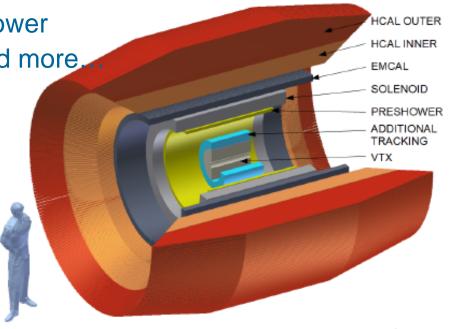


PHENIX detector upgrades for enhanced physics programs

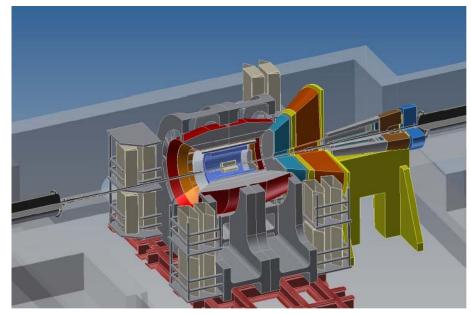
DIS2013 in Marseilles April 24, 2013 Yuji Goto (RIKEN) for the PHENIX Collaboration

Outline



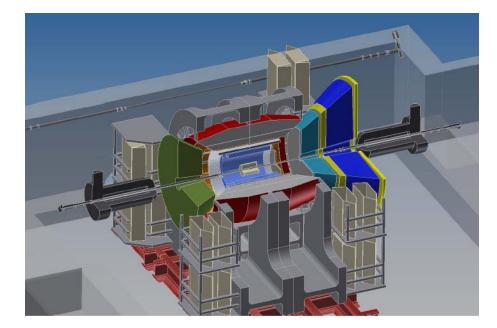
• Stages of sPHENIX detector upgrades

- Baseline upgrades
 - Compact jet detector at midrapidity
- Midrapidity options
- Forward upgrades
- Detector concept
- Physics
 - Heavy-ion physics
 - Cold nuclear matter physics
 - Spin physics


Stages of PHENIX detector upgrades^H^{KENIX}

- Long-term enhancement for major physics programs
 - Sustained program with dedicated QCD machine
- (Baseline) "sPHENIX" upgrades
 - Compact jet detector at midrapidity with high-rate capability
 - With recent upgraded RHIC accelerator
 - Precision jet / dijet / γ-jet measurements to understand the nature of the strongly-coupled QGP
- Future option upgrades
 - Midrapidity tracking and preshower
 - Heavy-flavor quarkonia / jet and more.

Stages of PHENIX detector upgrades^H^{*}ENIX</sup>


- Forward "sPHENIX" upgrades
 - Open geometry for wide kinematic coverage of photon / jet / leptons / identified-hadrons
 - For understanding 3-dimensional (transversemomentum dependent) quark-gluon structure of the nucleon and nuclei
 - Measurement of the nuclear gluon distribution $G_A(x)$ and search for gluon saturation at small-x

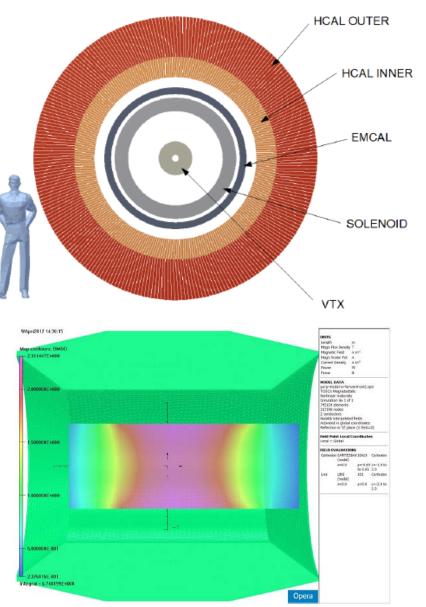
Stages of PHENIX detector upgrades^H^{KENIX}

Towards "ePHENIX" at eRHIC

- More precision for 3-dimensional quark-gluon structure of the nucleon and nuclei
- For precision understanding of strongly-coupled QGP by knowing the initial state
- Detailed ePHENIX talk by Klaus Dehmelt at FEX on Apr.25(AM)
- EIC talks by Deshpande at Spin/FEX on Apr.23(AM) and Aschenaue, Zhang, Nadel-Turonski, Lamont at FEX on Apr.24(PM) and Apr.25(AM)

