Large \mathbf{p}_{T} Forward Transverse Single Spin

Steven Heppelmann (for STAR collaboration)
$\underline{p^{\uparrow}+p \rightarrow \pi^{0}+X \quad\left(V_{s}=200 \text { and } 500 \mathrm{GeV}\right)}$

- STAR and the FMS forward electromagnetic calorimeter detector.
- $\pi^{0} A_{N}$ at larger transverse momentum.
- Dependence of A_{N} on pion isolation cone size.
- Dependence of A_{N} on soft EM energy within isolation cone.
- Dependence of \mathbf{A}_{N} on EM energy outside isolation cone.
- Summary

FPD EM Calorimeter
Small cells only

Forward EM Calorimetry In STAR.

Proton Forward Scattering at High $\mathbf{P}_{\boldsymbol{T}}$

PQCD (Leading Twist):

Factorized Cross Section= (initial state) x (quark scattering) x (fragmentation)
$\pi^{0} s$ with $\mathbf{N}=2$ photons
in angular cone.

- Does good job of predicting the spin averaged cross section.
- Leading twist cross section does not depend on transverse polarization.
- Spin Dependence require refinements like:
- Beyond Collinear Factorization (Sivers)
- Models of spin dependent fragmentation (Collins)
- Models that go beyond leading twist.

Data Sets and π^{0} Isolation Cone Sizes

RHIC Run 11 (2011) pp @ $\sqrt{ } \mathbf{s}=500 \mathrm{GeV}$
Average Blue Beam Polarization = 51.6\% (Transverse)
Luminosity $=22 \mathrm{pb}^{-1}$30 mR isolation cone
70 mR isolation cone

RHIC Run 12 (2012) pp @ $\sqrt{ } \mathbf{s}=200 \mathrm{GeV}$
Average Blue Beam Polarization 60.7\% (Transverse)
Luminosity $=18 \mathrm{pb}^{-1}$

35 mR isolation cone
200 mR isolation cone

Event Selection for π^{0} events:

1. Analyze FMS for all photon candidates.

Here a photon (γ) is an EM shower that has been fit successfully to photon hypothesis
2. Two photon events include two photon candidate ($\left.\gamma^{\prime} \mathrm{s}\right)$,
a. Each photon has
i. a minimum energy of 6 GeV in the small inner detector
ii. or a minimum of 6 (4) GeV in the large outer cells for Run 12 (11) analysis.
b. Two γ are found within a fixed cone size. There may also be additional FMS γ 's outside isolation cone.

Isolation of $\pi^{0} \mathbf{s}$

c. Within the isolation cone, soft energy photons are sometimes observed
i. For small cells, the variable Esoft represents the sum of energy of soft photons, (γ 's with energy between 2 and 6 GeV).
ii. For large cells Esoft is the sum of energy of soft photons (γ ' \mathbf{s}) with energy between 0.7 and 6 (4) GeV for Run 12 (11).
3. Find Clusters of photons grouping photon candidates that are within opening angle cone $\Delta \theta$ (relative to energy weighted center)
4. For Run 12, we consider 3 event classes

1. $\Delta \theta=0.07 \mathrm{R} 2$ Photon clusters, PiO Mass (isolation radius of .07 radians).
2. $\Delta \theta=0.035 \mathrm{R} 2$ Photon clusters , PiO Mass (isolation radius of .035 radians).
3. $\Delta \theta=0.20 \mathbb{R} 2$ Photon clusters, PiO Mass (isolation radius of . 20 radians).

From Run $11 V_{s}=500 \mathrm{GeV}$

Blue Beam A_{N}

As and alternative to Cross Ratio, the raw asymmetry can be plotted as a function of $\operatorname{Cos}(\phi)$ (with polarization axis at $\mathrm{Phi}=\pi / 2$) Slope $=A_{N}$
Intercept = Luminosity Ratio for data set Luminosity ratio for all ~ - $0.31 \pm .05$ \% Slope Fits are consistent with Cross Ratio Method.

TAR

A_{N} vs $\operatorname{Cos}(\phi)\left(40<E_{\pi^{0}}<60\right)$ Full FMS (70 mRad Cone)
$\sum^{0.04} \mathrm{AN}=1.47 \pm 0.09 \%$ Luminosity Ratio = -0.32 $\pm .06 \%$ STAR Preliminary

Example Run 11 Mass Distribution:
2 photons in 70 mR cone,
$35<(E 1+E 2)<55 G e V, Z=(E 1-E 2) /(E 1+E 2)<0.7$ Four pseudo-rapidity (η) regions.

