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 LHeC - Low x Kinematics
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Small x and saturation:

● QCD radiation of partons when x decreases leads to a large 
number of partons (gluons), provided each parton evolves 

independently (linearly, Δ[xg] ∝ xg).
● This independent evolution breaks at high densities (small x or 
high mass number A): non-linear effects (gg→g, Δ[xg] ∝ xg - k(xg)2).

xGA(x,Q2
s)

�R2
AQ2

s

� 1 =⇥ Q2
s ⇤ A1/3x⇥�0.3
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Status of small-x physics:
● Three pQCD-based alternatives to describe small-x ep and eA 
data (differences at moderate Q2(>Λ2QCD) and small x):
→ DGLAP evolution (fixed order perturbation theory).
→ Resummation schemes: BFKL, CCFM, ABF, CCSS.
→ Saturation (CGC, dipole models).
● Non-linear effects (unitarity constraints) are density effects: 
where? ⇒ two-pronged approach at the LHeC: ↓ x / ↑ A.
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nPDFs:

5

Yellow Report on 
Hard Probes, 2004

● Lack of data ⇒ models give vastly different 

results for the nuclear glue at small scales 
and x: problem for benchmarking in HIC.

● Available DGLAP 
analysis at NLO 
show large 
uncertainties at small 
scales and x.
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functions.

● Particle production at 
the very beginning: which 
factorisation in eA?

● How does the system 
behave as ∼ isotropised 
so fast?: initial conditions 
for plasma formation to 
be studied in eA.
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medium through 
energetic particles 
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Physics and Range 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QCD 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Electroweak 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Nuclear  

Structure  

& Dynamics 

High Parton Densi>es 

Large x 

Partons 

Physics goals:

8

● Proton structure to a few 
10-20 m: Q2 lever arm.

● Precision QCD/EW physics.

● High-mass frontier 
(leptoquarks, excited fermions, 
contact interactions).

● Unambiguous access, in ep 
and eA, to a qualitatively novel 
regime of matter predicted by 
QCD.

● Substructure/parton dynamics 
inside nuclei with strong 
implications on QGP search.

Low-x Physics at the LHeC: 2. The Large Hadron Electron Collider.



Kinematics:

9

Black: HERA Green:100+20

Q2sat,GB

2081/3Q2sat,GB

● Small-x demands 1 
degree acceptance.
● Higher luminosity 
would benefit high-x 
and Q2 studies.
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● The LHeC 
will explore a 
region 
overlapping 
with the 
LHC:
➜ in a cleaner 
experimental 
setup;
➜ on firmer 
theoretical 
grounds.
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Proton PDFs at small x:

12

● Parton densities poorly known at small x and small to moderate 
Q2: uncertainties in predictions. 
● LHeC will substantially reduce the uncertainties in global fits: FL 
and heavy flavour decomposition most useful.

Low-x Physics at the LHeC: 3 Physics case.
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● LHeC F2 and FL data will have discriminatory power on models.
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Effects beyond DGLAP?:
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NLO DGLAP cannot simultaneously accommodate LHeC F2 and 
FL data if saturation effects included according to current models.
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Implications for UHEν’s:

14

● ν-n/A cross section (τ energy loss) 
dominated by DIS structure functions / 
(n)pdfs at small-x and large (small) Q2.
● Key ingredient for estimating fluxes.

σtotνn

Low-x Physics at the LHeC: 3 Physics case.



ep diffractive pseudodata:

15

● Large increase in 
the M2, xP=(M2-t
+Q2)/(W2+Q2), β=x/
xP region studied.
● Possibility to 
combine LRG and 
LPS.
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Note: diffraction in ep is linked to shadowing in eA
(Gribov): FGS, Capella-Kaidalov et al,...



Diffractive dijets:

16

● Diffractive dijet and 
open heavy flavour 
production offer large 
possibilities for:
→ Checking 
factorization in hard 
diffraction.
→ Constraining DPDFs.

● Large yields up to large 
pTjet.

