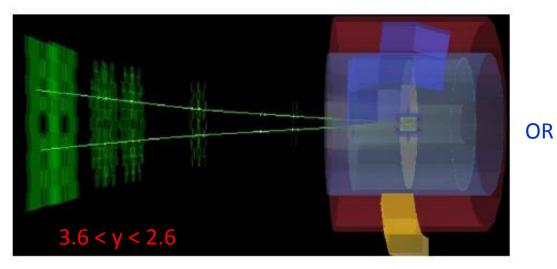


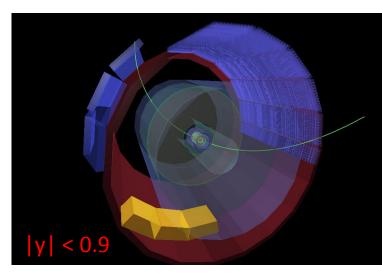
EM field → photon flux When hadronic cross section becomes negligible (b>2R) photons can give:

Pb Pb

Coherent vector meson production:


- photon couples coherently to all nucleons
- $\langle p_T \rangle \sim 1/R_{ph} \sim 60 \text{ MeV/c}$
- no neutron emission in ~80% of cases

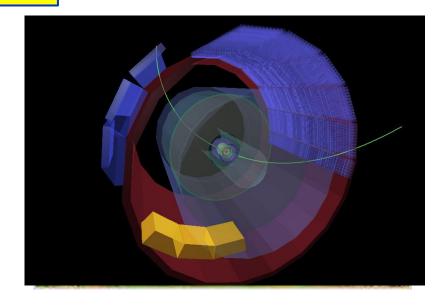
Incoherent vector meson production:

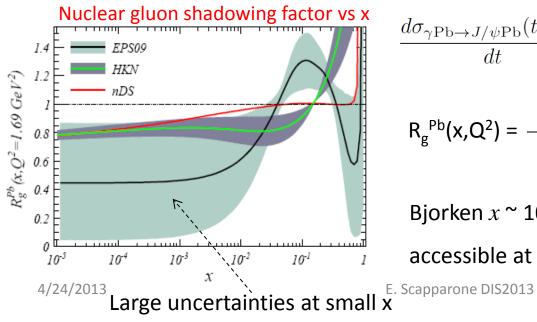

- photon couples to a single nucleon
- $\langle p_T \rangle \sim 1/R_p \sim 500 \text{ MeV/c}$
- target nucleus normally breaks up

Where can we look at them in ALICE?

Forward rapidity

Mid-rapidity


The treasure map


4/24/2013

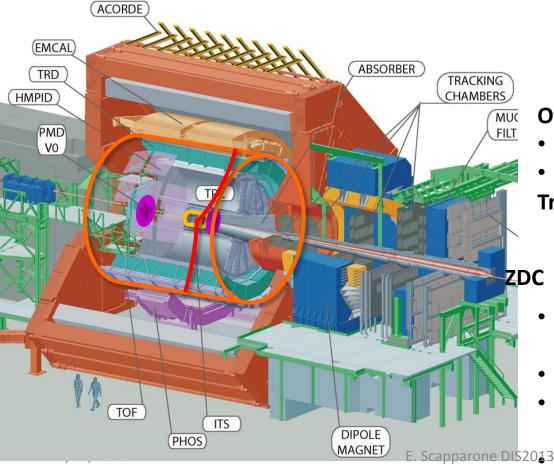
Tastes differ...

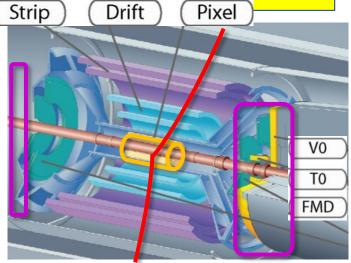
...but no doubt UPCs at LHC are a nice physics opportunity

$$\frac{d\sigma_{\gamma \text{Pb}\to J/\psi \text{Pb}}(t=0)}{dt} = \frac{16\,\Gamma_{ee}\pi^3}{3\alpha_{em}M_{J/\psi}^5} \left[\alpha_s(Q^2)xG_{\text{Pb}}(x,Q^2)\right]^2$$

