \, B_q \left(t_B, x, \vec{p}_\perp^2, \mu\right) \quad J_q \left(t_J - \vec{p}_\perp^2, \mu\right) \quad S \left(k_s, \mu\right) + \left(q \leftrightarrow \bar{q}\right) \end{aligned}$$

$$\begin{aligned} \frac{1}{\sigma_0} \frac{d\sigma}{dx \, dQ^2 \, d\tau_1^c} &= H_q(\mu) \int dt_B \, dt_J \, dk_s \, \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{xQ^2} - \frac{k_s}{\sqrt{xQ}}\right) \\ &\times \int d^2 \vec{p}_\perp \, B_q \left(t_B, x, \vec{p}_\perp^2, \mu\right) \quad J_q \left(t_J - (\vec{q}_\perp + \vec{p}_\perp)^2, \mu\right) \quad S \left(k_s, \mu\right) + \left(q \leftrightarrow \bar{q}\right) \end{aligned}$$

Resummation and RGE

Fourier transformation

y: conjugate variable of τ_1

$$\frac{d\tilde{\sigma}}{dy} = \int d\tau_1 \, e^{-iy\tau_1} \frac{d\sigma}{d\tau_1} = H(\mu) \, \widetilde{B}_q(y, x, \mu) \, \widetilde{J}_q(y, \mu) \, \widetilde{S}(y, \mu)$$

- Resumming large logs
 - No large logs in each function at its natural scale μ_i
 - RG evolution

from μ_i to common scale μ

$O(\alpha_s)$ +NNLL Predictions

All functions *H*, *B*, *J*, *S* are known up to $O(\alpha s)$

х

E E

Cusp and non-cusp anomalous dim. are known to up to $O(a_s^3)$ and $O(a_s^2)$

HERA energy: $\sqrt{s} \approx 300 \text{ GeV}$

Q

Q distribution x distribution 6. 1.5 $Q=80 \ GeV$ NLO $\tau^{a} = 0.1$ 5. 1.25 NLL $\frac{1}{2} \frac{1}{\sqrt{2}} \frac$ NNLL $d\hat{\sigma}/d\tau^{a}$ 0.5 NLO x = 0.20.25 1 NLL $\tau^a = 0.1$ NNLL 0. 20. 40. 60. 120. 0.1 0.2 0.4 0.5 0.6 0.7 0.8 80. 100. 0.3 0.

τ_1^{a} distribution

🦯 total at NLO

Cumulant cross section

 $\sigma_{\rm c}(x,Q^2,\tau_1) = \frac{1}{\sigma_0} \int_0^{\tau_1} d\tau_1' \frac{d\sigma}{dx \, dQ^2 \, d\tau_1'}$

- Good convergence LL, NLL, NNLL
- Small nonsingular corrections

Differential cross section

 Resummation cures singular behavior in NLO

Nonperturbative effect

- Universality of Ω including hadron mass: $\Omega = \Omega_1^a = \Omega_1^b = \Omega_1^c$
 - Independence of axes q_B , q_J
 - Interesting to measure the universality

ST

Summary

arXiv:1303.6952

Kang, Mantry, Qiu

18

DISASTER, DISENT,

- Factorization thms for three 1-jettiness au_1^a au_1^b au_1^c
 - $\sigma \sim H \times B \otimes J \otimes S \qquad B = f \otimes \mathcal{I}$
 - Systematically improving accuracy with higher order functions

• NNLL+O(α_s) predictions: x, Q, 1-jettiness spectrum

- Universal nonperturbative correction
- Useful for α_s determination, measurement of universal
 hadronization effects, improved (nuclear) PDF extraction
- Higher precision? $O(\alpha_s^2)$ terms, N³LL

Beyond 1-jettiness: N-jettiness factorization (N>1)

Backup

Choice of scales

- For $\Lambda_{QCD} \ll \tau \ll 1$ $\mu_H = Q \quad \mu_{B,J} = \sqrt{\tau}Q$ $\mu_S = \tau Q$
- For $\tau \sim \Lambda_{QCD}/Q$ significant nonperturbative effect soft scale freezing at $\mu_S \sim \Lambda_{QCD}$

$$\mu_{B,J} \sim \sqrt{\Lambda_{QCD}Q}$$

• For $\tau \sim 1$ no hierarchy in scales no large logs $\mu_H \sim \mu_{B,J} \sim \mu_S \sim Q$

