

Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

JLab accelerator CEBAF - until recently

Continuous Electron Beam

- Energy 0.4 6.0 GeV
- 200 μA, polarization 85%
- Simultaneous delivery 3 halls
- ~1995 2012, lots of physics!

DIS Physics at 6 GeV

- Quark-Hadron Duality and the onset of parton physics@JLab
- Separated (F_2 , F_1 , F_L) p, d and nuclear structure functions
 - used by CTEQ-JLab for pdf extraction including large x
 - Neutron tagging (BoNuS) towards F₂ⁿ/F₂^p
- Separated (g₁, g₂) p, d, ³He spin-dependent structure functions
 JAM collaboration underway for polarized pdfs
- Onset of Semi-Inclusive DIS: large z, cross sections, ratios
 - towards flavor decomposition and transverse momentum dependence
- Nuclear structure functions: EMC effect in light nuclei

• towards the microscopic origin/understanding of the EMC effect

Jefferson Lab

Some recent work at 6 GeV large x....

12 GeV Upgrade Project

12 GeV Upgrade Physics Instrumentation

<u>GLUEx (Hall D):</u> exploring origin of confinement by studying hybrid mesons

<u>CLAS12 (Hall B):</u> understanding nucleon structure via generalized parton distributions

<u>SHMS (Hall C):</u> precision determination of valence quark properties in nucleons and nuclei

<u>*Hall A:*</u> nucleon form factors, & *future new precision electroweak experiments, SM tests*

12 GeV Project Status

Hall D Interior

- Project 75% Complete, 88% Obligated
 - Civil (92%) ; Accelerator (88%) ; Physics Equip (~60%)
- We expect to be running beam to Hall A in February 2014 and Hall D later in the year
- Large user involvement in 12-GeV detector construction
- 7+ years approved, Halls have prepared initial schedule

3rd C100 cryomodule being transferred

12 GeV Cryomodules/Waveguides

Example Construction Activities

Hall A SBS Spectrometer Magnet

Hall C Wire Chambers (Hampton U)

12 GeV Approved Experiments by Physics Topic

Торіс	Hall A	Hall B	Hall C	Hall D	Total
The Hadron spectra as probes of QCD (GluEx and heavy baryon and meson spectroscopy)		1		1	2
The transverse structure of the hadrons (Elastic and transition Form Factors)	4	3	2		9
The longitudinal structure of the hadrons (Unpolarized and polarized parton distribution functions)	2	2	5		9
The 3D structure of the hadrons (Generalized Parton Distributions and Transverse Momentum Distributions)	5	10	3		18
Hadrons and cold nuclear matter (Medium modification of the nucleons, quark hadronization, F N-N correlations, hypernuclear spectroscopy, few-body experiments)	3	2	6		11
Low-energy tests of the Standard Model and Fundamental Symmetries	2			1	3
Total	16	18	16	2	52

Science Questions

- What is the role of gluonic excitations in the spectroscopy of light mesons?
- Where is the missing spin in the nucleon? What is the role of orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through measurements of new multidimensional distribution functions?
- What is the relation of short-range nuclear structure and parton dynamics?
- Can we discover evidence for physics beyond the standard model of particle physics?

Jefferson Lab

Gluonic Excitations and the mechanism for confinement

QCD predicts a rich spectrum of as yet to be discovered gluonic excitations - whose experimental verification is crucial for our understanding of QCD in the confinement regime.

With the upgraded CEBAF, a linearly polarized photon beam, and the GlueX detector, Jefferson Lab will be <u>uniquely poised</u> to: - discover these states,

- map out their spectrum, and
- measure their properties

q

q

γ

beam

oefore

Hall D Strategy: Coherent Bremsstrahlung

Sample Amplitude Analysis with GlueX

 $\gamma p \to \pi^+ \pi^+ \pi^- n$

generated waves

 $a_1(1260) \rightarrow \rho \pi \qquad (S - wave)$ $a_2(1320) \rightarrow \rho \pi \qquad (D - wave)$ $\pi_1(1600) \rightarrow \rho \pi \qquad (P - wave)$ $\pi_2(1670) \rightarrow f_2 \pi \qquad (S - wave)$ $\pi_2(1670) \rightarrow \rho \pi \qquad (P - wave)$

1⁻⁺ exotic wave generated with 1.6% relative strength

Corresponds to 3.5 hours GlueX data, full detector simulation and reconstruction

F₂^p & F₂^d Structure Functions at High-x

One of envisioned commissioning experiments aims to reduce uncertainties in F_2^p and F_2^d structure functions accessible within 12-GeV phase space

Goal @ 12 GeV: similar precision as E00-116 (@ 6 GeV)

Measuring High-x Structure Functions - unpolarized

REQUIRES:

- High electron current
- Reduction of nuclear uncertaintie
- PDF efforts CJ (Accardi talk!)
- Also see my talk tomorrow

12 GeV will access the regime (x > 0.3), where valence quarks dominate

Unified View of Nucleon Structure

• Spin crisis - static picture of the nucleon with s-state quarks may not account for complexity of parton dynamics... Δg ? orbital angular momentum?

