Production of Z^{0} bosons in elastic and quasi-elastic ep collisions at HERA

Phys. Lett. B718 (2013) 915 (arXiv:1210.5511)

Masahiro Kuze Tokyo Institute of Technology
(on behalf of ZEUS Collaboration)
ZEUS
DIS2013 Marseille 24/Apr/2013

130th Anniversary in 2011

HERA and ZEUS

- HERA at DESY: the only $e^{ \pm} p$ collider (1992-2007)
$-E_{p}=920 \mathrm{GeV}, \mathrm{E}_{\mathrm{e}}=27.6 \mathrm{GeV}(\sqrt{ } \mathrm{s}=318 \mathrm{GeV})$
-Collected $\sim 0.5 \mathrm{fb}^{-1}$ per exp. (H 1 and ZEUS)
-ZEUS: a general-purpose 4π detector -features high-resolution Uranium-Scint. CAL
- $\sigma_{E} / \mathrm{E}=18 \% / \sqrt{E}(\mathrm{GeV})$ for electrons
- $\sigma_{E} / \mathrm{E}=35 \% / \sqrt{ } \mathrm{E}(\mathrm{GeV})$ for hadrons \leftarrow key point in this analysis

EW bosons at colliders

- $\mathrm{e}^{+} \mathrm{e}^{-}$and hadron colliders -abundant Z/W productions via $\mathrm{e}^{+} \mathrm{e}^{-}$or $\mathrm{q} \bar{q}$ annihilation
- In ep collisions at HERA

CERN Courier May 2004

-not the case due to L,B conservation
-small xsec via radiation from quark/lepton lines
-W xsec measured using high-pt-lepton + ETmiss events (~ 1 pb)
$\cdot Z$ production even smaller ($\sim 0.4 \mathrm{pb}$), not yet measured.
-Z/W bosons play important roles in t-channel (off-shell) exchange

- NC/CC DIS processes at high-Q2

Completing EW programs at HERA

	W	Z
Virtual	Charged Current DIS	High-Q² NC DIS
Real		
		Missing piece in HERT lepton+あ4

Z^{0} search strategy

- Use hadronic decay (large B.R.)
- Use elastic (+quasi-elastic) events ($\sigma \sim 0.16 \mathrm{pb}$)
-ep $\rightarrow e p\left(p^{*}\right) Z$ (p^{*} : nucleon resonances)
-require $\eta_{\max }<3$ (maximum η of CAL energy deposits)
-suppress QCD background

$\leftarrow 2$ (or more) high-ET jets
beam electron back-scattered to
\leftarrow forward (proton) direction
(in Forward CAL or beam-pipe)
$\leftarrow p$ or p^{*} : no proton remnant in detector

Event selection overview

electron $\rightarrow \leftarrow$ proton

to suppress low- $\mathrm{Q}^{2} \mathrm{NC}$ and photo-production

Event selection (496 pb-1)

Trigger mainly based on CAL ET

- Jets defined by kt algorithm Cleaning cuts in backup - At least 2 jets with $\mathrm{E}_{\mathrm{T}}>25 \mathrm{GeV},|\eta|<2 . \quad \Delta \Phi_{12}>2 \mathrm{rad}$ _Use all jets ($\mathrm{E}_{\mathrm{T}}>4 \mathrm{GeV},|\eta|<2$) for invariant mass
-Remove jet if it overlaps with e/ γ within $\mathrm{R}<1$
- At most 1 electron in detector
- $\mathrm{E}_{\mathrm{e}}>5 \mathrm{GeV}$, isolation, track match if in tracking coverage $-\theta_{\mathrm{e}}<80 \mathrm{deg}$ required (reject low-Q2 NC b.g.)
- No particles in rear (electron beam) direction
- ERcal < 2GeV
$-50<\Sigma(\mathrm{E}-\mathrm{pz})<64 \mathrm{GeV}$ (sum over all CAL deposits)

MC simulation

-EPVEC used for signal
-Baur, Vermaseren and Zeppenfeld (1992)

- Interfaced to PYTHIA+JETSET
- Elastic and quasi-elastic ep $\rightarrow e p\left(p^{*}\right) Z: 0.16$ pb
-Selection acceptance $\sim 22 \%$, expect 17.9 events
- Inelastic processes: 0.24 pb
-DIS $\left(\gamma^{*} p \rightarrow Z^{0} X\right)$ and resolved php ($\left.\gamma p \rightarrow\left(q \bar{q} \rightarrow Z^{0}\right) X\right)$
-Selection acceptance <1\%, expect 0.4 events
- Do not use background MC
- Tail of high-Eт diffractive DIS, hard to model
-Use data-driven estimation (next slide)

Background estimation

ZEUS

- Invariant-mass shape has little $\eta_{\text {max }}$ dependence
- Use invariant-mass distribution for data

 in $\eta_{\text {max }}>3$ region as b.g. template + Use EPVEC MC as signal template
- Fit signal region ($\eta_{\max }<3$) w/ templates

Result after all selections

- invariant mass after $\eta_{\max }<3$ cut
- maximum likelihood fit (details in backup) with b.g. and signal templates
- mass peak shift due to energy scale fitted as a nuisance parameter ($\sigma_{\varepsilon}=3 \%$, the fit gave $\varepsilon=3 \pm 2 \%)$

