Motivation

Minijet cross section

Leading charged particle

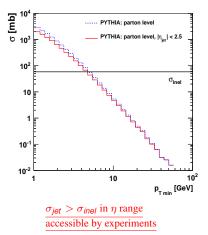
Summary O

Jet production and the inelastic pp cross section at the LHC

Anastasia Grebenyuk, F. Hautmann, H. Jung, P. Katsas, A. Knutsson

DIS 2013, Marseille April 23, 2013

Motivation ●○	Minijet cross section	Leading charged particle	Summary ○
Motivation			
Integrated cross s	action for hard $2 \rightarrow 2$ process above	A. Grebenyuk, F. Hautmann, H. Jung, P. Katsas, and A. Knutsson Phys. Rev. D 86, 117501 (2012)	


Integrated cross section for hard $2 \rightarrow 2$ process above some $p_{T,min}$:

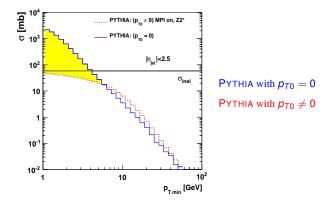
$$\sigma_{int}(p_{T,min}) = \int_{p_{T,min}} dp_T \frac{d\sigma}{dp_T}$$

• divergency: $d\sigma \propto \frac{dp_T^2}{p_T^4}$
 $\sigma_{int}(p_{T,min}) \propto \frac{1}{p_{Tmin}^2}$ for $p_{T,min} \to 0$
• $\sigma_{int} > \sigma_{inel}$

Proposal for a measurement:

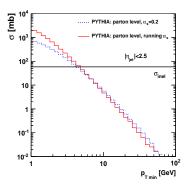
- Visible leading minijet (charged particle) cross section integrated over transverse momentum
- Event cross section (rather than inclusive jet cross section)
- Comparison with inelastic σ(pp) within acceptance no extrapolation needed

Integrated leading minijet cross section:

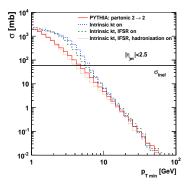


Motivation ○●	Minijet cross section	Leading charged particle	Summary ○
Regulator p_{T0}			

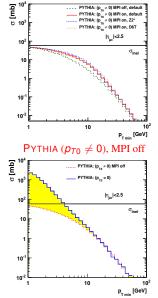
In PYTHIA the rise of σ_{int} is tamed by:


$$\sigma \rightarrow \sigma \times \frac{\alpha_s^2 (p_{T0}^2 + p_T^2)}{\alpha_s^2 (p_T^2)} \frac{p_T^4}{(p_{T0}^2 + p_T^2)^2}$$

energy-dependent p_{T0} is determined by tuning to data (PARP(82) ~ few GeV)

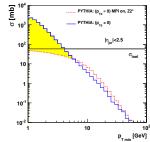


Partonic cross section using a fixed $(\alpha_s = 0.2)$ and running α_s :


 No large effect from infrared behavior of the QCD coupling

Cross section from purely partonic $2 \rightarrow 2$ process, including intrinsic k_T -effects, initial and final state parton showers (IFSR), hadronisation

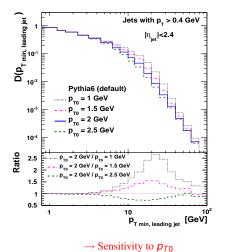
 Jet cross section exceeds σ_{inel} for *p*_T ~ 3 GeV


Motivation	Minijet cross section	Contraction Charged Particle	Summary o
Effect on MPI			

 \leftarrow PYTHIA with $p_{T0} \neq 0$ and MPI with different UE tunes

Taming does not totally depend on MPI

PYTHIA ($p_{T0} \neq 0$), MPI on

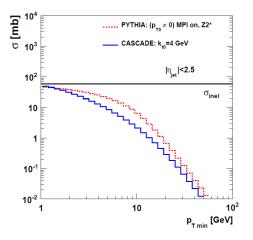

Motivation

Minijet cross section

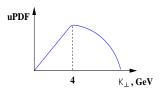
Leading charged particle 00

Sensitivity to *p*_{T0}

- p_{T0} was varied by $\Delta p_{T0} = 0.5$ GeV
- PYTHIA default value: $p_{T0} = 2 \text{ GeV}$

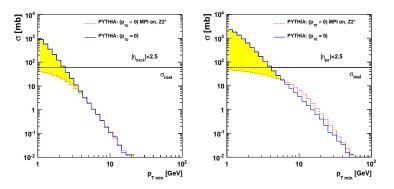


$$\sigma \to \sigma \times \frac{\alpha_s^2(p_{T0}^2 + p_T^2)}{\alpha_s^2(p_T^2)} \frac{p_T^4}{(p_{T0}^2 + p_T^2)^2}$$


Normalised distribution: $D(p_{T,min \ leading}) =$ $\frac{1}{N} \int_{p_{T,min} \ leading} dp_{T,leading} \left(\frac{dn}{dp_{T,leading}} \right)$

- k_T factorized: low- p_T behavior results from
 - ME dependence (standard low- p_T rise for $k_T \ll p_T$, slower rise for $k_T \simeq p_T$)
 - unintegrated PDF (suppression of the low- k_T region)

Modification of unintegrated PDF such that it goes to zero for $k_T \rightarrow 0$:

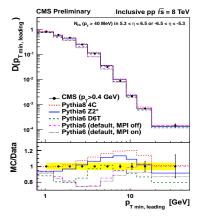

 \longrightarrow CASCADE with modified uPDF tamed the cross section

Motivation	Minijet cross section	Leading charged particle	Summary o	
Leading charged particle				

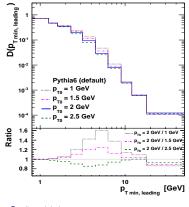
Similar to minijet the integrated leading charged particle distribution can be studied

Leading charged particle

Leading minijet


• First measurement of the integrated leading charged particle distribution (see Panagiotis Katsas talk)

 Motivation
 Minijet cross section
 Leading charged particle
 Summary


 00
 0000
 0
 0
 0

Normalised distribution:
$$D(p_{T,min \ leading}) = \frac{1}{N} \int_{p_{T,min \ leading}} dp_{T,leading} \left(\frac{dn}{dp_{T,leading}} \right)$$

Measurement of the integrated leading charged particle together with PYTHIA predictions:

- Shape of the data not well described
- Deviations between different PYTHIA tunes

Sensitivity to p_{T0}

Motivation	Minijet cross section	Leading charged particle	Summary
Summary			

- Suggest a "new" observable cross section
 - leading minijet or leading charged particle cross section "event cross section" integrated over transverse momentum
 - sensitivity to the unitarity bound set by the total inelastic proton-proton cross section
- pQCD extended to small transverse momentum predicts violation of unitarity at about few GeV, visible in |η| < 2.5
 - proposal for measurement of leading charged particle and minijet cross sections
 - probe transition from perturbative to non-perturbative region
 - first CMS measurements show very interesting behaviour