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Introduction

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach is based
on the remarkable property of QCD – gluon reggeization. The
scattering amplitudes are represented by the convolution

ΦA′A ⊗ G ⊗ ΦB′B

pA

pB

ΦAA′

ΦBB′

G
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Introduction

The universal (process independent) Greens’s function G can
be presented as

Ĝ = eY K̂,

K̂ is the BFKL kernel, Y is the total rapidity (Y = ln(s/s0)) .
Talking about the BFKL approach, one usually means BFKL
Pomeron, that is, a colourless state in the t -channel. But the
approach is applicable for any colour state, which two gluons
can form. For QCD, that is for tree colours, there are 6
irreducible representations:

1,8a,8s,10,10,27.

For Nc > 3 there are 7 possible representations.
Now the kernel is known in the NLO both for forward scattering,
i.e. for t = 0 and the colour singlet in the t–channel,
V.S. F., L.N. Lipatov, 1998
M. Ciafaloni, G. Camici, 1998
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Introduction

and for arbitrary t and any possible colour state in the t–channel
V. S. F., D. A. Gorbachev, 2000
V. S. F., R. Fiore, 2005
For phenomenological applications, the most interesting is the
Pomeron. But from theoretical point of view the gluon channel
(antisymmetric colour octet, or adjoint representation, in the
t-channel) is even more important, first of all because of the
gluon reggeization. The idea of the gluon reggeization
appeared as the result of the fixed order calculations. Evidently
it must be proved. It was done in using bootstrap relations,
which follow from the requirement of compatibility of the
multi-Regge form of amplitudes with the s-channel unitarity.
Now fulfillment of these relations is proved in the NLO
V.S. F., M.G. Kozlov, A.V. Reznichenko, 2012
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Introduction

But there are at least two other reasons for significance of the
kernel of the BFKL equation for the adjoint representations.
One is related to the BKP equation
J. Bartels,1980
J. Kwiecinski, M. Praszalowicz, 1980
-the generalization of the BFKL equation to bound states
consisting of three and more reggeized gluons, in particular the
C-odd three gluon system — Odderon. The BFKL kernel for
symmetric adjoint representation appears in the BKP equation
for the odderon because any pair of the three reggeized gluons
are in the colour octet state.
Recently, another application of the BFKL approach, related to
the BDS ansatz
Z. Bern, L. J. Dixon and V. A. Smirnov, 2005
was extensively developed
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Introduction

The approach was used for verification of the BDS ansatz for
the inelastic amplitudes in N = 4 SUSY and calculation of the
remainder factor
J. Bartels, L. N. Lipatov, A. Sabio Vera, 2009
L. N. Lipatov and A. Prygarin, 2011
It was demonstrated that the BDS amplitude MBDS

2→4 should be
multiplied by the factor containing the contribution of the
Mandelstam cuts, and this contribution was found in the LLA
and in the NLA
V.S. F. and L. N. Lipatov, 2011
At large Nc , when only planar diagrams are taken into account,
there is degeneracy in signature, i.e. no difference between
symmetric ant antisymmetric adjoint representations.
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Möbius representation

For scattering of colourless objects the BFKL equation can be
written in the Möbius invariant form
L. N. Lipatov, 1989
The Möbius invariance can be made evident by transformation
from the transverse momentum to the transverse coordinate
representation
V.S. F, R. Fiore, A. Papa, 2007
For scattering of colourless objects, one can use gauge
invariance of the colour singlet impact factors and the colour
singlet BFKL kernel and omit the terms in the kernel
proportional to δ(~r1′2′), as well as change the terms
independent either of ~r1 or of ~r2 in such a way that the resulting
kernel provides vanishing of cross-sections for scattering of
zero-size dipoles.
The kernel obtained in such a way dipole or in the impact
parameter (transverse coordinate) space is called Möbius form
of the BFKL kernel.
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(Quasi)conformal kernel

The Möbius form of the NLO kernel can be written as

〈~r1~r2|K̂M |~r ′1~r ′2 〉 = δ(~r11′)δ(~r22′)

∫
d~r0 g0(~r1,~r2;~r0)

