DIS Marseille - April 252013
Mathias Ritzmann Institut de Physique Théorique, CEA-Saclay

Recent Developments

 in VinciaW. Giele, D.A. Kosower, P. Skands
A. Gehrmann-De Ridder, L. Hartgring, E. Laenen, A. Larkoski, J.J. Lopez-Villarejo, MR

Overview

introduction
extension of Vincia to hadron collisions
uncertainties
matching
summary and outlook

Event Generators - Cartoon

scale

Event Generators - Cartoon

scale

The Vincia Parton Shower

W. Giele, D.A. Kosower, P. Skands 0707.3652, II 02.2 I 26

estimates its uncertainty
facilitates matching to fixed-order
integrates into Pythia $8^{[I]}$ as a plugin
[I] T. Sjöstrand, S. Mrenna, P. Skands

Formalism

use approximate factorization of matrix element

$$
\left|M_{n}\right| \approx \sum_{(j k)} a(i, j, k)\left|M_{n-1}(\ldots, l, K, \ldots)\right|^{2}
$$

Formalism

use approximate factorization of matrix element

$$
\left|M_{n}\right| \approx \sum_{(i j k)} a(i, j, k)\left|M_{n-I}(\ldots, I, K, \ldots)\right|^{2}
$$

Formalism

becomes exact in unresolved
limits at leading colour

$$
\left|M_{n}\right| \stackrel{\downarrow}{\approx} \sum_{(j k)} a(i, j, k)\left|M_{n-1}(\ldots, I, K, \ldots)\right|^{2}
$$

encodes eikonal/splitting function for j soft/collinear

Formalism

becomes exact in unresolved
limits at leading colour factorization of matrix element

$$
\left|M_{n}\right| \approx \sum_{(i j k)} a(i, j, k)\left|M_{n-1}(\ldots, l, K, \ldots)\right|^{2}
$$

encodes eikonal/splitting function for j soft/collinear

and exact factorization of phase space

$$
\mathrm{d} \Phi_{n}=\mathrm{d} \Phi_{\mathrm{ant}}(i, j, k) \mathrm{d} \Phi_{n-\mathrm{I}}(\ldots, I, K, \ldots)
$$

to approximate σ_{n} from $\sigma_{\mathrm{n}-1}$

Extension to Hadron Collisions

D.A. Kosower, P. Skands, MR
the convolution factorizes, not the phase space

$$
\begin{aligned}
& \int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) \mathrm{d} \Phi_{2 \rightarrow n}= \\
& \\
& \underbrace{\int \frac{\mathrm{d} x_{A}}{x_{A}} \frac{d x_{B}}{x_{B}} f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right) d \Phi_{2 \rightarrow n-1}}_{\text {as in } \mathrm{d} \sigma_{2 \rightarrow n-1}} \frac{f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right)}{f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right)} d \Phi_{\mathrm{ant}}
\end{aligned}
$$

Extension to Hadron Collisions

D.A. Kosower, P. Skands, MR
1210.6345
the convolution factorizes, not the phase space

$$
\begin{aligned}
& \int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) \mathrm{d} \Phi_{2 \rightarrow n}= \\
& \quad \underbrace{\int \frac{\mathrm{d} x_{A}}{x_{A}} \frac{d x_{B}}{x_{B}} f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right) \mathrm{d} \Phi_{2 \rightarrow n-1}}_{\text {as in } \mathrm{d} \sigma_{2 \rightarrow n-1}} \frac{f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right)}{f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right)} \mathrm{d} \Phi_{\text {ant }}
\end{aligned}
$$

some antennae are crossings of final-final counterparts, some are not

Extension to Hadron Collisions

D.A. Kosower, P. Skands, MR
1210.6345
the convolution factorizes, not the phase space

$$
\begin{aligned}
& \int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) \mathrm{d} \Phi_{2 \rightarrow n}= \\
& \quad \underbrace{\int \frac{\mathrm{d} x_{A}}{x_{A}} \frac{d x_{B}}{x_{B}} f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right) \mathrm{d} \Phi_{2 \rightarrow n-1}}_{\text {as in } \mathrm{d} \sigma_{2 \rightarrow n-1}} \frac{f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right)}{f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right)} \mathrm{d} \Phi_{\text {ant }}
\end{aligned}
$$

some antennae are crossings of final-final counterparts, some are not
ratios of parton distribution functions enter the branching probabilities

