

Measurement of high-Q² neutral current deep inelastic e⁺p scattering cross sections with a longitudinally polarised positron beam at HERA

Ian C. Brock On behalf of the ZEUS Collaboration

23 April 2013

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- Introduction
- Unpolarised e⁺p cross-sections
- Polarised e⁺p cross-sections
- Electroweak effects from e⁺p vs. e⁻p
- Summary

Talk based on ZEUS paper: Phys. Rev. D 87, 052014 (2013) http://arxiv.org/abs/arXiv:1208.6138 (DESY 12-145)

e⁻p ZEUS publication: Eur. Phys. J. C 62 (2009) 625 http://arxiv.org/abs/0901.2385 (DESY 08-202)

Theory

- Introduction to DIS and kinematics given in previous talk
- Relevant definitions for this talk ($P_e = 0$):
 - Use difference between e⁻p and e⁺p cross-sections to extract xF₃

$$x\tilde{F}_3 = \frac{Y_+}{2Y_-} \left(\tilde{\sigma}^{e^- p} - \tilde{\sigma}^{e^+ p} \right)$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

– For this case (v_e is small)

$$x\tilde{F}_3 \simeq -a_e \chi_z x F_3^{\gamma Z}$$

$$a_e = -1/2$$
$$\chi_Z = \frac{1}{\sin^2 \theta_W} \frac{Q^2}{M_Z^2 + Q^2}$$

Theory

Structure functions in terms of quark distributions:

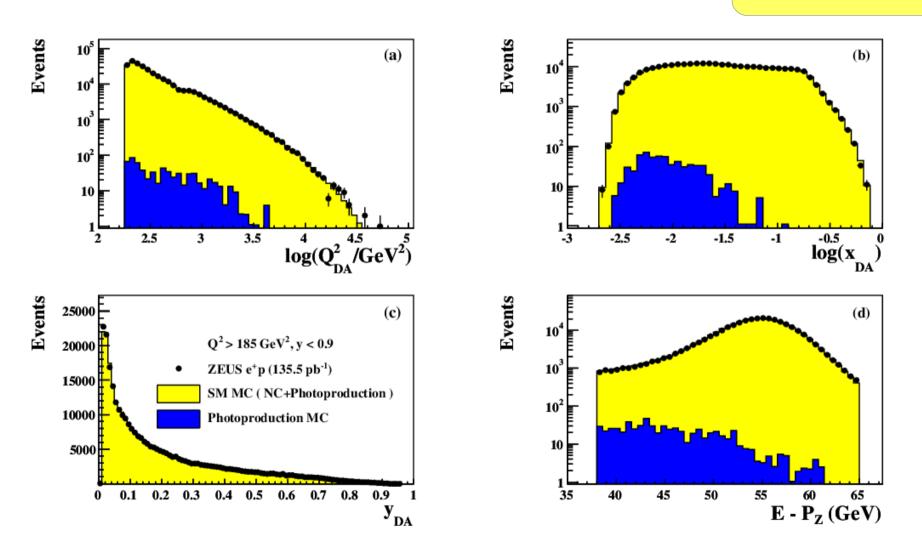
$$\begin{bmatrix} F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z} \end{bmatrix} = \sum_q \begin{bmatrix} e_q^2, 2e_q v_q, a_q^2 \end{bmatrix} x(q + \bar{q})$$
$$\begin{bmatrix} xF_3^{\gamma Z}, xF_3^{Z} \end{bmatrix} = \sum_q \begin{bmatrix} e_q a_q, v_q a_q \end{bmatrix} 2x(q - \bar{q})$$

• Getting at valence quark distributions: $xF_3^{\gamma Z} = 2x \left[e_u a_u u_v + e_d a_d d_v\right] = \frac{x}{3} \left(2u_v + d_v\right)$ $v_u = 1/2 - 4/3 \sin^2 \theta_W$ $a_u = 1/2, \quad a_d = -1/2$