+δ(~r11′)g1(~r1,~r2;~r ′2 ) + δ(~r22′)g1(~r2,~r1;~r ′1 ) +
1
π

g2(~r1,~r2;~r ′1 ,~r
′

2 )

where ~rij ′ = ~ri −~r ′j , with the functions g1,2 turning into zero
when their first two arguments coincide. The first three terms
contain ultraviolet singularities which cancel in their sum, as
well as in the LO, with account of the “dipole” property of the
“target” impact factors. The coefficient of δ(~r11′)δ(~r22′) is written
in the integral form in order to make the cancellation evident.
The term g2(~r1,~r2;~r ′1 ,~r

′
2 ) is absent in the LO because the LO

kernel in the momentum space does not contain terms
depending on all three independent momenta simultaneously.
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(Quasi)conformal kernel

The Möbius form obtained by transformation of the ”standard”
kernel defined in momentum space according to the
prescription (called standard)
V.S. F., R. Fiore, 1998
into impact parameter space turned out not (quasi)-conformal.
But in the NLO kernel there is an ambiguity, analogous to the
well known ambiguity of the NLO anomalous dimensions,
because it is possible to redistribute radiative corrections
between the kernel and the impact factors. The ambiguity
permits to make transformations

K̂ → K̂ − αs[K̂(B), Û]

conserving the LO kernel K̂(B) (which is fixed in our case by the
requirement of conformal invariance of its Möbius form) and
changing the NLO part of the kernel. Using this transformation
it turns out possible to make the Möbius form quasi-conformal.
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(Quasi)conformal kernel

gQC
0 (~r1,~r2;~r0) = 6πζ (3) δ

(
~r0
)
− gQC

1 (~r1,~r2;~r0) ,

gQC
1 (~r1,~r2;~r ′2 ) =

~r 2
12

~r 2
22′~r 2

12′

[
β0

2Nc

(
ln
(
~r 2

12µ
2

4e2ψ(1)

)
+
~r 2

12′ −~r 2
22′

~r 2
12

ln
(
~r 2

22′

~r 2
12′

))
+

67
18
− ζ(2)− 5af + 2as

9

]
, β0 =

11Nc

3
− 2af

3
− as

6
,

gQC
2 (~r1,~r2;~r ′1 ,~r

′
2 ) =

1
~r 4

1′2′

(
~r 2

11′ ~r 2
22′ − 2~r 2

12~r
2

1′2′

d
ln
(
~r 2

12′ ~r 2
21′

~r 2
11′~r 2

22′

)
− 1
)

(1− bf

+
bs

2

)
+

(
(2bs − 3bf )

2~r 2
1′2′

~r 2
12
d

+
1

2~r 2
11′ ~r 2

22′

(
~r 4

12
d
−
~r 2

12
~r 2

1′2′

))
ln
(
~r 2

12′ ~r 2
21′

~r 2
11′~r 2

22′

)

+
~r 2

12
~r 2

11′~r 2
22′~r 2

1′2′
ln
(
~r 2

12~r
2

1′2′

~r 2
12′ ~r 2

21′

)
, d = ~r 2

12′~r 2
21′ −~r 2

11′~r 2
22′ .

Here aj = 2κjnjTj , j = f , s, Tj are defined by the relations
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(Quasi)conformal kernel

Tr
(

T a
j T b

j

)
= Tjδ

ab,

bj =
4njκj

N2
c − 1

Tr

(
C2

j

N2
c
− Cj

2Nc

)
, Cj = T a

j T a
j ,

T a
j are the colour group generators, κf (κs) is equal to 1/2 for

Majorana fermions (neutral scalars) in self-conjugated
representations and 1 otherwise.
This form of the NLO kernel is immeasurably simple compared
with the kernel in the momentum space. In fact, there are three
reasons for the simplicity:
— Möbius representation (i.e. limitation of space of functions),
— transformation ØK → ØK − [ØK BÛ] with the operator
Û = Û1 + Û2,
— use of impact parameter space.
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Difference between standard and quasi-conformal
kernels

The simplicity of the Möbius form of the quasi-conformal
NLO BFKL kernel suggested to use just this form for
finding the kernel in the momentum space. The way to do
that was not evident, and even the possibility to do it
seemed doubtful, because the Möbius form is defined on
a special class of functions in the coordinate space.
However, it was shown
V.S. F., R. Fiore, A.V. Grabovsky, A. Papa, 2011
that such possibility exists due to the gauge invariance of
the kernel and the way to obtain the kernel in the
momentum space from its Möbius form was elaborated.
But technically obtaining it turned out to be not easy.
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Difference between standard and quasi-conformal
kernels