$V_{s}=500 \mathrm{GeV}$ (Run 11) Transverse Single Spin π^{0} Asymmetry vs P_{T} for small and large π^{0} isolation cones. (Errors shown in these ane following plots are statistical)

Higher Twist or other PQCD related models suggest $\underline{A}_{\underline{N}}$ should fall at large $P_{\underline{T}}$ with at least 1 power of P_{T} -

These plots include 2 parameter fits for A_{N} vs P_{T} :

$$
A_{N}\left(P_{T}\right)=\left[p_{0}\right] \times\left(P_{T}\right)^{\left[p_{1}\right]}
$$

Fits are shown for both the 70 mRad and 30 mRad isolation cones

RHIC Run 122012

STAR FMS @ $V_{\mathrm{s}}=\mathbf{2 0 0} \mathbf{~ G e V}$

\quad Selection:
$N_{\text {photons }}=2$ (in cone)
$E_{1}>6 \mathrm{GeV} \& \mathrm{E}_{2}>6 \mathrm{GeV}$
$Z=\left\|\frac{E_{2}-E_{1}}{E_{2}+E_{1}}\right\|<0.7$
$M_{1,2}<0.4 \mathrm{GeV}$
$E_{\text {soft }}<0.5 \mathrm{GeV}$
Cone $: 35 \mathrm{mR}$

35 mR

Compare p_{T} Dependence of A_{N} at 200 and 500 GeV .

The distribution of $A_{N} v s$. p_{T}, comparing the same X_{F}. The 200 GeV (blue circles) and 500 GeV (red triangles) represent A_{N} measurements based on two photon clusters selected with 30 mR cluster at 500 GeV and 35 mR at 200 GeV . The 200 GeV two photon mass is $\mid \mathbf{M 1 2 - 0 . 1 3 5 | < . 1 2 ~ G e V . ~ T h e ~ o t h e r ~ c u t ~ i s ~} \mathbf{z}<\mathbf{0 . 7}$.

Compare p_{T} Dependence of A_{N} at 200 and 500 GeV .

The distribution of A_{N} vs. p_{T}, comparing different center of mass energy for the same X_{F}. The 200 GeV (blue circles) and 500 GeV (red stars) represent A_{N} measurements based on two photon 70 mR (bottom) cluster angles. The 70 mR cluster angle. The 200 GeV two photon mass is selected to be $\mid \mathbf{M 1 2 - 0 . 1 3 5 | < . 1 2 ~ G e V . ~ T h e ~ o t h e r ~ c u t ~ i s ~} \mathbf{z < 0 . 7}$.

Run 12: $p^{\uparrow} p \rightarrow \pi^{0} V_{s}=\underline{200} \mathrm{GeV} \quad \underline{A}_{\underline{N}}$ as a Function of Energy and Pseudo-rapidity (η)

Run 12: $p^{\uparrow} p \rightarrow \pi^{0} \sqrt{s}=200 \mathrm{GeV} \quad A_{N}$ as a Function of Energy and Pseudo-rapidity (η)

A_{N} vs. η vs. Energy (200 mR)

Run 12: $p^{\uparrow} p \rightarrow \pi^{0} \sqrt{s}=200 \mathrm{GeV} \quad \mathrm{A}_{\mathbf{N}}$ as a Function of Energy and Pseudo-rapidity (η)

Run 12 ($\sqrt{s}=200 \mathrm{GeV}$ pp): Compare A_{N} for π^{0} three different selection criterion

1) Isolation cone $200 \mathrm{mR} \& \& 2$ photon clusters (photonE>6 GeV) \&\& Esoft<0.5 GeV. (Least Jet like)
2) Isolation cone $35 \mathrm{mR} \& \& 2$ photon clusters (photonE>6 GeV) \&\& Esoft<0.5 GeV (More Jet like)
3) Isolation cone $35 \mathrm{mR} \& \& 2$ photon clusters (photonE>6 GeV) \&\& Esoft>0.5 GeV. (Most Jet like) í

Large A_{N} for ($X_{F}<0.60$) and small pseudorapidity is associated with Isolated pions.

Smaller A_{N} when evidence for jet fragmentation is seen.