• Wigner Distributions in QCD: yield a unified description of a nucleon in terms of the position and momenta of its constituents.

 The uncertainty principle precludes knowing position and momentum simultaneously -> project Generalized Parton Distributions (GPDs) and Transverse-Momentum-Dependent Distributions (TMDs)

Towards the 3D Structure of the Proton - GPDs

 $H(\xi,t)$

- Simplest process: $e + p \rightarrow e' + p + \gamma$ (DVCS)
- Polarized beam, unpolarized target:
- Unpolarized beam, long. polarized target: $H(\xi,t)$
- Unpolarized beam, transv. polarized target: $E(\xi,t)$

Hall B beam-spin asymmetry data show potential for imaging studies from analysis in x, Q² and t

12 GeV projections: transverse spatial maps

Hall A data for Compton form factor (over *limited* Q² range) agree with hard-scattering

12 GeV projections: confirm formalism

Jefferson Lab

The road to orbital motion

SIDIS – k_T Dependence

Final transverse momentum of the detected pion P_t arises from convolution of the struck quark transverse momentum k_t with the transverse momentum generated during the fragmentation p_t .

$$P_t = p_t + z k_t + O(k_t^2/Q^2)$$

Jefferson Lab

Linked to framework of Transverse Momentum Dependent Parton Distributions $\sum_{q} e_q^2 q(x) D_{q \to M}(z)$ p TMD x f_1,g_1,f_{1T},g_{1T} $h_1,h_{1T},h_{1L},h_1^{\perp}$

The road to orbital motion

The difference between the π^+ , π^- , and K⁺ asymmetries reveals that quarks and anti-quarks of different flavor are **orbiting in different ways** within the proton.

Final transverse momentum of the detected pion \mathbf{P}_t arises from convolution of the struck quark transverse momentum \mathbf{k}_t with the transverse momentum generated during the fragmentation \mathbf{p}_t .

SIDIS Electroproduction of Pions

- Sivers angle, effect in distribution function: $(\phi_h \phi_s)$
- Collins angle, effect in fragmentation function: $(\phi_h + \phi_s)$

MOLLER at 11GeV JLab Example electroweak measurement

Search for A' at Jefferson Lab

The Heavy Photon (A') is a massive vector gauge boson which kinetically mixes with the SM γ , inducing a weak coupling εe to electric charge. $\alpha'/\alpha = \varepsilon^2$ Heavy photons may evidence Dark Matter annihilations g – 2 preferred! to HE e^+/e^- or explain the muon g-2 anomaly, and are 0.01 0.1 expected in BSM theories. 10^{-4} a_{μ} KLOE BaBar a_e 10^{-5} a_{μ} favored $\overset{e}{\sim} \overset{\epsilon}{\sim} \overset{A'}{\sim} \overset{A$ 10^{-6} E774 APEX/MAMI Test Runs DM 10^{-7} DarkLight α'/α APEX 10^{-8} E141 **3 Jefferson Lab proposals:** 10^{-9} HPS • APEX test run (Hall A) – published • HPS test run (Hall B) - completed 10^{-10} E137 • DarkLight test run (FEL) – completed 0.1 0.01 $m_{A'}$ (GeV)

S. Abrahamyan et al., PRL 107, 191804 (2011)

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-10}

12 GeV JLab – The Potential

- Opportunity to discover and study new exotic mesons to elucidate the mechanism of confinement.
- Open a new landscape of nucleon tomography, with potential to identify the missing angular momentum.
- Address long-standing mystery of nucleon valence structure at large x, improve knowledge of parton distribution functions in this regime,
- Provide stringent new tests of the standard model and extensions, complementing the information obtained at LHC.

Project Summary

- The project is 75% complete and 88% obligated as of March 2013.
- We expect to start commissioning the 12 GeV accelerator in November, and running beam to Hall A in February 2014
- First three experiments: DVCS, GMp, d(x)/u(x)
- Next PAC: June 2013

Møller Parity-Violating Experiment: New Physics Reach

(example of large installation experiment with 11 GeV beam energy)