An explicit form of the operator Û in the momentum space
V.S. F., R. Fiore, A.V. Grabovsky, A. Papa, 2011

〈~q1, ~q2|αsÛ|~q ′1 , ~q ′2 〉 = δ(~q11′ + ~q22′)
αsNc

4π2 Ru(~q1, ~q2;~k)

−αsβ0

8π
ln
(
~q 2

1 ~q
2

2

)
δ(~q11′)δ(~q22′) ,

where β0 is the first coefficient of the Gell-Mann–Low function,

β0 =
11
3

Nc −
2
3

nf

and

Ru(~q1, ~q2;~k) =
1
~q 2

1
ln

(
~q ′ 21 ~q 2

2
~k 2~q 2

)
+

1
~q 2

2
ln

(
~q ′ 22 ~q 2

1
~k 2~q 2

)
+

1
~k 2

ln
(
~q ′ 21 ~q ′ 22
~q 2

1 ~q
2

2

)

−2
~q1
~k

~k 2~q 2
1

ln
(
~q ′ 21
~k 2

)
+ 2

~q2
~k

~k 2~q 2
2

ln
(
~q ′ 22
~k 2

)
− 2

~q1~q2

~q 2
1 ~q

2
2

ln
(
~q 2

~k 2

)
.
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Difference between standard and quasi-conformal
kernels

Note that Ru has the gauge invariance properties:

Ru(~q1, ~q2;~q1) = Ru(~q1, ~q2;−~q2) = 0,

(~q 2
1 ~q

2
2 Ru(~q1, ~q2;~k))|~q1=0 = (~q 2

1 ~q
2

2 Ru(~q1, ~q2;~k))|~q2=0 = 0 .

Indeed, these properties are required to conserve the gauge
invariance.
The difference between the standard BFKL kernel, defined
according to the prescriptions
V.S. F., R. Fiore,1998
and the quasi-conformal BFKL kernel turned out to be rather
simple
V.S. F., R. Fiore, A. Papa, 2012
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Difference between standard and quasi-conformal
kernels

D(~q1, ~q ′1 ;~q) =
α2

sN2
c

8π3

[
− β0

2Nc

(
2
~k 2
− 2

~q1
~k

~k 2~q 2
1

+ 2
~q2
~k

~k 2~q 2
2

− 2
~q1~q2

~q 2
1 ~q

2
2

)

× ln
(
~q ′ 21 ~q ′ 22
~q 2

1 ~q
2

2

)
+
~q ′ 21

~q 2
1
~k 2

ln
(
~q 2

1 ~q
′ 2

2
~q 2

2 ~q
′ 2

1

)
ln

(
~q 2

2 ~q
′ 2

1

~q 2~k 2

)
+
~q ′ 22

~q 2
2
~k 2

ln
(
~q 2

2 ~q
′ 2

1
~q 2

1 ~q
′ 2

2

)

× ln

(
~q 2

1 ~q
′ 2

2

~q 2~k 2

)
− 4

(
[~q1 × ~q2]

~q 2
1 ~q

2
2

+
[~q1 × ~k ]

~q 2
1
~k 2

+
[~q2 × ~k ]

~q 2
2
~k 2

)
(

[~q1 × ~q2]I~q1,~q2
− [~q ′1 × ~q ′2 ]I~q ′

1 ,~q
′

2

)]
.

The most natural conclusion is that the simplicity of the Möbius
form of the quasi-conformal kernel is caused mainly by using
the impact parameter space. The other possibility is that the
quasi-conformal kernel can be written in simple form also in the
transverse momentum space.
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Standard and Möbius invariant forms

The modified (with subtracted gluon trajectory depending on
total t-channel momenta) kernel in the antisymmetric adjoint
representtion can be written as follows:

K (~q1, ~q ′1 ;~q) = K B(~q1, ~q ′1 ;~q)

(
1− αsNc

2π
ζ(2)

)

+δ(2)(~q1 − ~q ′1 )
~q 2

1 ~q
2

2
~q 2

α2
s N2

c
4π2 3ζ(3) +

α2
s N2

c
32π3 R(~q1, ~q ′1 ;~q) ,

K B is the leading order kernel, which can be written in the
explicitly Möbius invariant form:

K B(~q1, ~q ′1 ;~q) = −δ(2)(~q1 − ~q ′1 )
~q 2

1 ~q
2

2
~q 2

αs Nc

4π2

∫
~q 2 d2l

(~q1 −~l)2(~q2 +~l)2(
~q 2

1 (~q2 +~l)2 + ~q 2
2 (~q1 −~l)2

~q 2~l 2
− 1

)
+
αs Nc

4π2

(
~q 2

1 ~q
′ 2

2 + ~q ′ 21 ~q 2
2

~q 2~k 2
− 1

)
.
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Standard and Möbius invariant forms

R(~q1, ~q ′1 , ~q) =
1
2

(
ln
(
~q 2

1
~q 2

)
ln
(
~q 2

2
~q 2

)
+ ln

(
~q ′ 21
~q 2

)
ln
(
~q ′22
~q 2

)

+ ln2
(
~q 2

1
~q ′ 21

))
−
~q 2

1 ~q
′ 2

2 + ~q 2
2 ~q
′ 2

1

~q 2~k 2
ln2
(
~q 2

1
~q ′ 21

)
−
~q 2

1 ~q
′ 2

2 − ~q 2
2 ~q
′ 2

1

2~q 2~k 2

× ln
(
~q 2

1
~q ′ 21

)
ln
(
~q 2

1 ~q
′ 2

1
~k 4

)
+ 4

(~k × ~q1)

~q 2~k 2

(
~k 2(~q1 × ~q2)

− ~q1
2
(~k × ~q2)− ~q2

2
(~k × ~q1)

)
I~q1,−~k

+
(
~q1 ↔ −~q2, ~q ′1 ↔ −~q ′2

)
.

~k = ~q1 − ~q ′1 = ~q ′2 − ~q2, (~a× ~b) = axby − aybx

I~p,~q =

∫ 1

0

dx
(~p + x~q)2 ln

(
~p 2

x2~q 2

)
.
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Standard and Möbius invariant forms

The contribution R(~q1, ~q ′1 , ~q) violates the Möbius invariance. In
the paper
V.S. F., L.N. Lipatov, 2012
it was assumed that there is a conformal invariant
representation of the kernel. Since its eigenvalues do not
depend on the representation and on the total momentum
transfer, they were found using the limit

|~q1| ∼ |~q ′1 | � |~q| ≈ |~q2| ≈ |~q ′2 | .
In this limit

K (z) = K B(z)

(
1− αsNc

2π
ζ(2)

)
+δ(2)(1−z)

α2
s N2

c
4π2 3ζ(3)+

α2
s N2

c
32π3 R(z) ,

where z = q1/q′1,

K B(z) =
αsNc

8π2

(
z + z∗

|1− z|2 − δ
(2)(1− z)

∫
d~l
|l |2

l + l∗

|1− l |2

)
,
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Standard and Möbius invariant forms

R(z) =

(
1
2
− 1 + |z|2
|1− z|2

)
ln2 |z|2 − 1− |z|2

2|1− z|2 ln |z|2 ln
|1− z|4
|z|2|

+

(
1

1− z
− 1

1− z∗

)
(z − z∗)

∫ 1

0

dx
|x − z|2 ln

|z|2
x2 .

p = px + ipy and p∗ = px − ipy for the two-dimensional vectors
~p = (px , ipy ).Vice versa, two complex numbers z and z∗ are
equivalent to the vector ~z with the components (z + z∗)/2 and
(z − z∗)/(2i).
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Standard and Möbius invariant forms

Due to the Möbius invariance, the kernel Kc(~q1, ~q ′1 ;~q) can be
written as K (z) with the argument z = q1q′2/(q2q′1). If we
denote

K (~q1, ~q ′1 ;~q)− Kc(~q1, ~q ′1 ;~q) =
α2

sN2
c

32π3 ∆(~q1, ~q ′1 ;~q) ,

then
∆(~q1, ~q ′1 ;~q) = R(~q1, ~q ′1 ;~q)− R(z) ,

Since R(~q1, ~q ′1 ;~q) is not conformal invariant, ∆(~q1, ~q ′1 ;~q)
cannot be written using the single variable z. Using relations
between dilogarithms it can be written in the form
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Standard and Möbius invariant forms