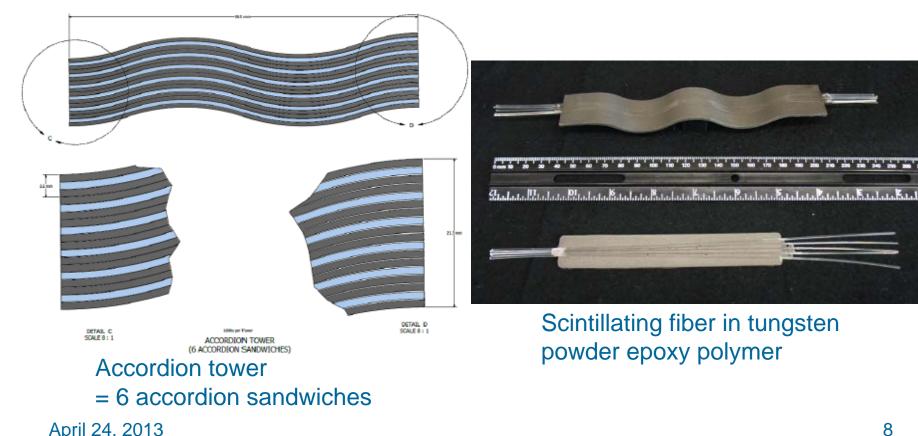
sPHENIX upgrades

- Design goals for a jet detector
 - Full azimuthal coverage in a fiducial region $|\eta| < 1$
 - 2T solenoid for high resolution tracking in a small volume
 - Electromagnetic and hadronic calorimetry
 - Data acquisition capable of recording >10 kHz
- With recent upgraded RHIC accelerator
 - EBIS for various nuclear species
 - Upgraded luminosity
 - Energy scan
 - Flexibility with dedicated QCD machine
- Requirements
 - Large enough jet rates
 - Distinguishable jets from background fakes


Expected counts within $|\eta| < 1$ in a 20 week run at 200 GeV

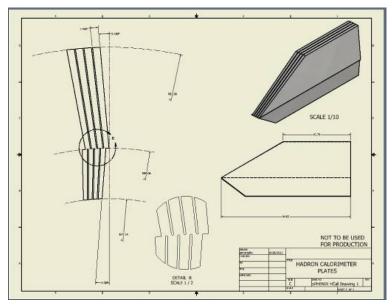
	Au+Au (central 20%)	p+p	<i>d</i> +Au	
$> 20{ m GeV}$	10 ⁷ jets	10 ⁶ jets	10 ⁷ jets	
	10 ⁴ photons	10 ³ photons	10 ⁴ photons	
> 30 GeV	10 ⁶ jets	10 ⁵ jets	10 ⁶ jets	
	10 ³ photons	10 ² photons	10 ³ photons	
$>40\mathrm{GeV}$	10 ⁵ jets	10 ⁴ jets	10 ⁵ jets	
> 50 GeV	10 ⁴ jets	10 ³ jets	10 ⁴ jets	

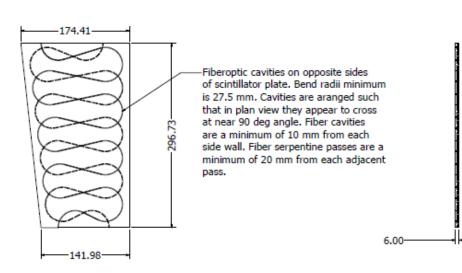
sPHENIX upgrades


- Magnetic solenoid
 - 2 T superconducting solenoid
 - 70 cm inner radius
 - Less than 1 X_o
- Electromagnetic calorimeter
 - Accordion tungsten-fiber calorimeter
 - $\Delta \eta \times \Delta \phi \sim 0.03 \times 0.03$
 - $-\sigma_E / E \sim 15\% / \sqrt{E}$
- Hadronic calorimeter
 - Steel-scintillator calorimeter
 - $\Delta \eta \times \Delta \phi \sim 0.1 \times 0.1$
 - $-\sigma_E$ / E ~ 100% / \sqrt{E}
 - Flux return yoke for the solenoid