This plot compares three non-overlapping sets of events, all of which involve a $\mathbf{2}$ photon π^{0} cluster selected with the $\mathbf{3 5 m R}$ cone size. The plots show energy dependence averaged over pseudo-rapidity bins. The 2 photons in the cone satisfy a π^{0} mass cut |M12-.135|<.08.
Green triangles: Additional photons away from the cluster, have average azimuthal angle $\cos \left(\phi_{\text {away }}-\phi\right)<-0.5$

Red squares: No additional photons

Blue circles: Additional photons near the cluster, have average azimuthal angle $\cos \left(\phi_{\text {away }}-\phi\right)>0$.

2 track (35mr) $\pi^{0}+$ Near γ 's $\operatorname{Cos}(\Delta \phi)>0$.

$\underline{\mathbf{A}}_{\mathbf{N}}$ vs. Energy, averaged over pseudo-rapidity. Compare 3 selection criterion based on photon energy outside the cone (all with 35 mR cone and no soft E cut) ${ }_{<}^{2}$

STAR
16

$\underline{\mathbf{A}}_{\mathbf{N}} \underline{\text { Vs. Energy, averaged over pseudo-rapidity. }}$

 Compare 3 selection criterion based on photon energy outside the cone (all with 35 mR cone and no soft E cut) <

$\underline{A}_{\mathbf{N}}$ vs π^{0} pair energy: 35 mR cone

- with 2 photons cluster for $1^{\text {st }} \pi^{0}$
- with 2 additional photons outside the primary cluster satisfying π^{0} mass
- Angle (for A_{N} calculation) from High energy π^{0} ($2^{\text {nd }} \pi^{0}$ energy $>16 \mathrm{GeV}$)
and either
- $2^{\text {nd }}$ pion on the Away Side
- $2^{\text {nd }}$ pion in Mid Range
- $2^{\text {nd }}$ pion on the Near Side

The FMS is illuminated by forward scattering From the RHIC blue beam
and backward scattering from the yellow beam. No significant backward asymmetry is seen.

Systematic Errors

- Run 11 blue beam polarization $51.6 \% \pm 7 \%$
- Run 12 blue beam polarization $60.7 \% \pm 7 \%$
- Non π^{0} signal $<10 \%$
- Similar asymmetries for Background:
$\frac{\Delta P_{T}}{P_{T}}<12 \%$
$\frac{\Delta A_{N}}{A_{N}}<5 \%$
- P_{T} uncertainty
- Energy 10\%
- Angle 6\%

$$
\frac{\Delta A_{N}}{A_{N}}<13 \%
$$

$$
\frac{\Delta A_{N}}{A_{N}}<5 \%
$$

$$
\begin{array}{|l|}
\frac{\Delta P_{T}}{P_{T}}<12 \% \\
\frac{\Delta A_{N}}{A_{N}}<5 \% \\
\hline
\end{array}
$$

Total Systematic Asymmetry Error
Common to all data points.
$\frac{\Delta A_{N}}{A_{N}}<15 \%$

Conclusion

$\ln p^{\uparrow} p \rightarrow \pi^{0}+X @ \sqrt{s}=200$ and $500 \mathrm{GeV}:$

- A_{N} for forward π^{0} production does not fall with $\boldsymbol{p}_{\mathrm{T}}$, as expected, even up to $\boldsymbol{p}_{\boldsymbol{T}} \sim \mathbf{1 0} \mathbf{G e V} / \mathbf{c}$.
- A_{N} as a function of p_{T} for forward π^{0} production is compared at $\sqrt{\boldsymbol{s}=\mathbf{2 0 0}}$ and $\mathbf{5 0 0} \mathbf{~ G e V}$ in the region of Feynman $\mathrm{X}, 0.16<X_{F}<0.4$ The scale of the asymmetry is similar but this depends greatly on details of how events are selected.
- From Run 12 data, at $\sqrt{s}=200 \mathrm{Gev}$, for smaller X_{F} and largest p_{T} (smallest pseudo rapidity) selection of isolated $\pi^{0} s$ results in asymmetry 2 to $\mathbf{3}$ times greater than for selection of more "jet-like" $\pi^{0} s$.
- For an additional EM energy deposition "photons" outside the primary cone, the asymmetry is smallest if the additional energy is in the same hemisphere as the π^{0}.
- For $\mathbf{2} \pi^{0}$ production, the asymmetry is smaller when the lower energy π^{0} is in the same hemisphere as the first π^{0}.
- In summary: First seen at $\sqrt{s}=500 \mathrm{GeV}$ (Run 11) and now more clearly at $\sqrt{s}=200 \mathrm{GeV}$ (Run 12), Isolated π^{0} s lead to larger $A_{\underline{N}}$ than more jet-like π^{0} s.