$$R_g^{Pb}(x,Q^2) = \frac{G_{Pb}(x,Q^2)}{G_p(x,Q^2)}$$

Bjorken $x \sim 10^{-2} - 10^{-5}$


accessible at LHC


 J/Ψ in Pb-Pb UPC is a direct tool to measure nuclear gluon shadowing

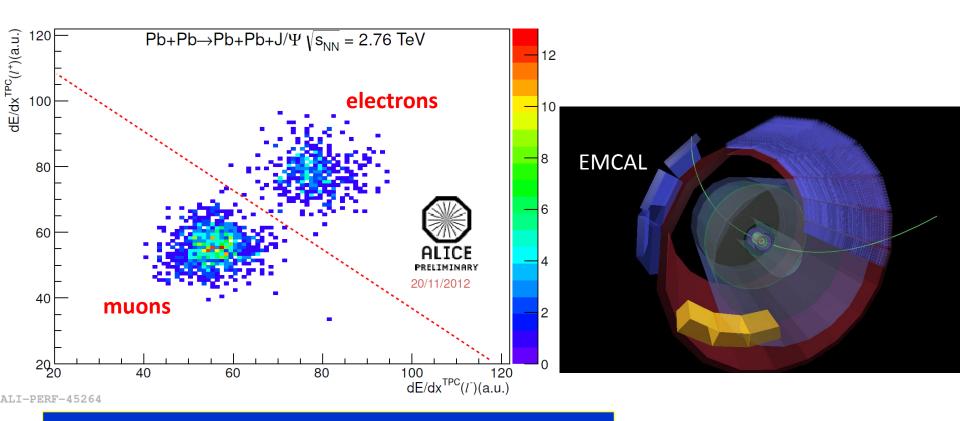
UPC J/ψ at central rapidity

UPC central barrel trigger:

- 2 ≤ TOF hits ≤ 6 (|η| < 0.9)
 + back-to-back topology (150° ≤ φ ≤ 180°)
- \geq 2 hits in SPD ($|\eta| < 1.5$)
- no hits in **VZERO** (C: -3.7 < η < -1.7, A: 2.8 < η < 5.1)

Offline event selection:

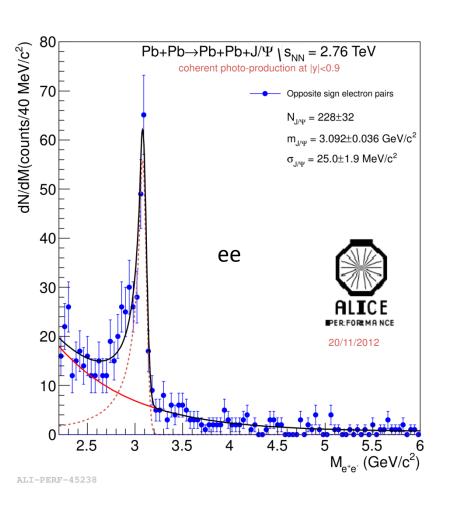
- Offline check on VZERO hits
- Hadronic rejection with ZDC

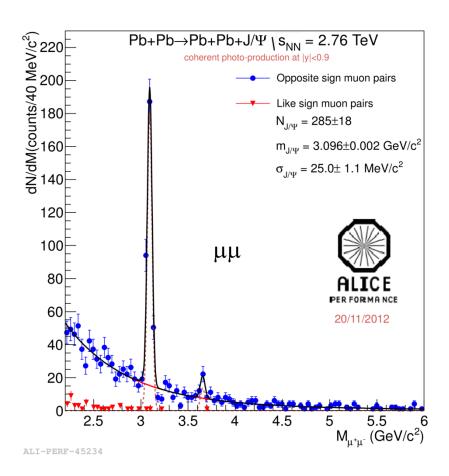

Track selection:

< 10 tracks with loose requirements ($|\eta|$ < 0.9 , > 50% findable TPC clusters and > 20 TPC clusters)