● Direct and resolved 
contributions: photon 
PDFs.
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Elastic VM production in ep:

17

● Elastic J/ψ production 
appears as a candidate to 
signal saturation effects 
at work!!!

p p′

!r

!b
x x′

z

(1 − z)!r
1 − z

γ∗ E

Linear, 
sensitivity 
to (xg)2.

Non-linear, 
saturation.

Low-x Physics at the LHeC: 3 Physics case.



Elastic VM production in eA:

18

● For the coherent case, 
predictions available. 

● Challenging experimental 
problem.
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Low-x Physics at the LHeC: 3 Physics case.



Transverse scan: elastic VM

19

● t-differential 
measurements 
give a gluon 
tranverse 
mapping of the 
hadron/nucleus.
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Unitarity limit: N(x,r,b) = 1

"b-Sat" dipole scattering amplitude with r = 1 GeV-1

Low-x Physics at the LHeC: 3 Physics case.



DVCS:

20

● Exclusive processes give information 
about GPDs, whose Fourier transform 
gives a tranverse scan of the hadron: 
DVCS sensitive to the singlet.
● Sensitive to dynamics e.g. non-linear 
effects.

DVCS, Ee=50 GeV, 1o,
pTγ,cut=2 GeV, 1 fb-1

DVCS, Ee=50 GeV, 10o,
pTγ,cut=5 GeV, 100 fb-1
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Dihadron azimuthal decorrelation:

21

● Dihadron azimuthal decorrelation:
currently discussed at RHIC as
suggestive of saturation.
● At the LHeC it could be studied far from the kinematical limits.

Albacete-Marquet ’10 pTlead>3 GeV
pTass>2 GeV
zlead=zass=0.3

y=0.7
Q2=4 GeV2 

xA<<xp

ΔΦ=Φ12

Low-x Physics at the LHeC: 3 Physics case.



Dijet azimuthal decorrelation:

22

● Studying dijet azimuthal decorrelation or forward jets (pT∼Q) 
would allow to understand the mechanism of radiation:
→ kT-ordered: DGLAP.
→ kT-disordered: BFKL.
→ Saturation?
● Further imposing a rapidity gap
(diffractive jets) would be most
interesting: perturbatively
controllable observable.
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Forward jets:

23

● Studying dijet azimuthal decorrelation or forward jets (pT∼Q) 
would allow to understand the mechanism of radiation:
→ kT-ordered: DGLAP.
→ kT-disordered: BFKL.
→ Saturation?
● Further imposing a rapidity gap
(diffractive jets) would be most
interesting: perturbatively
controllable observable.

Low-x Physics at the LHeC: 3 Physics case.
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Summary: 

24

● At an LHeC@CERN:
➜ High-precision tests of collinear factorization(s) and determination of PDFs.
➜ Unprecedented access to small x in p and A.
➜ Novel sensitivity to physics beyond standard pQCD.
➜ Stringent tests of QCD radiation and hadronization.
➜ Transverse scan of the hadron/nucleus at small x.
➜ ... with implications on our understanding of QGP.

● The LHeC will answer the question of saturation/
non-linear dynamics. For that, ep AND eA essential!!!

Low-x Physics at the LHeC.



Future plans: 

25Low-x Physics at the LHeC.

● Next: follow CERN mandate and go 
towards a TDR. This requires a further elaboration 
of the physics case:

➜ diffraction: studies on DPDFs and nDPDFs.

➜ GPDs: complementarity of exclusive VM production and 
DVCS, also in the nuclear case.

➜ complementarity with the LHC, both ep/pp and eA/pA.

➜ ...

Any collaboration is more than welcome!!!
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● Next: follow CERN mandate and go 
towards a TDR. This requires a further elaboration 
of the physics case:

➜ diffraction: studies on DPDFs and nDPDFs.

➜ GPDs: complementarity of exclusive VM production and 
DVCS, also in the nuclear case.

➜ complementarity with the LHC, both ep/pp and eA/pA.

➜ ...

Any collaboration is more than welcome!!!

Thanks for your attention!