Electromagnetic calorimeter

PH^{*}ENIX

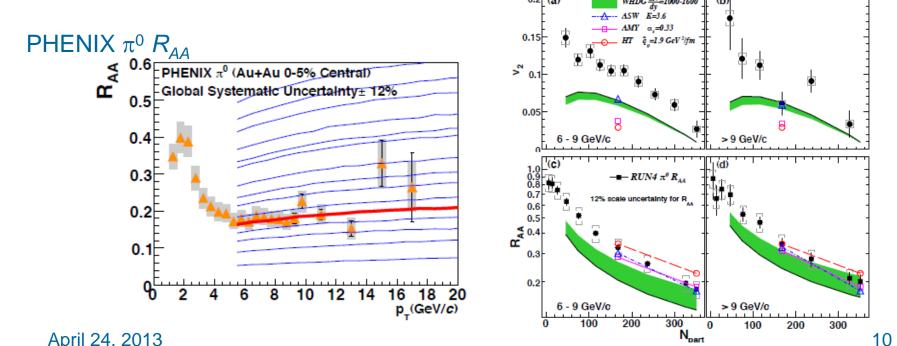

- Accordion tungsten scintillating-fiber calorimeter
 - compact
- Silicon photomultiplier (SiPM) readout
 - small, high gain, no high voltage required, work in a magnetic field



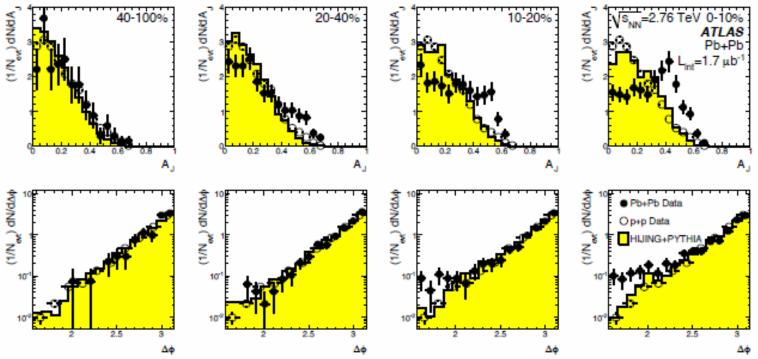
Hadronic calorimeter

- Steel-scintillator calorimeter
 - ~1 λ_{int} EMC + ~5 λ_{int} HC
 - Wavelength shifting fiber embedded in scintillator for light collection
 - Flux return for magnetic field

Scintillator tile with a wavelength shifting fiber along a serpentine path

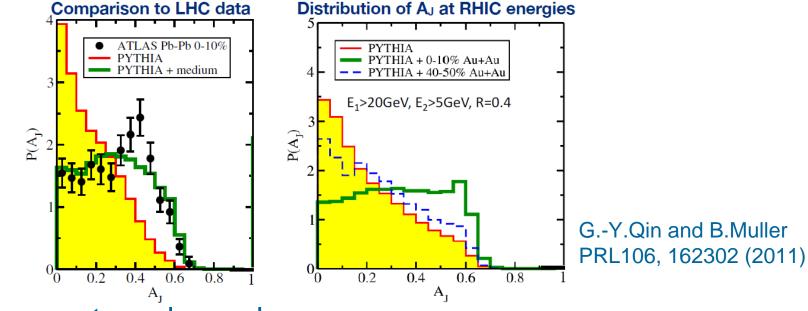

Fin structure of inner & outer segments oriented at an angle of ±5 degree

April 24, 2013


 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{A+A} / dp_T d\eta}{d^2 N_{inel}^{p+p} / dp_T d\eta}$

- Current jet-probe measurements
 - Nuclear modification factor (R_{AA})
 - Suppression of single hadron yields compared to expectations from p+p collisions
 - Jet quenching: significant loss of energy for partons traversing the QGP
 - Azimuthal anisotropy of hadron production with respect to the reaction plane (v_2)
 - Weakly-coupled radiative energy loss model cannot explain the azimuthal anisotropy