∆(~q1, ~q ′1 ;~q) = ln
~q 2

1
~q 2 ln

~q 2
2
~q 2 + ln

~q ′ 21
~q 2 ln

~q ′ 22
~q 2 + ln

~q 2
1

~q ′ 21
ln
~q 2

2
~q ′ 22

−2
~q 2

1 ~q
′ 2

2 + ~q 2
2 ~q
′ 2

1
~k 2~q 2

ln
~q 2

1
~q ′ 21

ln
~q 2

2
~q ′ 22

+
~q 2

1 ~q
′ 2

2 − ~q 2
2 ~q
′ 2

1
~k 2~q 2

(
ln
~q 2

1
~q 2 ln

~q ′ 22
~q 2

− ln
~q 2

2
~q 2 ln

~q ′ 21
~q 2

)
+

4
~q 2~k 2

(
~k 2[~q1 × ~q2]− ~q 2

1 [~k × ~q2]− ~q 2
2 [~k × ~q1]

)
×
(

[~q1 × ~q2]I~q1,~q2
− [~q ′1 × ~q ′2 ]I~q ′

1 ,~q
′

2

)
.

Important properties of ∆ are its symmetries with respect to the
exchanges ~q1 ↔ −~q2 , ~q ′1 ↔ −~q ′2 and ~qi ↔ −~qi , as well as the
gauge invariance (vanishing at zero momentum of each
reggeon), which are easily seen from this representation.
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Similarity transformation

If the kernels K̂ and K̂c coincide in the leading order and are
related by a similarity transformation, there must exist an
operator Ô satisfying the commutation relation

[K̂B, Ô] =
(αs

2π

)2 1
8π

∆̂ .

One can find a formal expression for this operator allowing to
construct the similarity transformation in perturbation theory.
Indeed, it is enough to calculate the matrix element of the
above commutation relation between the eigenfunctions of the
Born kernel with the corresponding eigenvalues ωB

νn in the form(
ωB
ν′n′ − ωB

νn

)
〈ν ′n′|Ô|νn〉 =

(αs

2π

)2 1
8π
〈ν ′n′|∆̂|νn〉.

It can be seen from this equation that the solution Ô exists only
if the operator ∆̂ has vanishing matrix elements between states
with the same eigenvalues. In this case
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Similarity transformation

Ô =
α2

s
32π3

∑
n,n′

∫
dνdν ′

|ν ′n′〉〈ν ′n′|∆̂|νn〉〈νn|
ωB
ν′n′ − ωB

νn

〈~q1,q2|Ô|~q ′1 , ~q ′2〉 =
(αs

2π

)2 1
8π

∑
n,n′

∫
dν
∫

dν ′

〈~q1,q2|ν ′n′〉〈ν ′n′|∆̂|νn〉〈νn|~q ′1 , ~q ′2〉
ωB
ν′n′ − ωB

νn
.

Since the kernel ∆̂ is known in the momentum space, we can
transform it into the (n, ν) representation,

〈νn|∆̂|ν ′n′〉 =

∫
~q 2d~q1

~q 2
1 (~q − ~q1)2

∫
~q 2d~q ′1

~q ′ 21 (~q − ~q ′1 )2
〈ν ′n′|~q ′1 , ~q ′2〉

×〈∆(~q1, ~q ′1 ;~q)〉〈~q1, ~q2|νn〉
using the known eigenfunctions in the momentum space, which
allows to find the matrix element 〈~q1, ~q2|Ô|~q ′1 , ~q ′2〉.
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Similarity transformation

But the final expression for Ô obtained by this method is rather
complicated. It turned out more simple to guess the form of the
operator Ô. We supposed that the conformal invariant kernel
can be obtained using the substraction procedure different from
the standard one. If it is so, then the operator Ô in the
momentum representation must be proportional K B(~q1, ~q ′1 ;~q).
Then, from the symmetry arguments it follows that the most
attractive candidate for Ô is

Ôt = C
[
ln
(
~̂q 2

1 ~̂q
2

2

)
, K̂B

r

]
,

where C is some coefficient. We checked this asumption and
found

O(~q1, ~q ′1 ;~q) =
αsNc

16π2

(
~q 2

1 ~q
′ 2

2 + ~q ′ 21 ~q 2
2

~k 2
− ~q 2

)
ln
(
~q 2

1 ~q
2

2
~q ′ 21 ~q ′ 22

)
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Summary

It is proved that complete colour singlet BFKL kernel can
be restored from its Möbius form
The difference between quasi-conformal and standard
colour singlet BFKL kernels in the momentum space is
found
This difference turned out to be rather simple
It is proved that in the adjoint representation of the colour
group quasi-conformal and standard BFKL kernels are
connected by simularity transformation.
The simularity transformation is found explicitly
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