

Quarkonia at LHCb

Introduction

- Over the past decade a number of heavy states decaying into quarkonia have been observed at colliders.
- ► There is some uncertainty as to their composition and in some cases controversy as to their existence

- ► LHCb is in an ideal position to study these states
 - Large b. c production cross-sections at LHC.
 - Excellent particle ID performance: High purity final states involving hadrons, muons
 - Precise vertexing and momentum resolution: B decays to quarkonia easily isolated
 - Flexible, efficient software trigger
- For measurements of more conventional onia at LHCb see Maddalena's talk in WG2 this afternoon

Quarkonia at LHCb

X(3872)

X(4140) Summary

Quarkonia at LHCb

Introduction

X(3872)

X(4140) Summary

X(3872)

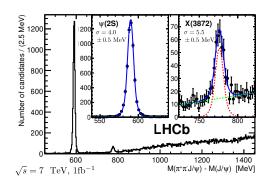
$X(3872) \to J/\psi \pi^+ \pi^-$

LHCD

- ► Since its discovery a decade ago by Belle [PRL 91 262001] in $B^{\pm} \rightarrow J/\psi \pi \pi K^{\pm}$ the X(3872) has been studied at a number of experiments including LHCb:
 - Production cross-section and mass measurement with 34.7pb⁻¹: [EPJ C72, 1972 (2012)]
- The existence of the X(3872) is now beyond doubt, but structure is still unclear:
 - Mass and decay mode disfavor cc state. Quantum number measurements needed to confirm!
 - ▶ C-parity of X(3872) known to be positive as X(3872) \rightarrow J/ $\psi\gamma$ observed by Belle [PRL 107 091803], *BABAR* [PRD 74 071101(R)]
 - CDF helicity angle measurement [PRL 98 132002] of inclusive X(3872) excluded all J^{PC} except:
 - $J^{PC} = 2^{-+}$: Nearest in mass to $\eta_c \left(1^1 D_2\right)$
 - ► J^{PC} = 1⁺⁺: Exotic: D⁰ D* molecule, Tetra-quark
 - ▶ BABAR analysis of X(3872) $\rightarrow \omega J/\psi$ prefers 2⁻⁺ but does not exclude 1⁺⁺ [PRD 82, 011101(R)]

Quarkonia at LHCb

Introduction


(3872)

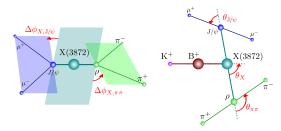
X(4140) Summary

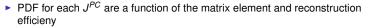
X(3872) Quantum numbers

- ► LHCb analysis of quantum numbers in B $^{\pm}$ \rightarrow X(3872)K $^{\pm}$, 1 fb⁻¹ @ 7 TeV: arXiv: 1302.6269
- ▶ $B^+ \rightarrow \psi(2S)K^+$ control channel used for systematic studies, signal shape determination
- Selection uses kinematic likelihood ratio determined from simulated $B^+ \rightarrow \psi(2S)K^+$ and B^\pm sidebands to enhance background rejection

- ► $5642 \pm 76 \text{ B}^+ \rightarrow \psi(2\text{S})\text{K}^+$
- $313 \pm 26 \text{ B}^+ \rightarrow \text{X}(3872)\text{K}^+$
- Largest sample of B $^{\pm} \rightarrow$ X(3872)K $^{\pm}$ decays to-date

Quarkonia at LHCb


Introduction


X(4140) Summary

X(3872) Quantum numbers

Angular analysis in 5D exploits all angular correlations in the B decay

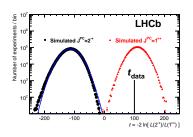
Matrix element contains the angular information in the helicity basis:

$$\begin{split} |\mathcal{M}(\Omega|J_X)|^2 & = & \sum_{\Delta\lambda_{\mu}=-1,+1} \Big| \sum_{\lambda_{\mathrm{J}/\psi},\lambda_{\pi\pi}=-1,0,+1} {}^{A_{\lambda_{\mathrm{J}/\psi},\lambda_{\pi\pi}}} \times \mathcal{D}_{0}^{J_X}{}_{\lambda_{\mathrm{J}/\psi}-\lambda_{\pi\pi}} (\phi_X,\theta_X,-\phi_X) \times \\ & \mathcal{D}_{\lambda_{\pi\pi},0}^{J}(\phi_{\pi\pi},\theta_{\pi\pi},-\phi_{\pi\pi}) \times \mathcal{D}_{\lambda_{\mathrm{J}/\psi},\Delta\lambda_{\mu}}^{J}(\phi_{\mathrm{J}/\psi},\theta_{\mathrm{J}/\psi},-\phi_{\mathrm{J}/\psi}) \Big|^2 \end{split}$$