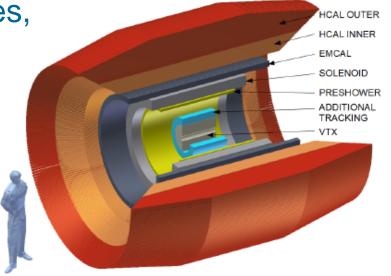
- New data from LHC
 - Fully reconstructed jets
 - Dijet asymmetry $A_J = (E_1 E_2) / (E_1 + E_2) \rightarrow$ energy loss for jets
 - Unmodified $\Delta \phi$ distribution \rightarrow no broadening in traversing the matter



Direct photon + jet correlations

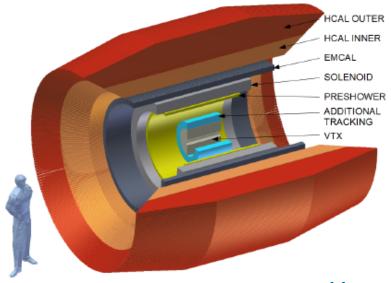
• Cleaner handle on the expected jet p_T

- Importance of fully reconstructed jets
 - Precision jet / dijet / γ -jet measurements to understand the nature of the strongly-coupled QGP
 - Significant extension of kinematic range
 - Jet modification

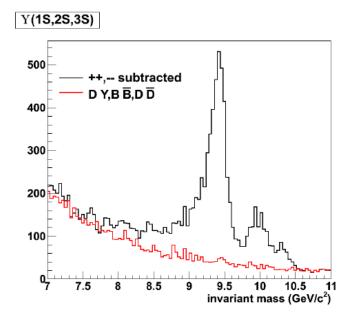

- Temperature dependence
 - > 300 MeV at RHIC and > 420 MeV at LHC
- More flexible study at RHIC
 - With different energies and nuclear species

April 24, 2013

Future option upgrades

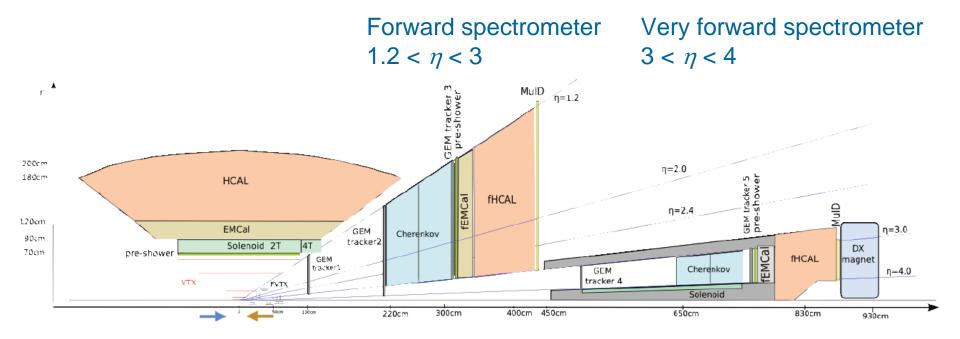

- Additional charged-particle tracking
 - Improved tracking in the magnetic field (15–65 cm radii) for high resolution momentum measurement
 - Existing 4 layers of VTX
 - $-\Delta p/p \sim 0.1 + 0.02 \times p \,[\text{GeV}/c]$
 - Additional silicon layers at 40 cm & 60 cm radii
 - $-\Delta p/p \sim 0.007 + 0.0015 \times p \,[\text{GeV}/c]$
 - For good separation of Y states, Y(1s)/Y(2s)/Y(3s)

Future option upgrades



- Preshower detector with fine segmentation
 - Improved reach of γ/π^0 separation
 - Good separation of single photon from $\pi^0 \rightarrow \gamma\gamma$ up to 10 GeV with electromagnetic calorimeter of $\Delta \eta \ge \Delta \phi = 0.024 \ge 0.024$
 - Improved separation up to 50 GeV with tungsten + silicon layer of $\Delta \eta \times \Delta \phi = 0.0005 \times 0.1$
 - Improved electron identification
 - For good separation of Y states

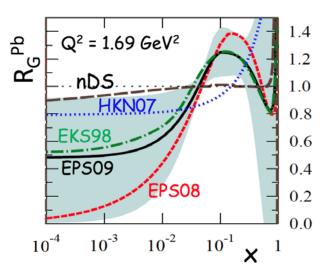
- Quarkonia spectroscopy of Y states
 - J/ψ suppression stronger at RHIC than at LHC
 - For competing Y measurement at RHIC at different energies with more flexibility (energies / nuclear species)
- Charm / beauty jets
- Extending $\pi^0 R_{AA}$
 - up to 10 GeV $\rightarrow 50~\text{GeV}$
- High-*z* jet fragmentation functions
- Low and intermediate mass dileptons