- Only two tracks: $|\eta| < 0.9$, with ≥ 70 TPC clusters, ≥ 1 SPD clusters
- p_⊤ dependent DCA cut
- opposite sign dilepton $|y| < 0.9, 2.2 < M_{inv} < 6 \text{ GeV/c}^2$ dE/dx in TPC compatible with e/ μ^5

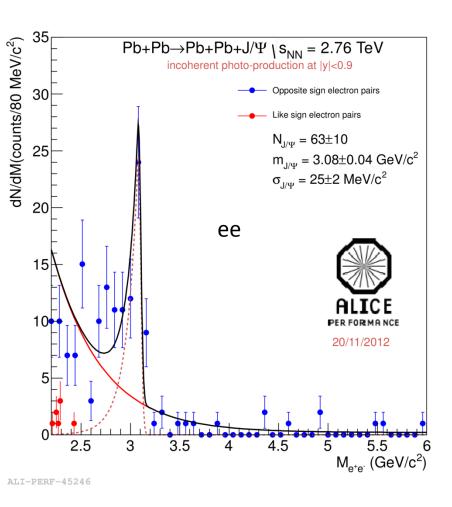
Integrated luminosity ~ 23 μb⁻¹

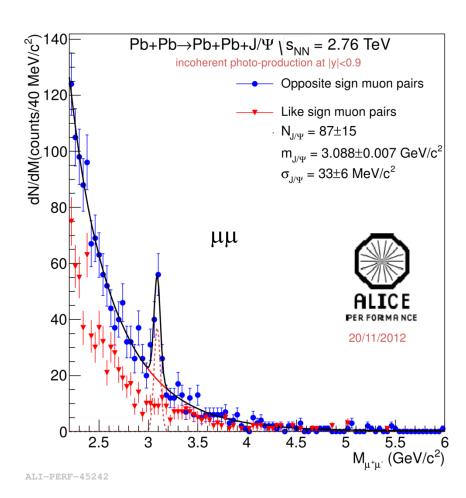

dE/dX selection in TPC

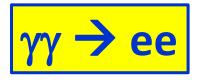


- dE/dx in TPC compatible with e/μ energy loss
- Cross-checked with E/p in EMCAL
- ±2% systematics due to e/μ separation

P.S. we cannot distinguish μ from π


pt < 200 MeV/c for di-muons (300 MeV/c for di-electrons) .and. < 6 neutrons in ZDC → Coherent enriched sample





pt > 200 MeV/c for di-muons (300 MeV/c for di-electrons)

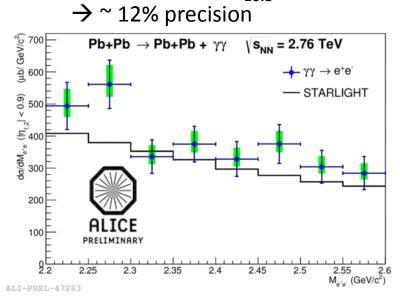
→ Incoherent enriched sample

Outside the J/ Ψ peak opportunity to study $\gamma\gamma \rightarrow ee$

Higher orders could be not negligible. Few models predicted a cross section reduction up to 30% (J. Baltz, Phys. Rev. C 80 (2009) 034901).

STARLIGHT(S.R. Klein and J. Nystrand) implements the above cross section at LO.

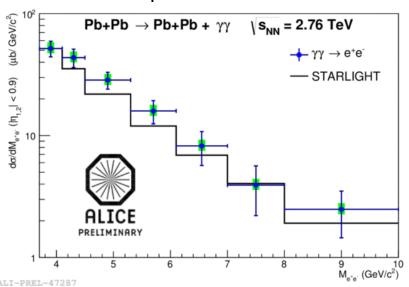
Data analysis performed in the invariant mass intervals 2.2 GeV/c² < M_{inv} < 2.6 GeV/c² and 3.7 GeV/c² < M_{inv} < 10 GeV/c²


Previous $\gamma\gamma \rightarrow$ ee measurement by STAR at RHIC: results compatible with STARLIGHT within 2 σ , measurement precision 22.5% (stat+sys).