Backup:

26Low-x Physics at the LHeC.



Legacy from HERA:

27

● Structure functions in an extended x-Q2 range, xg ∝1/xλ, λ>0.
● Large fraction of diffraction σdiff/σtot∼10%.
● But: no eA/eD, kinematical reach at small x, luminosity at high x /
for searches (odderon,...), flavour decomposition, TMDs,...

Low-x Physics at the LHeC: 1. Status and motivation.
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Our aims: 
understanding

● The implications of 
unitarity in a QFT.

● The behaviour of QCD 
at large energies.

● The hadron wave 
function at small x.

● The initial conditions for 
the creation of a dense 
medium in heavy-ion 
collisions.

Origin in the early 80’s: GLR, Mueller et 
al, McLerran-Venugopalan.

xGA(x,Q2
s)

�R2
AQ2

s

� 1 =⇥ Q2
s ⇤ A1/3x⇥�0.3

The ‘QCD phase’ diagram:
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The ‘QCD phase’ diagram:

Low-x Physics at the LHeC: 1. Status and motivation.

Source (frozen)

Classical,
Aμ∝1/αs

O(αs)

Questions:
● Theory: can the dense regime be described using pQCD 
techniques? Or non-perturbative - Regge, AdS/QCD,...? Which 
factorisation is at work?
● Experiment: where do present/future experimental data lie?



Accelerator:

29

eD: LeN=ALeA>∼3×1031 cm-2s-1

CDR numbers for 
luminosity, to be 

considered now as 
lower bounds.

√s≃0.8 TeV/nucleon

Luminosity per nucleon

Low-x Physics at the LHeC: 2. The Large Hadron Electron Collider.



The detector: low-x/eA setup

30
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The detector: low-x/eA setup

30

pe

LR
● Other detector options: low 
acceptance (8o-172o), solenoid 
outside, also considered.
● Plus luminosity detector, electron 
tagging, polarimeter, ZDC and leading 
proton detector.

Low-x Physics at the LHeC: 2. The Large Hadron Electron Collider.



LHeC scenarios:

31

● For FL: 10, 25, 50 + 2750 (7000); Q2≤sx; Lumi=5,10,100 pb-1 
respectively; charm and beauty: same efficiencies in ep and eA.

10-310-410-4

I           50    3.5   Ca        5⋅10-4               ?      5⋅10-3  ?    ?   eCa

For F2

Low-x Physics at the LHeC: 3 Physics case.



eA inclusive: comparison

32

● Good precision can be obtained for F2(c,b) and FL at small x 
(Glauberized 3-5 flavor GBW model, NA ’02).

F2cPb F2bPb
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Nuclear PDFs at small x:

33

● F2 data substantially reduce the uncertainties in DGLAP analysis; 
inclusion of charm, beauty (new!); and FL (new!) also give constraints.

Low-x Physics at the LHeC: 3 Physics case.
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eA inclusive: comparison

34

● Good precision can be obtained for F2(c,b) and FL at small x 
(Glauberized 3-5 flavor GBW model, NA ’02).

F2cPb F2bPb
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Note: FL in eA

35

● FL traces the nuclear effects on the glue (Cazarotto et al ’08).
● Uncertainties in the extraction of F2 due to the unknown nuclear 
effects on FL of order 5 % (larger than expected stat.+syst.) ⇒ 

measure FL or use the reduced cross section (but then ratios at two 
energies...).

NA, Paukkunen, Salgado, Tywoniuk, ‘10

Low-x Physics at the LHeC: 3 Physics case.



Diffraction in ep and shadowing:

36

e

● Diffraction is linked to nuclear shadowing through basic QFT 
(Gribov): eD to test and set the ‘benchmark’ for new effects.

        

1106.2019

Low-x Physics at the LHeC: 3 Physics case.
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Photoproduction cross section:

37

● Small angle electron detector 62 m far from the interaction 
point: Q2<0.01 GeV, y∼0.3 ⇒ W∼0.5 √s.

● Substantial enlarging of the lever arm in W.