► Helicity couplings $A_{\lambda_{\rm J/ψ},\lambda_{\pi\pi}}$ include complex parameter α for $J^{PC}=2^{-+}$ No free parameter for $J^{PC}=1^{++}$

Quarkonia at LHCb

Introduction


X(3872)

X(4140) Summary

X(3872) results

- ► Test statistic to determine J^{PC} : $t = -2 \ln[\mathcal{L}(2^{-+})/\mathcal{L}(1^{++})]$
- $\,\blacktriangleright\,$ Likelihood ratio between fit including complex parameter α and excluding it
 - t > 0 implies $J_{PC}^{PC} = 1^{++}$ favoured
 - t < 0 implies $J^{PC} = 2^{-+}$ favoured
- ▶ Compared to results of simulated B $^\pm$ → X(3872)K $^\pm$ candidates of both hypotheses:

- ► LHCb result favours JPC = 1⁺⁺
- $J^{PC} = 2^{-+}$ rejected at $> 8\sigma$
- $\Re \{\alpha\} = 0.671 \pm 0.046$ $\Im \{\alpha\} = 0.280 \pm 0.046$

- ightharpoonup lpha compatible with Belle [lpha = (0.64, 0.27)] PRD 84, 052004
- ▶ Also consistent with α in $J^{PC} = 1^{++}$ simulated events

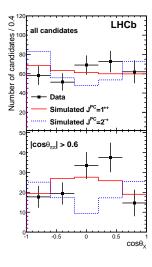
Quarkonia at LHCb

Introduction

X(3872)

X(4140) Summary

X(3872) angular correlations



Introduction

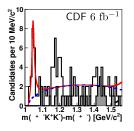
X(4140)

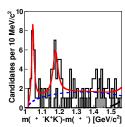
Summary

- How important are the angular correlations?
- Projections in $\cos \theta_X$ for all background-subtracted signal candidates (top) and background-subtracted signal candidates with $|\cos \theta_{\pi\pi}| > 0.6$ (bottom)
- Little discrimination between $J^{PC}=1^{++}$ (red), $J^{PC}=2^{-+}, \alpha=(0.671,0.280)$ (blue) without using correlations!

Quarkonia at LHCb

Introduction X(3872)


X(4140)


Summary

X(4140)

$X(4140) \rightarrow J/\psi \phi$

- ► $X(4140) \rightarrow J/\psi \phi$ observed by CDF in $B^{\pm} \rightarrow J/\psi \phi K^{\pm}$ decays:
 - ▶ 3.8 σ significance in 2.7fb⁻¹ [PRL 102 242002], updated to > 5 σ with 6fb⁻¹ arXiv:1101.6058 [hep-ex]. ▶ 115 ± 2 B $^\pm$ → J/ $\psi\phi$ K $^\pm$ events with 19 ± 6 X(4140) → J/ $\psi\phi$ candidates

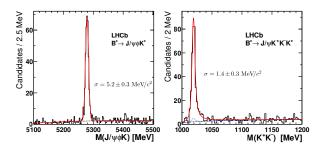
 - Narrow structure: $15.3^{+10.4}_{-6.1}(\text{stat}) \pm 2.5(\text{syst}) \text{ MeV}/c^2$ considered unusual for a charmonium state at this mass: Almost certainly exotic
 - ▶ In the 6fb⁻¹ they also see an additional structure at 4274MeV/ c^2 (> 3 σ)

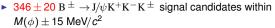
$$m_1 = 4143.4^{+2.9}_{-3.0} \pm 0.6 \, \text{MeV}/c^2$$

$$m_2 = 4274.4^{+8.4}_{-6.7} \pm 1.9 \text{ MeV}/c^2$$

▶ Belle looked for the X(4140) in $\gamma \gamma \rightarrow J/\psi \phi$ channel [PRL 104 112004]. Could neither confirm nor refute CDF result

Quarkonia at LHCb


Introduction X(3872)


Summary

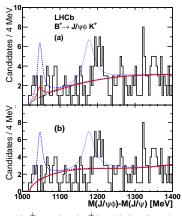
X(4140) at LHCb

- ▶ LHCb has searched for the X(4140) with 0.37fb⁻¹ in B $^\pm$ → J/ $\psi\phi$ K $^\pm$ at 7 TeV [PRD 85 091103 (R)]
- Selection uses kinematic likelihood ratio determined from phase-space simulated B $^\pm \to {\rm J}/\psi \phi {\rm K}^\pm$ candidates and data sidebands to suppress background, maximises $S/\sqrt{S+B}$

- ▶ Peaking ϕ background contribution determined from B $^{\pm}$ sidebands
- ► Extremely pure B $^\pm$ \to J/ $\psi\phi$ K $^\pm$ sample: 14 \pm 3 background candidates within 2.5 σ of the B $^\pm$