Nonpertubative Effect

- Estimating nonperturbative part of soft function
- For $\tau \gg \Lambda_{QCD}/Q$ OPE gives power correction with $\mathcal{O}(\Lambda_{QCD}/\tau Q)$ suppression

$$\sigma(\tau) = \sigma_{\rm pert}(\tau) - \frac{2\Omega}{Q} \frac{d\sigma_{\rm pert}(\tau)}{d\tau} \approx \sigma_{\rm pert}(\tau - 2\Omega/Q)$$

- $\Omega \sim \Lambda_{QCD}$: nonpertubative matrix element
- For $\tau \ge \Lambda_{QCD}/Q$ significant nonpertubative effect convolving shape function consistent with power correction

$$\sigma(\tau) = \int dk \sigma_{\text{pert}}(\tau - k/Q) F(k)$$
$$\rightarrow \sigma_{\text{pert}}(\tau) - \left(\int dk \, \frac{k}{Q} F(k)\right) \frac{d\sigma_{\text{pert}}(\tau)}{d\tau}$$

missing particles in forward region

 $\eta = -\ln(\tan\theta/2)$

 $\Delta \eta = \ln \frac{E_p^{\text{lab}}}{E_p^{\text{CM}}} = \ln \frac{920}{157} = 1.8$

- Proton remnants and particles moving very forward region out of detector coverage: $0 < \theta < \theta_{cut}$, $\eta > \eta_{cut}$
 - H1: $heta_{
 m cut} = 4\,^{\circ}(0.7\,^{\circ})$ and $\eta_{
 m cut} = 3.4(5.1)$ for main cal. (PLUG cal.)
 - ZEUS: $heta_{
 m cut}=2.2\,^\circ$ and $\eta_{
 m cut}=4.0\,$ for FCAL
- Boost to CM frame: $\eta^{
 m CM} = \eta \Delta \eta$
 - H1: $\eta_{\text{cut}}^{\text{CM}} = 1.6(3.3)$, $e^{-\eta_{\text{cut}}^{\text{CM}}} = 0.2(0.04)$ • ZEUS: $\eta_{\text{cut}}^{\text{CM}} = 2.2$, $e^{-\eta_{\text{cut}}^{\text{CM}}} = 0.1$

• Maximum missing measurement: $\tau_{\rm miss} = \frac{2q_B \cdot p_{\rm miss}}{Q^2} = \frac{m_T}{Q_B}e^{-\eta}$

• $m_T^{\max} = E_p^{\text{lab}} \sin \theta_{\text{cut}}$ about 64(11) GeV for H1 and 32 GeV for ZEUS $Q_B = \sqrt{y/x}Q, xQ$

22

1-jettiness from jet region

• If only jet region (\mathcal{H}_J) can be measured

Use mom. conservation of two hemispheres

 ${\scriptstyle \bullet } \ \tau_1^b$ and $\, \tau_1^c \,$ can be exactly reproduced

$$\begin{aligned} \tau_1^b \stackrel{\text{Breit}}{=} \frac{1}{Q} \sum_{i \in X} \min\{n_z \cdot p_i, \bar{n}_z \cdot p_i\} \\ &= \frac{1}{Q} \left[\sum_{i \in \mathcal{H}_J^b} (E_i - p_{z\,i}) + \sum_{i \in \mathcal{H}_B^b} (E_i + p_{z\,i}) \right] \\ &= \frac{1}{Q} \left[\sum_{i \in X} (E_i + p_{z\,i}) - 2 \sum_{i \in \mathcal{H}_J^b} p_{z\,i} \right], \\ \tau_1^b \stackrel{\text{Breit}}{=} 1 - \frac{2}{Q} \sum_{i \in X} p_{z\,i} \end{aligned}$$

Antonelli, Dasgupta, Salam JHEP 2000

$$\tau_1^c \stackrel{\text{CM}}{=} \frac{1}{xy\sqrt{s}} \sum_{i \in X} \min\{n_z \cdot p_i, \bar{n}_z \cdot p_i\}$$
$$= \frac{1}{xy\sqrt{s}} \left[\sum_{i \in X} (E_i + p_{z\,i}) - 2 \sum_{i \in \mathcal{H}_J^c} p_{z\,i} \right]$$
$$\tau_1^c \stackrel{\text{CM}}{=} \frac{1}{x} \left(1 - \frac{2}{y\sqrt{s}} \sum_{i \in \mathcal{H}_J^c} p_{z\,i} \right)$$

• au_1^a can be reproduced for dijet limit

 $i \in \mathcal{H}^{b}_{T}$

$$\tau_1^a = \tau_1^b + \frac{2}{Q^2} \sum_{i \in \mathcal{H}_J^b} (q_J^a - q_J^b) \cdot p_i + \mathcal{O}(\lambda^3)$$

Beam, Jet, Soft functions

from Chris Lee's talk