Pancheri et al ‘08

Low-x Physics at the LHeC: 3 Physics case.



Diffraction and non-linear dynamics:

38

0

0.02

0.04

0.06

0.08

0.1

10
-2

10
-1

xIP=0.00001
Q2=3 GeV2x IP

F 2D

10
-2

10
-1

xIP=0.0001
Q2=3 GeV2

10
-3

10
-2

10
-1

xIP=0.001
Q2=3 GeV2

0

0.05

0.1

0.15

10
-2

10
-1

10
-2

10
-1

xIP=0.0001
Q2=30 GeV2

10
-2

10
-1

xIP=0.001
Q2=30 GeV2

0

0.02

0.04

0.06

0.08

0.1

10
-1

H1 fit B
ipsat
bCGC

Ee=150 GeV, 1o

10
-1

10
-2

10
-1

xIP=0.001
Q2=300 GeV2

0

0.05

0.1

0.15

10
-2

10
-1

xIP=0.00001
Q2=3 GeV2x IP

F 2D

10
-2

10
-1

xIP=0.0001
Q2=3 GeV2

10
-2

10
-1

xIP=0.001
Q2=3 GeV2

0

0.025

0.05

0.075

0.1

10
-2

10
-1

10
-2

10
-1

xIP=0.0001
Q2=30 GeV2

10
-2

10
-1

xIP=0.001
Q2=30 GeV2

0

0.02

0.04

0.06

0.08

0.1

10
-1

H1 fit B
ipsat
bCGC

Ee=50 GeV, 1o

10
-1

10
-1

xIP=0.001
Q2=300 GeV2

● Dipole models show differences with linear-based 
extrapolations (HERA-based dpdf’s) and among each other: 
possibility to check saturation and its realization.

β β
Low-x Physics at the LHeC: 3 Physics case.



Diffractive DIS on nuclear targets:

39

● Challenging 
experimental problem, 
requires Monte Carlo 
simulation with detailed 
understanding of the 
nuclear break-up.

● For the coherent case, 
predictions available. 
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Odderon:

40

● Odderon (C-odd exchange contributing to particle-antiparticle 
difference in cross section) seached in
or through O-P interferences.

● Sizable charge 
asymmetry, yields 
and reconstruction 
pending.

Low-x Physics at the LHeC: 3 Physics case.



Transversity GPDs:

41

● Chiral-odd transversity 
GPDs are largely unknown.

● They can be accessed 
through double exclusive 
production:
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42

● Low energy: hadronization 
inside → formation time, 
(pre-)hadronic absorption,...

● LHeC: dynamics of QCD radiation and hadronization.
● Most relevant for particle production off nuclei and for QGP 
analysis in HIC.

Radiation and hadronization:

∼ ratio of FFs A/p
● High energy: partonic evolution 
altered in the nuclear medium.

Low-x Physics at the LHeC: 3 Physics case.



5o<θπ<25o, xπ>0.01

Daleo et al. ’04
Data: H1 ’04

formation time
effects

Radiation and hadronization:

43

● Large (NLO) yields at small-x (H1 cuts, 3 times higher if relaxed).
● Nuclear effects in hadronization at small ν (LO plus QW, Arleo ’03).

Low-x Physics at the LHeC: 3 Physics case.
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Radiation and hadronization:
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● Large (NLO) yields at small-x (H1 cuts, 3 times higher if relaxed).
● Nuclear effects in hadronization at small ν (LO plus QW, Arleo ’03).

Low-x Physics at the LHeC: 3 Physics case.



Jets:

44

● Jets: large ET even in eA.
● Useful for studies of 
parton dynamics in nuclei 
(hard probes), and for 
photon structure.
● Background subtraction, 
detailed reconstruction 
pending.
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→ LHC death by radiation damage estimated by 2030-2035.

→ LHeC should work for ∼ 10 years.

→ No disturbance to LHC operation: built on surface, 
installation during LS3.

⇒
Low-x Physics at the LHeC: 3 Physics case.
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