Uncertainties

$$
a=4 \pi \alpha_{s} \quad C_{i j k} \bar{a}(i, j, k)
$$

I Incartainties

not unique (scale)

$$
a=4 \pi \alpha_{s} \underset{\uparrow}{C_{i j k}} \bar{a}(i, j, k)
$$

not unique (subleading colour)

I Inrartainties

not unique (scale)

I Inrartainties

not unique (scale)

therefore Vincia offers (among others) variations of

$$
\begin{aligned}
& \text { Infartainties } \\
& \text { not unique (scale) } \\
& \text { not unique (non-singu } \\
& \text { not unique (subleading colour) } \\
& \hline
\end{aligned}
$$

therefore Vincia offers (among others) variations of
scale of α_{s}

$$
\begin{gathered}
\text { Incartainties } \\
\text { not unique (scale) } \\
a=4 \pi \alpha_{s} C_{i j k} \frac{\bar{a}}{}(i, j, k) \\
\text { not unique (non-singular terms) } \\
\text { not unique (subleading colour) } \\
\hline
\end{gathered}
$$

therefore Vincia offers (among others) variations of
scale of α_{s}
colour factors

$$
\begin{aligned}
& \text { Incartainties } \\
& \text { not unique (scale) } \\
& a=4 \pi \alpha_{s} C_{i j k} \frac{\bar{a}}{}(i, j, k) \\
& \text { not unique (non-singular terms) } \\
& \text { not (subleading colour) } \\
& \hline
\end{aligned}
$$

therefore Vincia offers (among others) variations of
scale of α_{s}
colour factors
antenna functions

Uncertanties

can run Vincia with variety of alternative settings

Uncertanties

can run Vincia with variety of alternative settings
works, but may necessitate many runs

Uncertanties

can run Vincia with variety of alternative settings works, but may necessitate many runs
alternative:Vincia generates uncertainty weights
$W_{\text {alt: }}$ weight of event relative to alternative settings
determination of a set $\left\{\mathrm{w}_{\text {alt }}\right\}$ much cheaper than doing all the corresponding runs

Uncertanties

can run Vincia with variety of alternative settings works, but may necessitate many runs
alternative:Vincia generates uncertainty weights
$W_{\text {alt: }}$ weight of event relative to alternative settings
determination of a set $\left\{\mathrm{w}_{\text {alt }}\right\}$ much cheaper than doing all the corresponding runs
\Rightarrow Vincia can generate uncertainty bands

Test of Uncertainty Variations

Drell-Yan ${ }^{[1]}$ in Pythia 8.176 +Vincia

[I] pure parton shower

Matching

Vincia uses a veto algorithm, generating trial branchings according to simple trial antennae
accept probability $\quad P_{\text {accept }}=\frac{a_{\text {phys }}}{a_{\text {trial }}}$

Matching

Vincia uses a veto algorithm, generating trial branchings according to simple trial antennae
accept probability $\quad P_{\text {accept }}=\frac{a_{\text {phys }}}{a_{\text {trial }}}$
match by changing this to $P_{\text {accept }}=\frac{a_{\text {phys }}}{a_{\text {trial }}} P_{\mathrm{ME}}$

$$
P_{\mathrm{ME}}=\frac{\left|M_{n}\right|^{2}}{\sum_{(j k)} a_{\text {Phys }}(i, j, k)\left|M_{n-1}(\ldots, l, K, \ldots)\right|^{2}}
$$