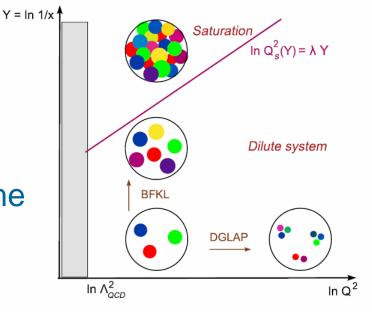


Yield of different Y states in one year at RHIC

Species	∫ L dt	Events	$\langle N_{coll} \rangle$	Y(1S)	Y(2S)	Y(3S)	Y(1S+2S+3S)
p+p	$18 \ pb^{-1}$	756 B	1	805	202	106	1113
Au+Au (MB)		50 B	240.4	12794	3217	1687	17698
Au+Au (0–10%)		5 B	962	5121	1288	675	7084

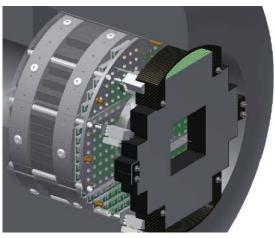
Forward sPHENIX upgrades


- A straw man layout of a possible detector
 - Charged-particle tracking GEM
 - Particle identification RICH
 - Electromagnetic calorimeter
 - Hadronic calorimeter



CNM physics of forward sPHENIX PHIENIX

- Cold Nuclear Matter (CNM) effects
- Measurement of the nuclear gluon distribution $G_A(x)$
 - To know Initial state of heavy-ion collisions
 - Precision understanding of stronglycoupled QGP
- Search for gluon saturation, or suppression of G_A(x) at small-x and verify CGC (color glass condensation) framework
 - CGC: effective field theory to describe the saturated gluon
- Energy loss of partons and p_T broadening
- Hadronization mechanisms and time scales



CNM physics of forward sPHENIX PHIENIX

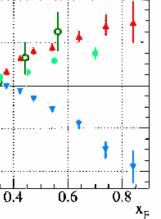
- Current measurements
 - J/ ψ and hadron-hadron correlations over a broad range of rapidity
 - Sensitive to extended range of x
 - Open heavy-flavor and a first look at Drell-Yan
 - With FVTX installed in 2012
 - Comparison data to J/ψ
- MPC + MPC-EX upgrade (2014–)
 - Electromagnetic calorimeter + preshower
 - 3.1 < η < 3.8 in the muon piston
 - Prompt- γ
- Forward sPHENIX
 - Quarkonia, vertex-tagged open heavy-flavor, inclusive hadrons and fully-reconstructed jets, jet-jet correlations, and Drell-Yan
 - Much more extended kinematic reach
 - Smaller statistical and systematic uncertainties
 - Different energies and nuclear species

Spin physics of forward sPHENIX PHENIX

• Single transverse-spin asymmetry

$$A_{N} = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$$

 Expected to be small in hard scattering at high energies


$$A_N \approx \frac{m_q \alpha_S}{p_T} \approx 0.001$$

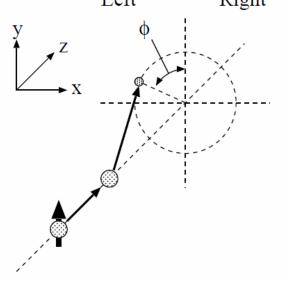
Kane, Pumplin, Repko PRL 41 1689 (1978)

• FNAL-E704

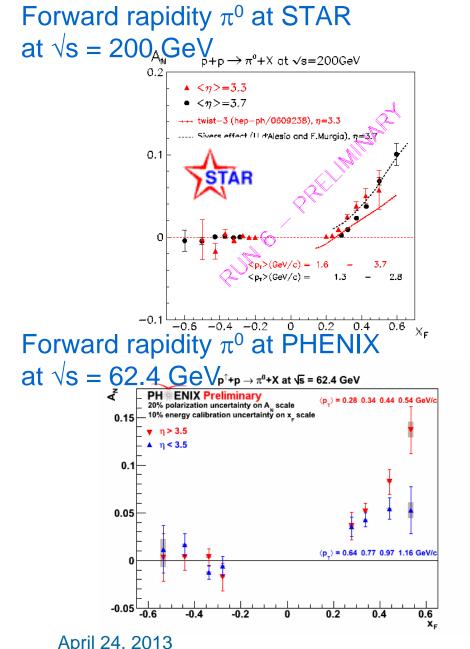
- Unexpected large asymmetry found in the forward-rapidity region
- Development of many models based on perturbative QCD

