Production of Z⁰ bosons in elastic and quasi-elastic ep collisions at HERA

> Phys. Lett. B718 (2013) 915 (arXiv:1210.5511)

Masahiro Kuze Tokyo Institute of Tec (on behalf of ZEUS Collabor

ology

n)

DIS2013 Marsei 24/Apr/2013

130th Anniversary in 2011

HERA and ZEUS

- HERA at DESY: the only e[±]p collider (1992-2007)
 - $-E_p = 920GeV, E_e = 27.6GeV (\sqrt{s} = 318GeV)$
 - -Collected ~0.5 fb⁻¹ per exp. (H1 and ZEUS)
- ZEUS: a general-purpose 4π detector
 - -features high-resolution Uranium-Scint. CAL
 - $\cdot \sigma_{\rm E}/{\rm E} = 18\%/\sqrt{\rm E(GeV)}$ for electrons
 - $\cdot \sigma_{E}/E = 35\%/\sqrt{E(GeV)}$ for hadrons \leftarrow key point in this analysis

EW bosons at colliders

e+e⁻ and hadron colliders

abundant Z/W productions
 via e⁺e⁻ or qq annihilation

In ep collisions at HERA

- -not the case due to L,B conservation
- -small xsec via radiation from quark/lepton lines
 - W xsec measured using high-p_T-lepton + ETmiss events (~1 pb)

 \cdot Z production even smaller (~0.4 pb), not yet measured.

- –Z/W bosons play important roles in t-channel (off-shell) exchange
 - \cdot NC/CC DIS processes at high-Q²

Completing EW programs at HERA

Z⁰ search strategy

- Use hadronic decay (large B.R.)
- Use elastic (+quasi-elastic) events ($\sigma \sim 0.16$ pb)
 - $-ep \rightarrow ep(p^*)Z$ (p*: nucleon resonances)
 - -require $\eta_{max} < 3$ (maximum η of CAL energy deposits)
 - -suppress QCD background

← 2 (or more) high-E⊤ jets

beam electron back-scattered to
 ← forward (proton) direction
 (in Forward CAL or beam-pipe)

← p or p*: no proton remnant in detector

Event selection overview

electron $\rightarrow \leftarrow$ proton

Event selection (496 pb⁻¹)

- Jets defined by k_T algorithm

 At least 2 jets with E_T > 25GeV, |η| < 2. ΔΦ₁₂ > 2rad
 Use all jets (E_T > 4GeV, |η| < 2) for invariant mass
 Remove jet if it overlaps with e/γ within R < 1
- At most 1 electron in detector
 - $-E_e > 5GeV$, isolation, track match if in tracking coverage
 - $-\theta_e < 80 deg required (reject low-Q² NC b.g.)$
- No particles in rear (electron beam) direction
 - -Ercal < 2GeV
 - $-50 < \Sigma(E-pz) < 64GeV$ (sum over all CAL deposits)

MC simulation

- EPVEC used for signal
 - -Baur, Vermaseren and Zeppenfeld (1992)
 - –Interfaced to PYTHIA+JETSET
- Elastic and quasi-elastic $ep \rightarrow ep(p^*)Z$: 0.16 pb – Selection acceptance ~22%, expect 17.9 events
- Inelastic processes: 0.24 pb
 - -DIS ($\gamma^* p \rightarrow Z^0 X$) and resolved php ($\gamma p \rightarrow (q \overline{q} \rightarrow Z^0) X$)
 - -Selection acceptance <1%, expect 0.4 events
- Do not use background MC
 - Tail of high-ET diffractive DIS, hard to model
 - -Use data-driven estimation (next slide)

Background estimation

- Invariant-mass
 shape has little
 ηmax dependence
- Use invariant-mass distribution for data in ηmax > 3 region as
 b.g. template + Use EPVEC MC as
 signal template
- Fit signal region 4
 (ηmax < 3) w/ templates

ZEUS

10

Result after all selections

• invariant mass after $\eta_{max} < 3$ cut

• signal obtained with 2.3σ significance

- maximum likelihood fit (details in backup) with b.g. and signal templates
- mass peak shift due to energy scale fitted as a nuisance parameter (σ_{ϵ} = 3%, the fit gave
 - $\varepsilon = 3\pm 2\%$)

 $\tilde{\chi}^2/ndf = 17.6/22$

Cross-section extraction

- Systematic uncertainties: total (+7.2, -6.2)%
 - -acceptance change by ±3% e-scale: (+2.1, -1.7)%
 - $-\eta_{max}$ cut varied by ±0.2: (+6.4, -5.4)%
 - –using different η_{max} slices for b.g. template: ±1.5%
 - -signal template peak width (6GeV) smeared: negligible
 - -luminosity: ±2%
- Resulting cross section
 - $\sigma(ep \to eZ^0 p^{(*)}) = 0.13 \pm 0.06 \text{ (stat.)} \pm 0.01 \text{ (syst.) pb}$
 - consistent with SM prediction 0.16 pb
 - first measurement of on-shell Z⁰ cross section in ep!

