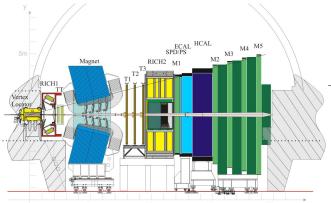


Studies of quarkonia production and polarization at LHCb

Maddalena Frosini, on behalf of LHCb collaboration

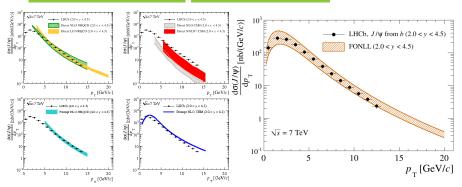
INFN Florence, University of Florence


April 23, 2013

Outline

- View of the LHCb experiment
- Results on heavy quark(onium) production
 - Preliminary results of J/ψ production cross section at $\sqrt{s}=8$ TeV.
 - J/ψ production cross section at $\sqrt{s} = 2.76$ TeV.
 - Preliminary results of Υ production cross section at $\sqrt{s} = 8$ TeV.
 - χ_c studies: χ_c to J/ψ cross section ratio and χ_{c2} to χ_{c1} cross section ratio.
 - \circ Λ_b production.
- · Conclusion and prospect.

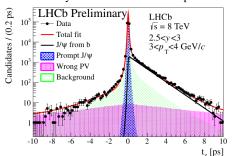
The LHCb experiment


- Single-arm forward spectrometer. Pseudorapidity range: $2 < \eta < 5$.
- Characteristics and performances:
 - Vertexing: proper time resolution 30-50 fs
 - MuonId: $\epsilon(\mu \to \mu) = 97\% \ \epsilon(\pi \to \mu) = 2\%$
 - Charged tracks $\Delta p/p < 0.4\% 0.6\%$

-	Year	L
	2010	$37 \text{ pb}^{-1} \text{ at } 7 \text{ TeV}$
	2011	1.1 fb^{-1} at 7 TeV
	2012	2.1 fb^{-1} at 8 TeV

J/ψ and Υ production

• J/ψ and Υ cross section already measured by LHCb at $\sqrt{s}=7$ TeV with dimuon events (Eur. Phys. J. C 71 (2011) 1645, Eur. Phys. J. C 71 (2012) 6).

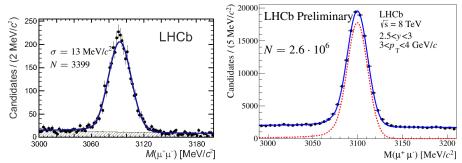


- New measurements at $\sqrt{s}=8$ TeV and $\sqrt{s}=2.76$ TeV (only J/ψ cross section) can provide new inputs for theoretical models.
- Same strategy as for the J/ψ and Υ analysis at 7 TeV.

J/ψ and Υ production

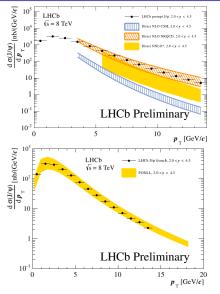
$$\frac{d^2\sigma}{dp_Tdy} = \frac{N}{L \times \varepsilon_{tot} \times \mathcal{B} \times \Delta p_T \times \Delta y}$$

- 8 TeV data sample: 18 pb⁻¹ (J/ψ) and 51 pb⁻¹ (Υ) .
- 2.76 TeV data sample: 70 nb^{-1}
- Efficiency from Monte Carlo sample and cross-checked with data.


• Use J/ψ pseudo proper time to disentangle prompt J/ψ and J/ψ from b.

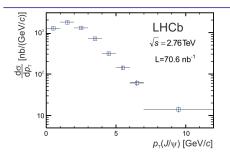
$$t_z = \frac{(z_{J/\psi} - z_{PV})m_{J/\psi}}{p_z}$$

• LHCB-PAP-2013-016 , JHEP 1302 (2013) 041


Reconstruction and selection

- Same selection as for the J/ψ and Υ analysis at 7 TeV.
- Dimuon trigger to select pair of opposite charged tracks with common vertex.
- · Further selection based on track and dimuon vertex quality

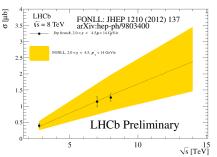
• Signal peaks fitted with Crystal Ball functions.