At LHC:

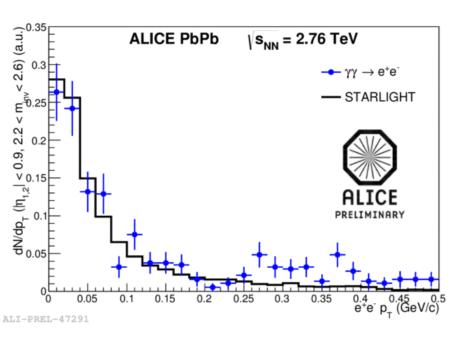
STARLIGHT prediction ($|\eta|$ <0.9, 2.2 GeV/c² < M_{inv} < 2.6 GeV/c²): $\sigma_{\gamma\gamma}$ =128 µb

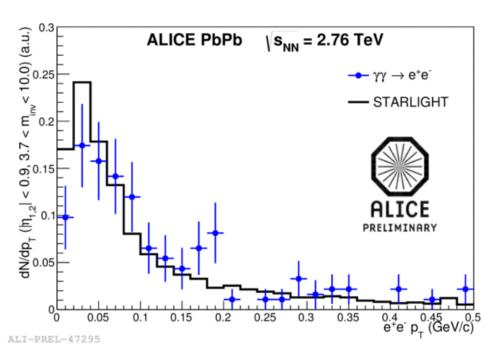
ALICE preliminary result:


$$\sigma_{\gamma\gamma}$$
=154 ± 11(stat) +16.6 (sys) µb

STARLIGHT prediction ($|\eta|$ <0.9, 3.7 GeV/c² < M_{inv} < 10 GeV/c²): $\sigma_{\gamma\gamma}$ =77 μb

ALICE preliminary result:

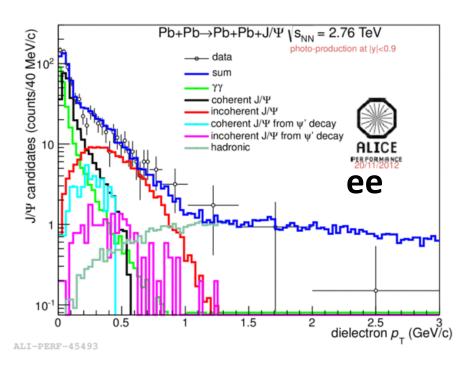

$$\sigma_{\gamma\gamma}$$
=91 ± 10(stat) ^{+10.9} (sys) µb
 \rightarrow ~ 16% precision

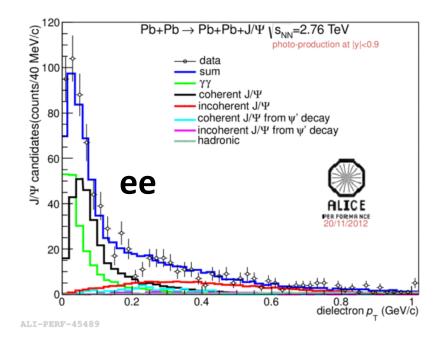


Data 20% above the predictions (compatible within 1 and 1.5 σ). 30% cross section reduction predicted in Phys. Rev. C 80 (2009) 034901 not supported. Consistent with STAR, measurement precision improved.

4/24/2013 E. Scapparone DIS2013 10

Moreover....




\dots , p_T spectrum properly reproduced

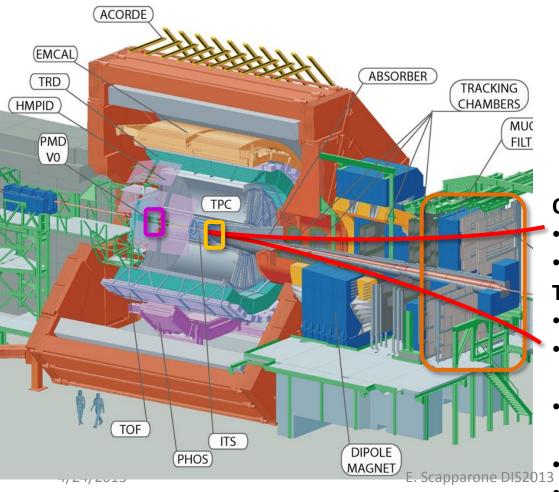
The J/ Ψ peak region: 2.2 GeV/c² < M_{inv} < 3.2 GeV/c² for electron and 3.0 GeV/c² < M_{inv} < 3.2 GeV/c² a for muons