Summary

- A search for on-shell Z⁰ production in ~0.5 fb⁻¹ ep collisions at HERA using ZEUS detector
- Hadronic decay was used: (quasi-)elastic process was aimed to suppress inelastic b.g.
- η_{max} < 3 was used for elastic condition
- Background template made from η_{max} > 3 events
- Fit invariant mass from all jets with signal (MC) and background (data) templates
- First measurement of Z⁰ production in ep ^{SM: 0.16pb} $\sigma(ep \rightarrow eZ^0 p^{(*)}) = 0.13 \pm 0.06 \text{ (stat.)} \pm 0.01 \text{ (syst.) pb}$

Cuts against cosmic+beamgas

- Reject if any of following conditions are met.
- |Z_{vtx}| > 50cm
- 175 < $\theta_1 + \theta_2$ < 185deg and $\Delta \Phi_{12}$ > 175deg
- $|t_u-t_d| > 6ns$ (up-down timing difference in BCAL)
- ETmiss > 25GeV
- N^{trk}vtx < 0.25*(N^{vtx}all-20) (vertex tracks and all tracks)

Fit procedure

• For each bin i of invariant mass Mjets

$$N_{\text{ref},i} = a N_{\text{sg},i}^{\text{MC}}(\epsilon) + b N_{\text{bg},i}^{\text{data}} \qquad M_{\text{jets}} = (1+\epsilon) M_{\text{jets}}^{\text{MC}}$$

Poisson likelihood and nuisance parameter

$$\mathcal{L} = \mathcal{L}_1\left(N_{\text{obs}}, N_{\text{ref}}\right) \times \mathcal{L}_2\left(\epsilon, \sigma_{\epsilon}\right) \qquad \mathcal{L}_1 = \prod_i \frac{\exp\left(-N_{\text{ref},i}\right)\left(N_{\text{ref},i}\right)^{N_{\text{obs},i}}}{N_{\text{obs},i}!} \quad \text{and} \quad \mathcal{L}_2 = \exp\left(-\frac{\epsilon^2}{2\sigma_{\epsilon}^2}\right)$$

• χ^2 -like log-likelihood function

$$\tilde{\chi}^2 = -2\ln\frac{\mathcal{L}_1\left(N_{\text{obs}}, N_{\text{ref}}\right)}{\mathcal{L}_1\left(N_{\text{obs}}, N_{\text{obs}}\right)} - 2\ln\mathcal{L}_2 = 2\sum f_i + \left(\frac{\epsilon}{\sigma_\epsilon}\right)^2,$$

$$f_{i} = \begin{cases} N_{\text{ref},i} - N_{\text{obs},i} + N_{\text{obs},i} \ln \left(N_{\text{obs},i} / N_{\text{ref},i} \right) & \text{(if } N_{\text{obs},i} > 0) \\ N_{\text{ref},i} & \text{(if } N_{\text{obs},i} = 0) \end{cases}$$

• Minimize χ^2 to find best set of (a,b, ϵ)

 $\rightarrow \sigma_{obs} = a \cdot \sigma_{MC}$, error of a given by $\Delta \chi^2 < 1$

η_{max}

Systematics on $\eta_{max} < 3$

5.4. EVENT SELECTION AND BACKGROUND DISCUSSION

From PhD thesis
 V. Sola

Inclusive Diffractive Cross Sections in Deep Inelastic ep Scattering at HERA

DESY-THESIS-2012-008

MC/data agreement
 of ηmax within ±0.2
 for NC DIS events

Figure 5.10: The η_{MAX} distributions for the DIS HER (up) and LER (down) inclusive data samples. The histograms represent the sum of the Monte Carlo contribution: non-diffractive DIS (DJANGOH) is the blue histogram, photoproduction (PYTHIA) is the red one and diffractive events (SATRAP) are shown in green.