Matching

Vincia uses a veto algorithm, generating trial branchings according to simple trial antennae
accept probability $\quad P_{\text {accept }}=\frac{a_{\text {phys }}}{a_{\text {trial }}}$
match by changing th what the shower should do $a_{\text {an' }} P_{\text {ME }}$

$$
P_{\mathrm{ME}}=\frac{\vdots}{\sum_{(j \mathrm{k})} a_{\mathrm{phys}}(i, j, k)\left|M_{n-1}(\ldots, I, K, \ldots)\right|^{2}}
$$

Matching

Vincia uses a veto algorithm, generating trial branchings according to simple trial antennae
accept probability $\quad P_{\text {accept }}=\frac{a_{\text {phys }}}{a_{\text {trial }}}$

what the shower would do without matching

Matching

$$
P_{\mathrm{ME}}=\frac{\left|M_{n}\right|^{2}}{\sum_{(j k)} a_{\mathrm{phys}}(i, j, k)\left|M_{n-I}(\ldots, l, K, \ldots)\right|^{2}}
$$

note: events still unweighted, $P_{\text {ME }} \xrightarrow{\text { unresolved }} I$

Matching

$$
P_{\mathrm{ME}}=\frac{\left|M_{n}\right|^{2}}{\sum_{(j k)} a_{\mathrm{phys}}(i, j, k)\left|M_{n-I}(\ldots, l, K, \ldots)\right|^{2}}
$$

note: events still unweighted, $P_{M E} \xrightarrow{\text { unresolved }} I$
sector shower ${ }^{[1]}$: only one term in denominator
[I] J.J. Lopez-Villarejo, P. Skands II09.3608

Matching

$$
P_{\mathrm{ME}}=\frac{\left|M_{n}\right|^{2}}{\sum_{(j k)} a_{\mathrm{phys}}(i, j, k)\left|M_{n-I}(\ldots, l, K, \ldots)\right|^{2}}
$$

note: events still unweighted, $P_{M E} \xrightarrow{\text { unresolved }} I$
sector shower ${ }^{[1]}$: only one term in denominator
helicity-identified shower ${ }^{[2]}$: M much cheaper
[I] J.J. Lopez-Villarejo, P. Skands II09.3608
[2] A. Larkoski, J.J. Lopez-Villarejo, P. Skands

Matching

speed of tree-level matching in Z decay

$\mathrm{Z} \rightarrow \mathrm{n}:$ Number of Matched Legs

$\mathrm{Z} \rightarrow \mathrm{n}:$ Number of Matched Legs
A. Larkoski, J.J. Lopez-Villarejo, P. Skands I301. 0933

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I 303.4974
multiplicative matching like at tree-level
events remain unweighted
tree-level matching at higher multiplicities stays
tuning of shower matched to $\mathrm{Z} \rightarrow 3$ at one loop to event shapes (two-loop running \& CMW scheme):

$$
\alpha_{S}^{\text {NLO }}\left(m_{Z}\right) \approx 0.122 \text { compared to } \alpha_{S}^{L O}\left(m_{Z}\right) \approx 0.139
$$

Summary and Outlook

Vincia has been extended to hadron collisions
unitary and efficient matching at tree- and one-loop level has been demonstrated for $\mathrm{e}+\mathrm{e}$ - collisions
next: matching for hadron collisions

Thanks for your attention

Backup

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I 303.4974
analogous to tree-level matching:

$$
\text { matched }=\left(1+V_{3}\right) \text { (shower approximation) }
$$

rate for exactly three resolved partons at $\mathrm{Q}_{\text {had }}$:

$$
\text { matched }=\left|M_{3}^{0}\right|^{2}+2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)+\int_{0}^{Q_{\text {had }}^{2}} \frac{\mathrm{~d} \Phi_{4}}{\mathrm{~d} \Phi_{3}}\left|M_{4}^{0}\right|^{2}
$$

(s. approx.) $=\left(I+V_{2}\right)\left|M_{3}^{0}\right|^{2} \Delta_{2}\left(m_{Z}^{2}, Q_{3}^{2}\right) \Delta_{3}\left(Q_{3}^{2}, Q_{\text {had }}^{2}\right)$