April 24, 2013

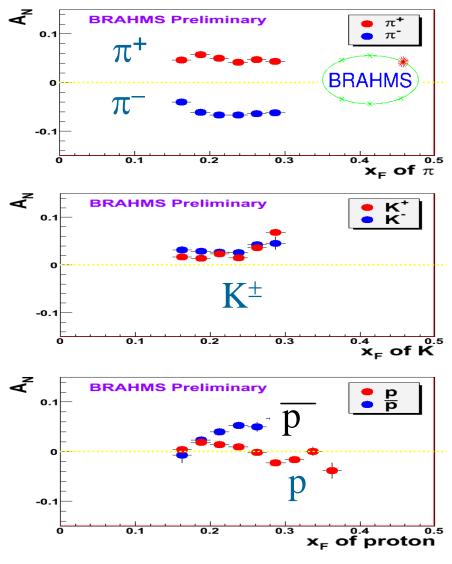
 $x_F = 2p_L/\sqrt{s}$ (Feynman's x)


 $p p \rightarrow n X$

0.2

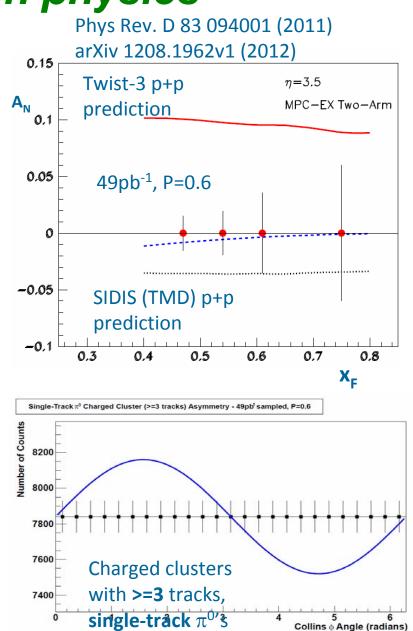

-20

-40


0

Transverse-spin physics

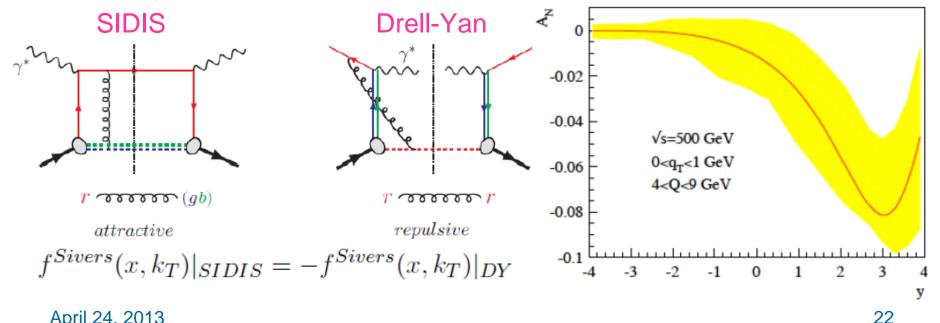
Forward identified particles at BRAHMS



20

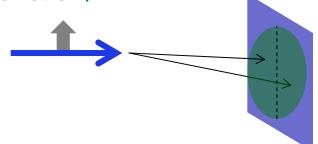
PH*ENIX

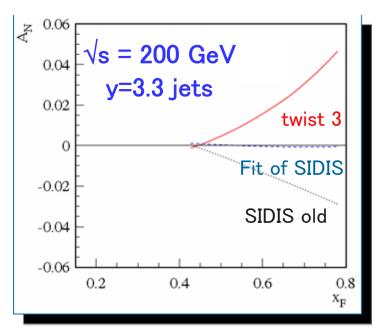
Transverse-spin physics

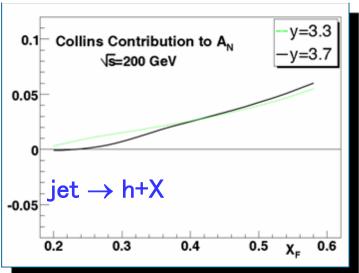

- Perturbative-QCD models
 - Sivers effect
 - Sivers distribution (initial state)
 - Collins effect
 - Transversity distribution (initial state) + Collins fragmentation (final state)
 - Higher-twist effect
- MPC-EX (2014–)
 - Prompt photon asymmetry
 - To distinguish Sivers effect and higher-twist effect
 - Collins asymmetry in jet
 - π⁰ correlations with jet-like clusters

PH^{*}ENIX

Spin physics of forward sPHENIX PH*ENIX

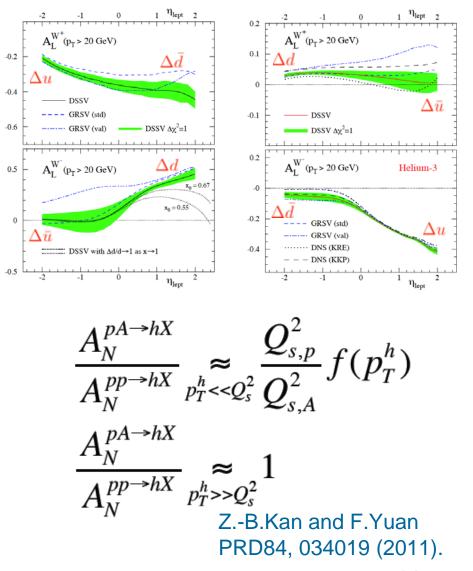

- Transverse-momentum dependent (TMD) phenomena in nucleon structure
 - Sivers effect in Drell-Yan process
 - Comparison of Sivers function measured by polarized semiinclusive DIS process
 - Competitive program in the world for establishment of the TMD framework




Spin physics of forward sPHENIX PHIENIX

- TMD phenomena in nucleon structure
 - Jet asymmetry measurement
 - Sivers or higher-twist effect

- Asymmetry inside the jet
 - Collins function (Collins effect)
 - IFF (Interference Fragmentation Function)

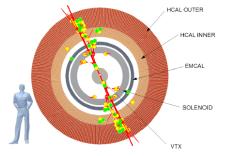


Spin physics of forward sPHENIX PHIENIX

- Sustained study of precision PDF measurements
 - Gluon helicity distribution
 - Quark and anti-quark helicity distributions in W-production