Prompt and from b cross section at $\sqrt{s} = 8 \text{ TeV}$

- NRQCD: PRD 84, 051501(R) (2011), PRL 106, 022003 (2011)
- NNLO* CSM: arXiv:0807.3282, arXiv:0811.4005
- NLO CSM: arXiv:hep-ph/0703113

• FONLL: JHEP 1210 (2012) 137, arXiv:hep-ph/9803400

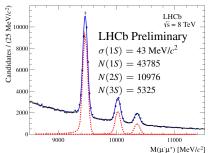
Results at $\sqrt{s} = 2.76 \text{ TeV}$

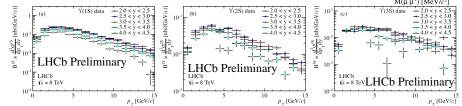

• Total cross section in $p_T < 15 \text{ GeV/}c$ and 2 < y < 4.5 at 8 TeV

$$\sigma_{\text{prompt }J/\psi} = 10.94 \pm 0.02(\text{stat}) \pm 0.79(\text{sys})\mu \text{b}$$

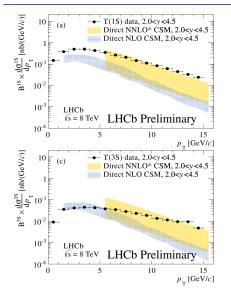
$$\sigma_{J/\psi \text{ from }b} = 1.28 \pm 0.01(\text{stat}) \pm 0.11(\text{sys})\mu \text{b}$$

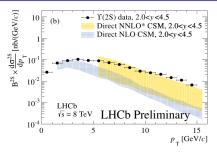
- Inclusive J/ψ cross section at $\sqrt{s} = 2.76$ TeV
- Total cross section in $p_T < 15 \text{ GeV/}c$ and 2 < y < 4.5 at 2.76 TeV


$$\sigma_{J/\psi} = 5.6 \pm 0.1(\text{stat}) \pm 0.4(\text{syst})\mu \text{b}$$



Results: Υ at $\sqrt{s} = 8 \text{ TeV}$

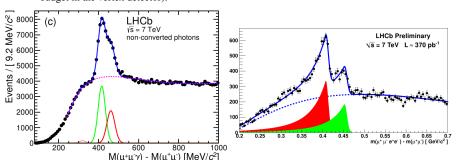

Total cross section in $p_T < 15 \text{ GeV/}c$ and 2 < y < 4.5:


- $\sigma_{\Upsilon(1S)} \cdot \mathcal{B}^{1S} = 3.241 \pm 0.018 \pm 0.231$ nb
- $\sigma_{\Upsilon(2S)} \cdot \mathcal{B}^{2S} = 0.761 \pm 0.008 \pm 0.055$ nb
- $\sigma_{\Upsilon(3S)} \cdot \mathcal{B}^{3S} = 0.369 \pm 0.005 \pm 0.027$ nb

Comparison with theory

- NNLO* CSM: PRL 101 (2008) 152001, EPJ C60:693-703 (2009)
- NLO CSM: PRL 98 (2007) 252002

χ_c production and decay to J/ψ

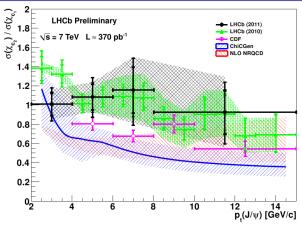

- Studies on \(\chi_c\) production provide an important test for understanding quarkonium production.
- Production rate of χ_{c2} to χ_1 sensitive to the Color Singlet and Color Octet approach.
- Feed down contribution to prompt J/ψ from χ_c states has consequences on polarization measurement:
 - polarization measured for prompt component, including directly produced + feed from intermediate charmonium states (such as χ_c);
 - polarization of J/ψ from radiative decays from χ_c can be different from directly produced $J/\psi \Rightarrow$ possible source of uncertainty;
 - \circ amount of J/ψ from χ_c decays can quantify the uncertainty.

LHCb contributions:


- Ratio of prompt χ_c to J/ψ production cross section through the radiative decay $\chi_c \to J/\psi \gamma$ with $J/\psi \to \mu^+\mu^-$ (PLB 718 (2012), 431).
- Ratio of χ_{c2} to χ_{c1} production cross sections with $\chi_c \to J/\psi \gamma, J/\psi \to \mu^+ \mu^-$, photons reconstructed in the calorimeter (2010 results PLB 714 (2012), 215) and converted photons (2011 preliminary results LHCb-CONF-2011-062).