22/04/13

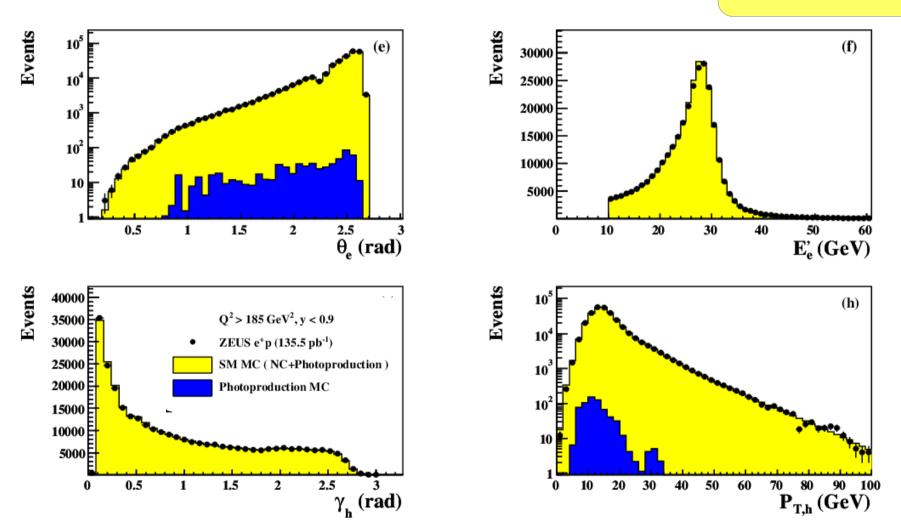
Event selection

- Electron or high E_{T} trigger
- Scattered electron with E > 10 GeV
- $Q_{\rm DA}^{2} > 185 {\rm ~GeV^{2}}, y < 0.9$
- Reject background: - 38 < $E - P_Z$ < 65 GeV - $P_T/\sqrt{E_T}$ < 4 $\sqrt{(GeV)}$, P_T/E_T < 0.7 $E_T = \sum_i E_i \sin \theta_i$ $P_T^2 = P_X^2 + P_Y^2$ $P_{X,i} = E_i \sin \theta_i \cos \phi_i$ Sum over cal. cells
- Good event vertex, |Z| < 30 cm
- Cut on γ_{h} to minimise effects of hole for beam-pipe in calorimeter

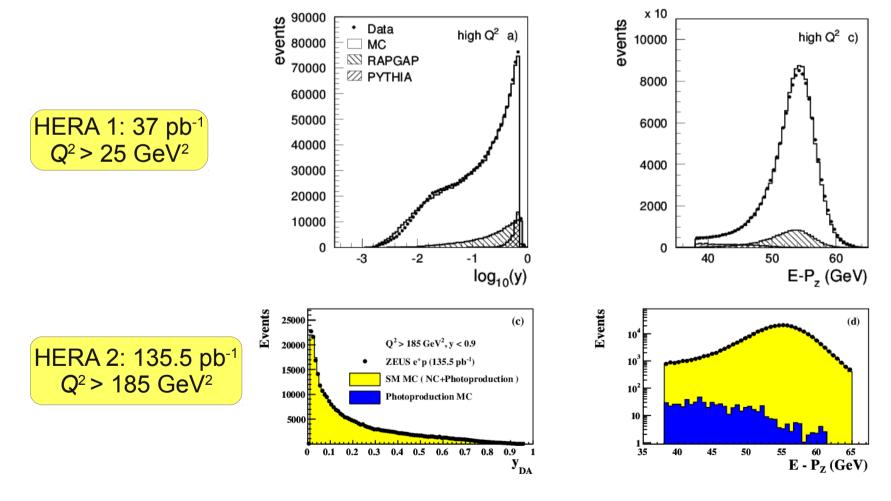

Monte Carlo

- NC DIS events
 - HERACLES + DJANGOH with CTEQ5D PDFs
- Hadronic final state
 - ARIADNE 4.12 (MEPS model of LEPTO 6.5)
- Hadronisation
 - JETSET 7.4
- Photoproduction background
 - HERWIG 5.9

Data/MC comparisons

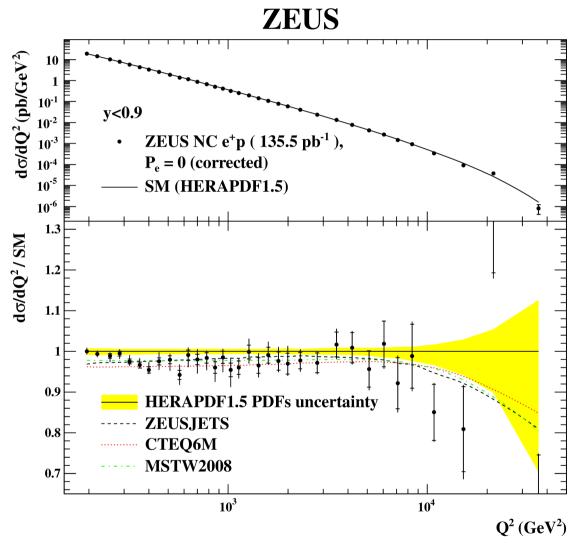

135.5 pb⁻¹ e⁺p data Q² > 185 GeV²

Data/MC comparisons


135.5 pb⁻¹ e⁺p data Q² > 185 GeV²

Improvements?