Quarkonia at LHCb

Introduction


X(3872) X(4140)

Summary

X(4140) results

- ▶ Fit to $M(J/\psi\phi) M(J/\psi)$ for candidates within $M(B^\pm) \pm 2.5\sigma$ and $M(\phi) \pm 15$ MeV/ c^2 assuming CDF masses and widths
- ► CDF fits overlaid, scaled to the expected yield in 0.37fb^{-1} : $N(X(4140))_{exp} = 35 \pm 9 \pm 6$, $N(X(4274))_{exp} = 53 \pm 19$

- ▶ Top: Fit assuming 3-body phase-space model: $N(X(4140)) = 6.9 \pm 4.9$ 2.4 σ disagreement $N(X(4274)) = 3.4^{+6.5}_{-3.4}$
- Bottom: Fit assuming 3-body phase-space × quadratic polynomial N(X(4140)) = 0.6 (< 7.1)
 2.7σ disagreement N(X(4274)) = 0 (< 10)
- ► LHCb does not confirm narrow structure near threshold

$$\begin{split} \mathcal{B}(B^{\,\pm} \to X(4140)K^{\,\pm}\,) \times \mathcal{B}(X(4140) \to J/\psi\,\phi)/\mathcal{B}(B^{\,\pm} \to J/\psi\,\phi K^{\,\pm}\,) &< 0.07~@~90\%~CL\\ \mathcal{B}(B^{\,\pm} \to X(4274)K^{\,\pm}\,) \times \mathcal{B}(X(4274) \to J/\psi\,\phi)/\mathcal{B}(B^{\,\pm} \to J/\psi\,\phi K^{\,\pm}\,) &< 0.08~@~90\%~CL \end{split}$$

Quarkonia at LHCb

Introduction

X(3872)

Summary

X(4140): A continuing saga

Quarkonia at LHCb

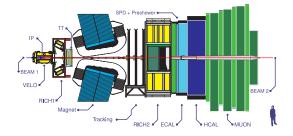
Introduction X(3872)

X(4140)

Summary

- ▶ LHCb measurement left the X(4140) in an uncertain state.
- Since then, CMS has performed a similar analysis in which they find evidence of two structures in the M(J/ψφ) – M(J/ψ) spectrum CMS BPH-11-026 (Preliminary)
- See next talk for more details of the CMS result
- ▶ This leaves the X(4140) scorecard at 2-2. Will there be a tiebreaker?
- K* reflections? Multidimensional amplitude and angular analysis needed to say anything conclusive

Summary


- LHCD
 - Quarkonia at LHCb
 - Introduction X(3872)
 - X(4140)
 - Summary
- Exotic quarkonia analyses are host to a number of exciting and intriguing results!
- ► There is much room for theoretical and experimental input
- ▶ LHCb is active and competitive in this field
 - ▶ LHCb analysis of J^{PC} favors exotic interpretation of X(3872)
- ▶ We do not confirm the CDF observation of a narrow resonance in X(4140)
- Results presented today are on less than a third of the LHCb dataset
- Expect more and updated results in the near future:
 - ▶ Amplitude analysis of B $^\pm$ → J/ $\psi \phi$ K $^\pm$ decays
 - ► Search for the $Z(4430)^+$ in $Z(4430)^+ \rightarrow \psi(2S)\pi$ decays as observed by Belle
 - ...and maybe a few more surprisés!

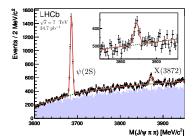
Thanks for listening!

LHCb

- ► The LHC is a copious source of beauty in the forward region
- $ightharpoonup \mathcal{CP} ext{-violation}$ measurements are a great way to test the SM. . .
- ...but require precision:
 - ► Time dependent analyses need good time resolution
 - Flavour tagging needs particle ID
 - High rates and large backgrounds in a pp environment: purity and efficiency needed to reach SM predictions

- LHCb was built precisely for this purpose!
 - ▶ Single-arm spectrometer on 2 $< \eta < 5$
 - Vertex Locator (VELO) for accurate vertexing
 - ▶ Ring Imaging Čerenkov (RICH) detectors for πK discrimination
 - ► Flexible software trigger to reduce backgrounds and preserve signal

Quarkonia at LHCb


Backup Slides LHCb

X(3872) Mass X(3872) prod. xsec

X(3872) Mass measurement

- ► 2010 data sample (34.7pb⁻¹) at 7 TeV: EPJ C72, 1972 (2012)
- ▶ Inclusive measurement of X(3872) \to J/ $\psi\pi^+\pi^-$ with ψ (2S) as control channel:

Fit parameter or derived quantity	ψ (2S)	X (3872)
Number of signal events	3998 ± 83	565 ± 62
Mass m[MeV/c ²]	3686.10 ± 0.06	3871.88 ± 0.48
Resolution σ [MeV/ c^2]	2.54 ± 0.06	3.33 ± 0.08
Signal-to-noise ratio in ±3σ window	1.5	0.15
Number of background events	73094 ± 282	

Quarkonia at LHCb

Backup Slides LHCb

X(3872) Mass X(3872) prod. xsec

X(3872) mass results

▶ Measurement of the mass is important as molecular state hypothesis should have mass below $\rm D^0~D^*$ threshold = 3871.94 \pm 0.32 MeV/ c^2

ategory	Source of uncertainty	m [MeV/c ²]	
		ψ(25)	X (3872)
Mass fitting	Natural width	-	0.01
	Radiative tail	0.02	0.02
	Resolution	-	0.01
	Background model	0.02	0.02
Momentum calibration	Average momentum scale	0.08	0.10
	η dependence of momentum scale	0.02	0.03
Detector description	Energy loss correction	0.05	0.05
Detector alignment	Track slopes	0.01	0.01
Total		0.10	0.12

- Dominant systematics due to momentum calibration and energy loss corrections
- Result:

$$M_{\rm X(3872)} = 3871.95 \pm 0.48 {\rm \ (stat)} \ \pm 0.12 {\rm \ (syst)} \ {\rm MeV}/c^2$$

- Still dominated by statistical uncertainty: Can be improved with full dataset!
- ▶ Updated WA $M_{\rm X(3872)}=3871.68\pm0.17~{\rm MeV}/c^2$ is consistent with ${\rm D^0D^*}$ threshold.
- If bound particle, binding energy of X(3872) is small: $E_B = 0.16 \pm 0.26 \text{MeV}/c^2$
- ▶ Measurement will benefit from more precise knowledge of D masses.

Quarkonia at LHCb

Backup Slides LHCb

X(3872) Mass X(3872) prod. xsec

C. Fitzpatrick

X(3872) production cross-section

- LHCD
 - Quarkonia at LHCb
 - Backup Slides LHCb
 - X(3872) Mass X(3872) prod. xsec

- ≥ 2010 data sample (34.7pb⁻¹) at 7 TeV: EPJ C72, 1972 (2012)
- ightharpoonup Measurement of X(3872) cross-section imes branching fraction
- Same data sample as used for mass measurement
- ▶ Fiducial region: $p_T \in [5; 20]$ GeV/c and $y \in [2.5; 4.5]$
- inclusive cross-section assuming $J^{PC} = 1^{++}$

$$\sigma_{\mathrm{X}(3872)} \times \mathcal{B}(\mathrm{X}(3872) \to \mathrm{J}/\psi \pi^+ \pi^-) = \frac{\textit{N}_{\mathrm{X}(3872)}}{\epsilon_{\mathsf{tot}} \times \mathcal{L}_{\mathsf{int}} \times \mathcal{B}(\mathrm{J}/\psi \to \mu^- \mu^+)}$$

- $\,\blacktriangleright\,$ ${\it N}_{\rm X(3872)}/\epsilon_{\rm tot}$ is the efficiency corrected yield extracted from fit
- \blacktriangleright $\epsilon_{\rm tot}$ detection efficiency (incl. acceptance, reconstruction, trigger, selection) from Monte-Carlo
- $\mathcal{L}_{int} = 34.7 \text{ pb}^{-1}$, integrated luminosity of the 2010 dataset used.

X(3872) production cross-section result

Dominant systematics: Tracking efficiency and background model

Source of uncertainty	σ/σ [%]
X (3872) polarization	2.1
X (3872) decay model	1.0
X (3872) decay width	5.0
Mass resolution	2.5
Background model	6.4
Tracking efficiency	7.4
Track χ^2 cut	2.0
Vertex χ^2 cut	3.0
Muon trigger efficiency	2.9
Hit-multiplicity cuts	3.0
Muon identification	1.1
Pion identification	4.9
Integrated luminosity	3.5
$J/\psi \rightarrow \mu^+\mu^-$ branching fraction	1.0
Total	14.2

► Total production cross-section:

$$\sigma_{\rm X(3872)} \times \mathcal{B}({\rm X(3872)} \to {\rm J/}\psi\pi^+\pi^-) = 5.4 \pm 1.3 {\rm (stat)} \pm 0.4 {\rm (syst)} {\rm ~nb}$$

▶ NRQCD prediction 2.4 σ larger: 13.0 \pm 2.7 nb [PRD 81 114018]

Quarkonia at LHCb

Backup Slides LHCb X(3872) Mass

X(3872) Mass X(3872) prod. xsec