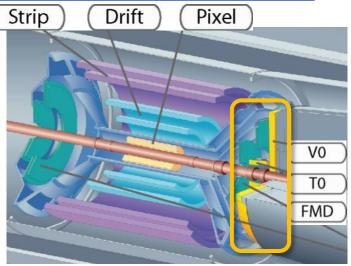
Used templates:

- Ψ' contribution to (in)coherent J/ $\Psi \rightarrow f_D$;
- Incoherent J/ Ψ contribution to coherent J/ Ψ (and vice-versa) \rightarrow f
- $\gamma \gamma \rightarrow \ell^+ \ell^-$ contribution to coherent J/ Ψ
- Hadronic J/Ψ;

Detail study of the systematics including:

- Luminosity;
- **Acc** x ε;
- Trigger efficiency (random sample);
- Trigger dead time;
- Signal extraction;
- e/μ separation;
- $\gamma\gamma$ ee in addition to the J/ Ψ (from the same or another Pb-Pb pair)

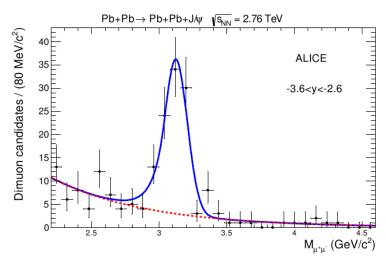

$$N_{\mathrm{J/\psi}}^{\mathrm{coh}} = \frac{N_{\mathrm{yield}}}{1 + f_I + f_D}$$


$$\frac{\mathrm{d}\sigma^\mathrm{coh}_{\mathrm{J/\psi}}}{\mathrm{d}y} = \frac{N^\mathrm{coh}_{\mathrm{J/\psi}}}{(\mathrm{Acc}\times\varepsilon)_{\mathrm{J/\psi}}\cdot BR(\mathrm{J/\psi}\to l^+l^-)\cdot\mathcal{L}_\mathrm{int}\cdot\Delta y}$$

UPC J/ψ at forward rapidity

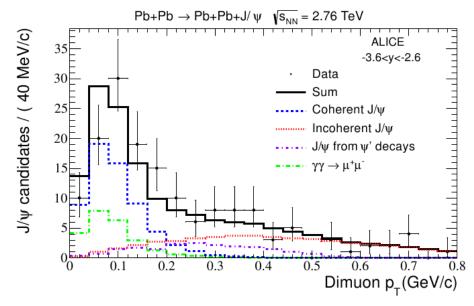
UPC forward trigger:

- single muon trigger with $p_T > 1$ GeV/c (-4 < η < -2.5)
- hit in **VZERO-C** (-3.7 < η < -1.7)
- no hits in **VZERO-A** (2.8 < η < 5.1)


Integrated luminosity ~ 55 μb⁻¹

Offline event selection:

- Beam gas rejection with VZERO
- Hadronic rejection with ZDC and SPD


Track selection:

- muon tracks: -3.7 < η < -2.5
- matching with tracks in the muon trigger
- radial position for muons at the end of absorber: 17.5 < R_{abs} < 89.5 cm
- p_T dependent DCA cut
- opposite sign dimuon: -3.6 < y < -2.6

Invariant mass distribution:

- Dimuon $p_T < 0.3 \text{ GeV/}c$
- Clean spectrum: only 2 like-sign events
- Signal shape fitted to a Crystal Ball shape
- Background fitted to an exponential
- Exponential shape compatible with expectations from $\gamma\gamma \rightarrow \mu\mu$ process

Four contributions in the p_T spectrum:

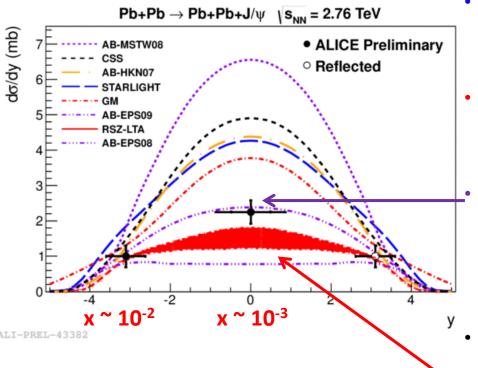
- Coherent J/ψ
- Incoherent J/ψ
- J/ψ from ψ' decays

$$N_{\mathrm{J/\psi}}^{\mathrm{coh}} = \frac{N_{\mathrm{yield}}}{1 + f_I + f_D}$$

• $\gamma\gamma \rightarrow \mu\mu$

$$N_{\rm J/\psi}^{\rm coh} = 78 \pm 10({\rm stat})_{-11}^{+7}({\rm syst})$$

ALICE: Phys. Lett. B718 (2013) 1273


$$\frac{d\sigma_{\rm coh}}{dy} = \frac{1}{BR} \cdot \frac{N_{\rm coh}}{N_{\gamma\gamma}} \cdot \frac{({\rm Acc} \ {\rm x} \ \epsilon)_{\gamma\gamma}}{({\rm Acc} \ {\rm x} \ \epsilon)_{\rm coh}} \frac{\sigma_{\gamma\gamma}}{\Delta y}$$

Source	Value
Theoretical uncertainty in $\sigma_{\gamma\gamma}$	20%
Coherent signal extraction	$^{+9}_{-14}\%$
Reconstruction efficiency	6%
RPC trigger efficiency	5%
J/ψ acceptance calculation	3%
two-photon e ⁺ e ⁻ background	2%
Branching ratio	1%
Total	$^{+24}_{-26}\%$

$$d\sigma_{J/\psi}^{\text{coh}}/dy = 1.00 \pm 0.18(\text{stat})_{-0.26}^{+0.24}(\text{syst}) \text{ mb}$$

ALICE: Phys. Lett. B718 (2013) 1273

Coherent J/ψ: comparison to models

Good agreement with models which include nuclear gluon shadowing.

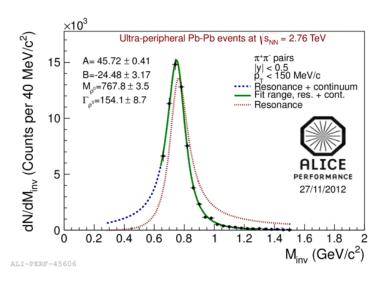
Best agreement with EPS09 shadowing

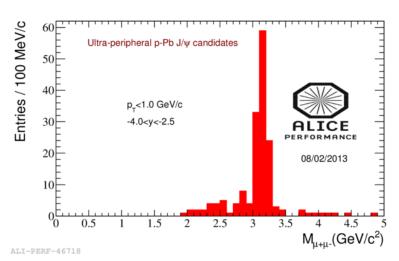
STARLIGHT: Klein, Nystrand, PRC60 (1999) 014903 VDM + Glauber approach where $J/\psi+p$ cross section is obtained from a parameterization of HERA data

GM: Gonçalves, Machado, PRC84 (2011) 011902 color dipole model, dipole nucleon cross section taken from the IIM saturation model

AB: Adeluyi and Bertulani, PRC85 (2012) 044904 LO pQCD calculations: AB-MSTW08 assumes no nuclear effects for the gluon distribution, other AB models incorporate gluon shadowing effects according to the EPS08, EPS09 or HKN07 parameterizations

CSS: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905 Glauber approach accounting ccg intermediate states


RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 LO pQCD calculations with nuclear gluon shadowing computed in the leading twist approximation


Plan to include also:

Lappi, Mäntysaari, hep-th/1301.4095

Conclusions and outlook

- The J/ Ψ coherent cross section was successfully measured in ALICE both at mid-rapidity and at forward rapidity;
- Models including nuclear gluon shadowing are favoured
- $\sigma_{\gamma\gamma\to ee}$ cross section measured at mid-rapidity: LO implementation gives a satisfactory prediction
- Incoherent J/ Ψ at mid-rapidity coming soon;
- ρ vector meson production analysis in progress;
- J/ Ψ production in p-Pb and Pb-p interaction in progress