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I303.4974

$$
\begin{aligned}
V_{3}= & -V_{2}+\frac{2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)}{\left|M_{3}^{0}\right|^{2}} \\
& +\int_{Q_{3}^{2}}^{m_{2}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(2 \rightarrow 3)+\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4) \\
& +\int_{0}^{Q_{\mathrm{had}}^{2}} \frac{\mathrm{~d} \Phi_{4}}{\mathrm{~d} \Phi_{3}} \frac{\left|M_{4}^{0}\right|^{2}}{\left|M_{3}^{0}\right|^{2}}-\sum_{3 \rightarrow 4} \int_{0}^{Q_{\mathrm{had}}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4)
\end{aligned}
$$

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I303.4974

$$
\begin{aligned}
V_{3}= & -V_{2}+\frac{2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)}{\left|M_{3}^{0}\right|^{2}} \\
& +\int_{Q_{3}^{2}}^{m_{2}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(2 \rightarrow 3)+\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4) \\
& +\left.\int_{0}^{Q_{\mathrm{had}}^{2}} \frac{d \Phi_{4}}{\mathrm{~d} \Phi_{3}}\left|M_{4}^{0}\right|^{2} M_{3}^{0}\right|^{2} \\
& \text { shower is matched at tree-level }
\end{aligned}
$$

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I303.4974

$$
\begin{aligned}
V_{3}= & -V_{2}+\frac{2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)}{\left|M_{3}^{0}\right|^{2}} \text { singularities cancel } \\
& +\int_{Q_{3}^{2}}^{m_{2}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(2 \rightarrow 3)+\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4) \\
& +\int_{0}^{Q_{\text {had }}^{2}} \frac{d \Phi_{4}}{d \Phi_{3}}\left|M_{4}^{0}\right|^{2} \\
& \text { shower is matched at tree-level }
\end{aligned}
$$

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I303.4974

$$
\begin{aligned}
V_{3}= & -V_{2}+\frac{2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)}{\left|M_{3}^{0}\right|^{2}} \quad \text { singularities cancel } \\
& +\int_{Q_{3}^{2}}^{m_{2}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(2 \rightarrow 3)+\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4)
\end{aligned}
$$

integral over $3 \rightarrow 4$ antennae has two pieces:

$$
\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}}\left[a^{\mathrm{std}}(3 \rightarrow 4)+\delta a(3 \rightarrow 4)\right]
$$

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I303.4974

$$
\begin{aligned}
& V_{3}=-V_{2}+\frac{2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)}{\left|M_{3}^{0}\right|^{2}} \text { singularities cancel } \\
&+\int_{Q_{3}^{2}}^{m_{2}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(2 \rightarrow 3)+\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4) \\
& \text { integra' } \underbrace{\downarrow}_{\text {universal, divergent, integrated analytically }} ; \text { two pieces: } \\
& \sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\text {ant }}\left[a^{\text {std }}(3 \rightarrow 4)+\delta a(3 \rightarrow 4)\right]
\end{aligned}
$$

One-loop matching

L. Hartgring, E. Laenen, P. Skands

I303.4974

$$
\begin{aligned}
V_{3}= & -V_{2}+\frac{2 \Re\left(M_{3}^{0} M_{3}^{1 *}\right)}{\left|M_{3}^{0}\right|^{2}} \text { singularities cancel } \\
& +\int_{Q_{3}^{2}}^{m_{2}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(2 \rightarrow 3)+\sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\mathrm{ant}} a(3 \rightarrow 4) \\
\text { integra } & \sum_{\text {universal, divergent, integrated analytically }}^{\prime} \text { two pieces: } \\
& \sum_{3 \rightarrow 4} \int_{0}^{m_{3}^{2}} \mathrm{~d} \Phi_{\text {ant }}\left[a^{\text {std }}(3 \rightarrow 4)+\delta a(3 \rightarrow 4)\right]
\end{aligned}
$$