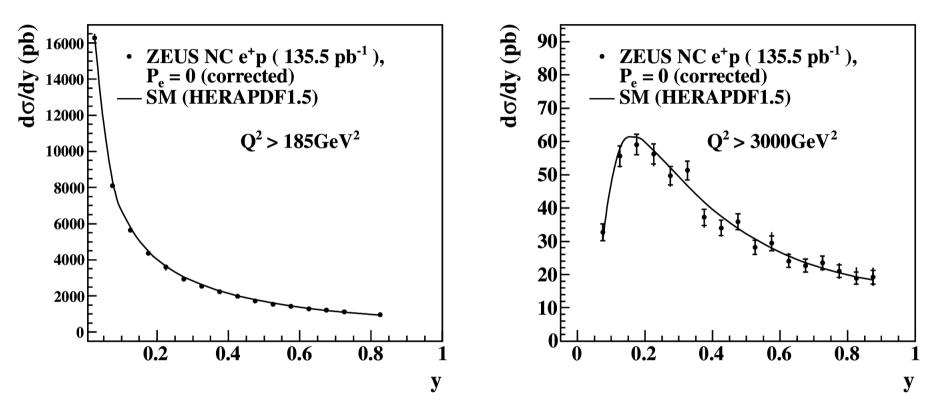
 My first ZEUS PhD student started in 1996 and submitted his thesis in 1999:


22/04/13

Improvements?

- Then as now reaching per cent precision is a lot of work
- HERA 2 benefits from higher statistics
- Also helped by better and more robust primary vertex determination (MVD detector)
- But more material (including magnet inside detector)
 - Much more detailed (and accurate) material simulation now in Monte Carlo

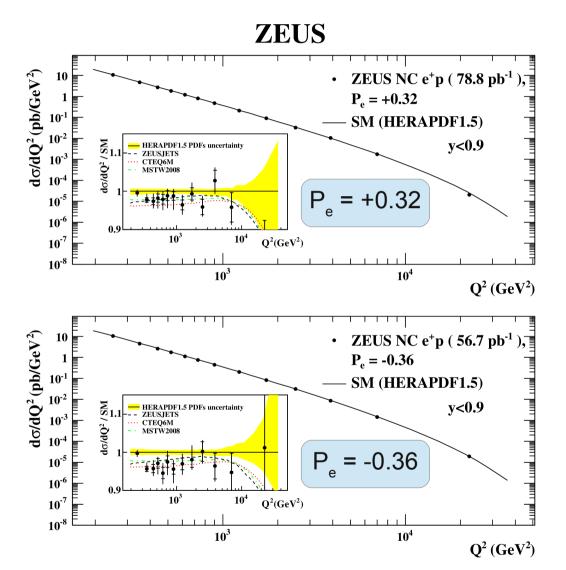
e⁺p NC DIS cross-section



- $P_e = 0$ (corrected)
- Systematic uncertainties dominate at lower Q², statistical at very high Q²
- Luminosity uncertainty (1.8-1.9%) not included in error band
- Good agreement with all PDFs

e⁺p NC DIS cross-section

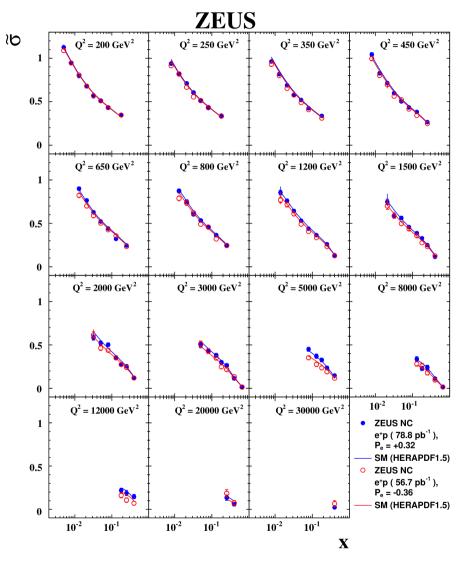
ZEUS



- Compare cross-sections in dominantly electromagnetic and electroweak regimes
- Precision of measurement clearly visible