- Polarized neutron with polarized Helium-3 beam
- Polarized-proton nuclei collision for saturation study
 - Link between CNM and Spin
 - Transverse single-spin asymmetries in polarized p+A collisions are sensitive to the saturation scale in the nucleus

Physics of forward sPHENIX

- Forward heavy-ion physics
 - Pioneered by PHOBOS and BRAHMS
 - Direct photons can give information about the expansion of the medium
 - Correlation measurements can test models of longitudinal expansion
 - Extended jet / dijet / γ -jet coverage to study jet energy loss in the medium
 - How far forward the measurements will be able to be made?



- sPHENIX upgrade proposal was submitted to DOE
 - For precision jet / dijet / γ -jet measurements to understand the nature of the strongly-coupled QGP
 - More information in arXiv:1207.6378
- Future options
 - Midrapidity tracking and preshower
- Forward sPHENIX upgrades
 - Cold nuclear matter effects
 - Spin physics
 - Towards the ePHENIX at eRHIC
- For long-term enhancement for major physics programs

An Upgrade Proposal from the PHENIX Collaboration July 1, 2012 Updated March 22, 2013

Backup slides...

Sivers effect

Collins effect

Transverse-spin physics

К_{Т,р}

p

SP

р

- Perturbative-QCD models
 - Sivers effect
 - Sivers distribution (initial state)
 - Collins effect
 - Transversity distribution (initial state)
 + Collins fragmentation (final state)
 - Higher-twist effect
- Many-body correlation of quarks and gluons
 - Sivers effect on TMD (transversemomentum dependent) factorization
 - Transverse structure of the nucleon
 - Spin-orbit correlation
 - LS force inside the nucleon
 - Higher-twist effect on collinear factorization
 - Parton reaction