χ_{c2} and χ_{c1} signal yields

- Number of signal events extracted with fit in bins of J/ψ momentum.
- Two kinds of photons used
 - **photons reconstructed in the calorimeter**: high statistics but poor resolution to separate the χ_{cJ} states:
 - **photons converted** in the detector material before the magnet $\gamma \to e^+e^-$: possibility to resolve the individual χ_{cI} states (take advantage of the tracker resolution) but low statistics (light material budget in the vertex detector).


χ_c to J/ψ ratio

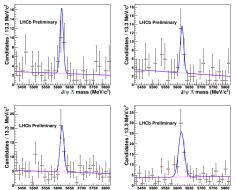
- Main systematic coming from the photon efficiency.
- Good agreement with theoretical expectation from NRQCD models.
- PLB 718 (2012), 431.

(http://projects.hepforge. org/superchic/chigen.html)

χ_{c2} to χ_{c1} ratio

• ChicGen \rightarrow CSM

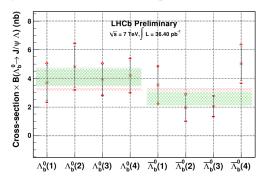
(http://projects.hepforge.org/ superchic/chigen.html)


• NRQCD → COM (Phys. Rev. D 83 111503 R, 2011)

Good agreement between

- 2011 results with converted photons (LHCb-CONF-2011-062);
- 2010 results, based on 36 pb⁻¹ 2010 statistics, using photon detected in the calorimeters (PLB 714 (2012), 215).

Λ_b production


- First measurement of Λ_b^0 production cross section by CMS in the low rapidity region (PL B714 (2012) 136).
- Preliminary measurement from LHCb in the forward region 2.2 < y < 4.5.

- Using decay mode $\Lambda_b^0 \to \Lambda^0 J/\psi$ with $\Lambda^0 \to p\pi^-$ and $J/\psi \to \mu^+\mu^-$.
- Λ^0 long lived particle $\Rightarrow p$ and π^- reconstructed as long tracks or downstream tracks (only tracking system information).
- Sample divided into 8 categories according to the *b* quark content, magnet polarity and track type.
- Efficiency correction event-by-event.

Results on Λ_b cross section

- Cross section results in each category.
- Green band: average on Λ_b^0 and $\overline{\Lambda_b^0}$. Red line: expected from LHCb simulation.

• Integrated results (LHCb-CONF-2012-031): $\sigma_{\Lambda_b^0} \times \mathcal{B}(\Lambda_b \to \Lambda^0 J/\psi) = [4.08 \pm 0.59(\text{stat}) \pm 0.36(\text{sys})] \, \mu \text{b}$ $\sigma_{\overline{\Lambda}_{-}^0} \times \mathcal{B}(\overline{\Lambda_b} \to \overline{\Lambda^0} J/\psi) = [2.60 \pm 0.46(\text{stat}) \pm 0.26(\text{sys})] \, \mu \text{b}$

Conclusion

- LHCb performed provides lots of contributions in the heavy quark and quarkonium sector.
- J/ψ production cross section has been measured at $\sqrt{s}=8$ TeV and $\sqrt{s}=2.76$ TeV for prompt and from $b\,J/\psi$.
- Υ production cross section has been measured at $\sqrt{s} = 8$ TeV.
- Measurement of χ_{c2} to χ_{c1} production cross section and study of relative χ_c to J/ψ production using radiative decays.
- Production cross section of Λ_b .
- More other analysis published:
 - Measurement of the fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays in pp collisions at $\sqrt{s}=7$ TeV **J. High Energy Phys. 11 (2012) 031**
 - Measurement of $\psi(2S)$ meson production in pp collisions at $\sqrt{s}=7$ TeV Eur. Phys. J. C 72 (2012) 2100
 - Measurements of the $\Lambda_b^0 \to \Lambda J/\psi$ decay amplitudes and the Λ_b^0 polarisation in pp collisions at $\sqrt{s}=7$ TeV arXive 1302.5578
 - Observation of double charm production involving open charm in pp collisions at $\sqrt{s} = 7$ TeV **J.** High Energy Phys. 06 (2012) 141