22/04/13

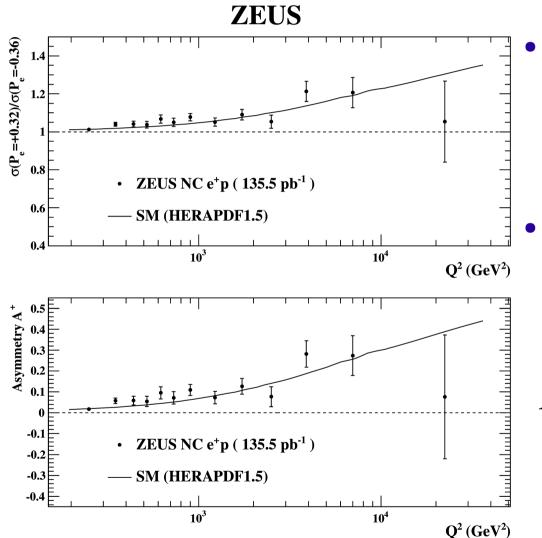
Comparing positive and negative polarisation



135.5 pb⁻¹ e⁺p data Q² > 185 GeV²

- Take ratio data/SM with HERAPDF1.5 as basis for comparison with other PDFs
- Good agreement with all PDFs seen (within luminosity uncertainty)

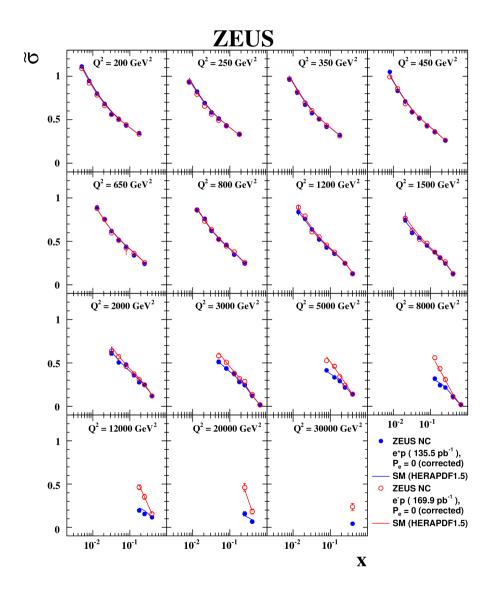
Reduced cross-sections split according to polarisation


135.5 pb⁻¹ e⁺p data Q² > 185 GeV²

- Small, but steadily increasing difference seen for $Q^2 \ge 1000 \text{ GeV}^2$
- Again well described by predictions

$$\tilde{\sigma}^{e^{\pm}p} = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{\mathrm{d}^2\sigma(e^{\pm}p)}{\mathrm{d}x\mathrm{d}Q^2}$$

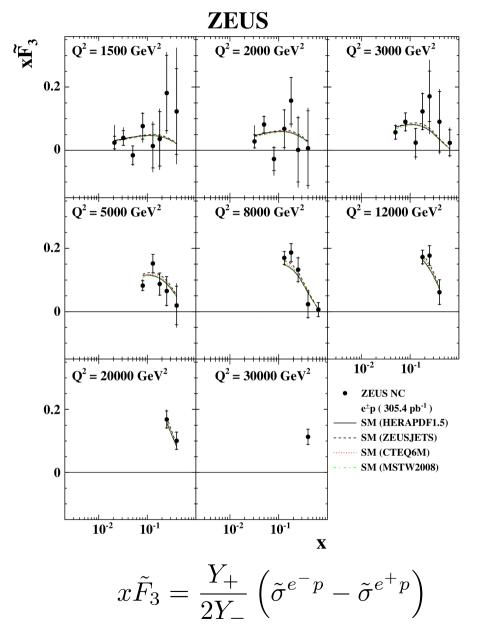
Polarisation ratio and asymmetry



- Extract EW information from cross-section ratio and asymmetry
- A⁺ insensitive to PDFs (1st order)

$$A^{+} = \frac{2}{P_{e,+} - P_{e,-}} \frac{\sigma^{+}(P_{e,+}) - \sigma^{+}(P_{e,-})}{\sigma^{+}(P_{e,+}) + \sigma^{+}(P_{e,-})}$$
$$\simeq -\chi_{z} a_{e} \frac{F_{2}^{\gamma Z}}{F_{2}^{\gamma}} = -2\chi_{z} \frac{a_{e} v_{q}}{e_{q}}$$