- signal obtained with 2.3σ significance

Cross-section extraction

- Systematic uncertainties: total (+7.2, -6.2)\% - acceptance change by $\pm 3 \%$ e-scale: (+2.1, -1.7) \% $-\eta_{\text {max }}$ cut varied by ± 0.2 : (+6.4, -5.4$) \%$
- using different $\eta_{\max }$ slices for b.g. template: $\pm 1.5 \%$
-signal template peak width (6 GeV) smeared: negligible
- luminosity: $\pm 2 \%$
- Resulting cross section
- $\sigma\left(e p \rightarrow e Z^{0} p^{(*)}\right)=0.13 \pm 0.06$ (stat.) ± 0.01 (syst.) pb
- consistent with SM prediction 0.16 pb
- first measurement of on-shell Z^{0} cross section in ep!

Summary

- A search for on-shell Z^{0} production in $\sim 0.5 \mathrm{fb}^{-1}$ ep collisions at HERA using ZEUS detector
- Hadronic decay was used: (quasi-)elastic process was aimed to suppress inelastic b.g.
- $\eta_{\text {max }}<3$ was used for elastic condition
- Background template made from $\eta_{\max }>3$ events
- Fit invariant mass from all jets with signal (MC) and background (data) templates
- First measurement of Z^{0} production in ep ${ }^{\text {SM: }} 0.16 \mathrm{pb}$ $\sigma\left(e p \rightarrow e Z^{0} p^{(*)}\right)=0.13 \pm 0.06$ (stat.) ± 0.01 (syst.) pb

Cuts against cosmic+beamgas

- Reject if any of following conditions are met.
- $\left|Z_{\mathrm{vtx}}\right|>50 \mathrm{~cm}$
- $175<\theta_{1}+\theta_{2}<185 \mathrm{deg}$ and $\Delta \Phi_{12}>175 \mathrm{deg}$
- $\left|t_{u}-t_{d}\right|>6 n s$ (up-down timing difference in BCAL)
- ETmiss > 25 GeV
- $\mathrm{N}^{\text {trk }}{ }_{\mathrm{vtx}}<0.25^{*}\left(\mathrm{Nvtx}_{\text {all }}-20\right)$ (vertex tracks and all tracks)

Fit procedure

- For each bin i of invariant mass $\mathrm{Mjets}^{\text {j }}$

$$
N_{\mathrm{ref}, i}=a N_{\mathrm{ss}, i}^{\mathrm{MC}}(\epsilon)+b N_{\mathrm{bg}, i}^{\mathrm{data}} \quad M_{\mathrm{jets}}=(1+\epsilon) M_{\mathrm{jets}}^{\mathrm{MC}}
$$

- Poisson likelihood and nuisance parameter

$$
\mathcal{L}=\mathcal{L}_{1}\left(N_{\mathrm{obs}}, N_{\mathrm{ref}}\right) \times \mathcal{L}_{2}\left(\epsilon, \sigma_{\epsilon}\right) \quad \mathcal{L}_{1}=\prod_{i} \frac{\exp \left(-N_{\mathrm{ref}, i,}\right)\left(N_{\mathrm{ref}, i}\right)^{N_{\mathrm{obs}, i}}}{N_{\mathrm{obs}, i}!} \quad \text { and } \quad \mathcal{L}_{2}=\exp \left(-\frac{\epsilon^{2}}{2 \sigma_{\epsilon}^{2}}\right)
$$

- χ^{2}-like log-likelihood function

$$
\begin{gathered}
\tilde{\chi}^{2}=-2 \ln \frac{\mathcal{L}_{1}\left(N_{\mathrm{obs}}, N_{\mathrm{ref}}\right)}{\mathcal{L}_{1}\left(N_{\mathrm{obs}}, N_{\mathrm{obs}}\right)}-2 \ln \mathcal{L}_{2}=2 \sum f_{i}+\left(\frac{\epsilon}{\sigma_{\epsilon}}\right)^{2}, \\
f_{i}=\left\{\begin{array}{lr}
N_{\mathrm{ref}, i}-N_{\mathrm{obs}, i}+N_{\mathrm{obs}, i} \ln \left(N_{\mathrm{obs}, i} / N_{\mathrm{ref}, i}\right) & \left(\text { if } N_{\mathrm{obs}, i}>0\right) \\
N_{\mathrm{ref}, i} & \left(\text { if } N_{\mathrm{obs}, i}=0\right)
\end{array}\right.
\end{gathered}
$$

- Minimize χ^{2} to find best set of (a,b,)
$\rightarrow \sigma_{\text {obs }}=\mathrm{a} \cdot$ omc, error of a given by $\Delta \chi^{2}<1$
$\eta_{\text {max }}$

Systematics on $\eta_{\max }<3$

- From PhD thesis V. Sola

Inclusive Diffractive Cross Sections in Deep Inelastic ep Scattering at HERA DESY-THESIS-2012-008

- MC/data agreement of $\eta_{\text {max }}$ within ± 0.2 for NC DIS events

Figure 5.10: The $\eta_{M A X}$ distributions for the DIS HER (up) and LER (down) inclusive data samples. The histograms represent the sum of the Monte Carlo contribution: non-diffractive DIS (DJANGOH) is the blue histogram, photoproduction (PYTHIA) is the red one and diffractive events (Satrap) are shown in green.