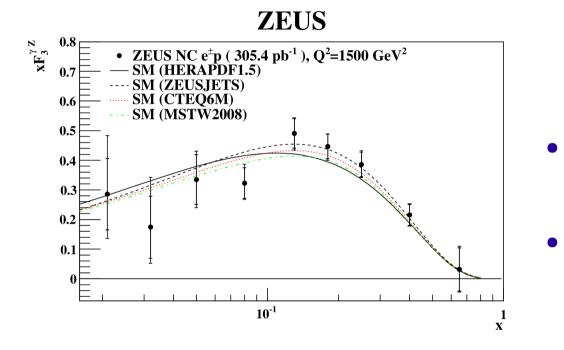
e[±]p reduced cross-sections


135.5 pb⁻¹ e⁺p data 169.9 pb⁻¹ e⁻p data Q² > 185 GeV²

- Compare e⁺p with previously published e⁻p results
- Clear effect of electroweak coupling seen at high Q²
- Good agreement with predictions

$$\tilde{\sigma}^{e^{\pm}p} = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{\mathrm{d}^2\sigma(e^{\pm}p)}{\mathrm{d}x\mathrm{d}Q^2}$$

Structure function $X\tilde{F}_3$


135.5 pb⁻¹ e⁺p data 169.9 pb⁻¹ e⁻p data Q² > 1300 GeV²

- Structure function obtained from difference of cross-sections
- No large dependence on Q² seen
 - Combine all bins to obtain better precision

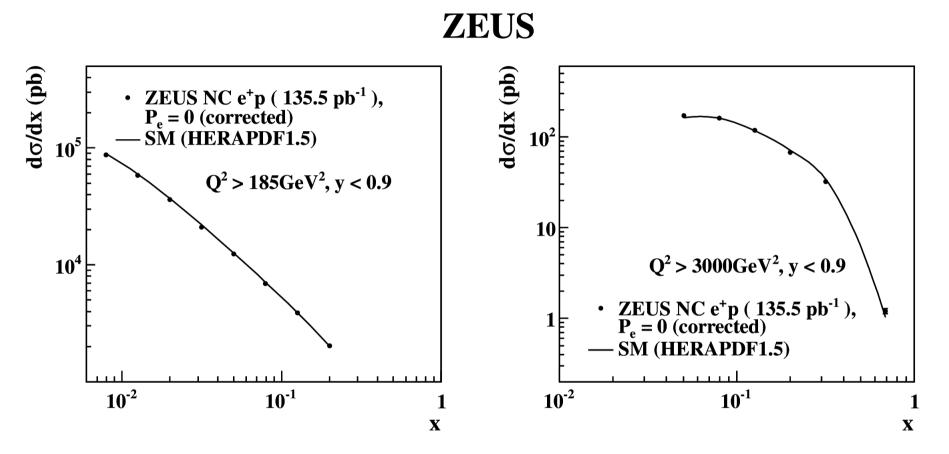
Structure function $xF_{3}^{\gamma Z}$

135.5 pb⁻¹ e⁺p data 169.9 pb⁻¹ e⁻p data Q² = 1500 GeV²

$$x\tilde{F}_3 \simeq -a_e \chi_z x F_3^{\gamma Z}$$

- Take out known EM coupling and relative EM and weak neutral couplings to get $xF_{3}^{\gamma Z}$
- PDF predictions agree well with data
- Statistical uncertainties typically >2x systematic

Summary


- e⁺p measurements presented here complete the set of published ZEUS NC and CC inclusive sections
- Precise measurements of both unpolarised and polarised cross-sections made
- Polarised cross-sections constrain vector couplings of quarks to Z
- e⁺p and e⁻p cross-sections compared and combined to examine electroweak effects

Backup

e⁺p NC DIS cross-section

 Compare cross-sections in dominantly electromagnetic and electroweak regimes

Systematic uncertainties

- Luminosity: 1.8-1.9%
- Polarisation: 4%
- Wide range of systematic uncertainties studied
 - In most cases effects are at or below per cent level, except in a few bins.
 - Exception is parton-shower scheme: typically 3% uncertainty
- Treated as uncorrelated

Systematic uncertainties

- 1) Electron energy scale
- 2) Overlay events
- Photoproduction background normalisation
- 4) Electron finder
- 5) Electron-track matching
- 6) Parton shower scheme (typically 3% effect)
- 7) Trigger simulation
- 8) Electron isolation

- 9) DCA for track to electron at CAL
- Energy resolution for scattered e in MC
- Electron track
 momentum
- 12) γ_h cut
- 13) Hadronic energy scale
- 14) Cosmic ray rejection
- 15) $|Z_{vtx}|$ cut

