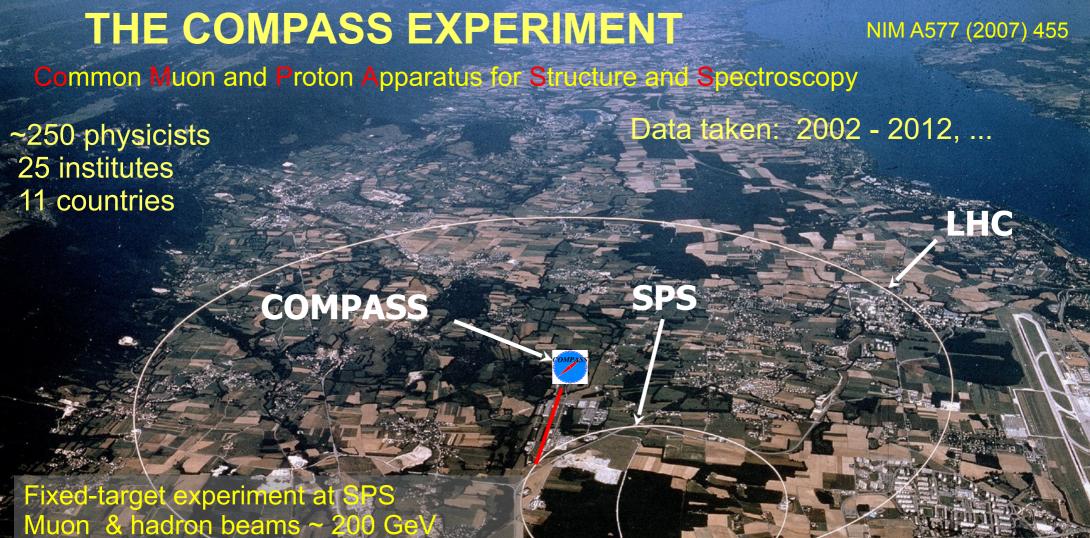
Gluon Polarisation Results from the COMPASS Experiment

Luís Silva

LIP – Lisbon Isilva@lip.pt On behalf of the COMPASS Collaboration

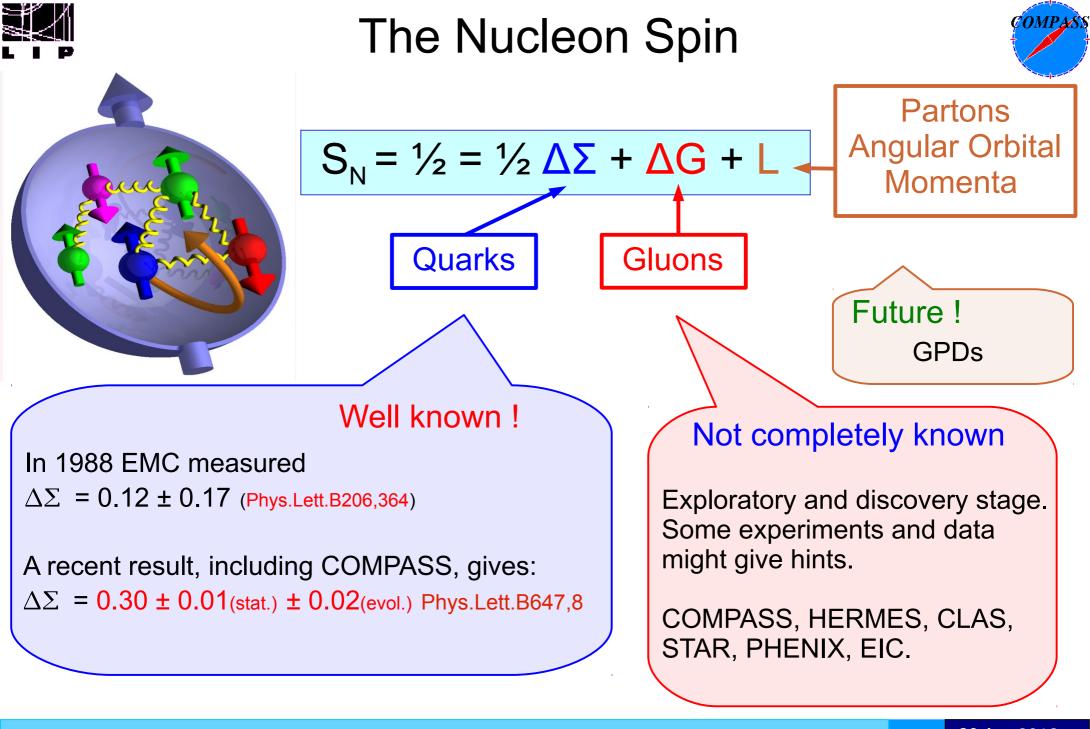
23 Apr 2013

COMPASS


Outline:

- Motivation
- High p_{T} Analysis
- Open Charm (LO and NLO) Analyses
- ∆G/G Results
- Summary and Conclusions

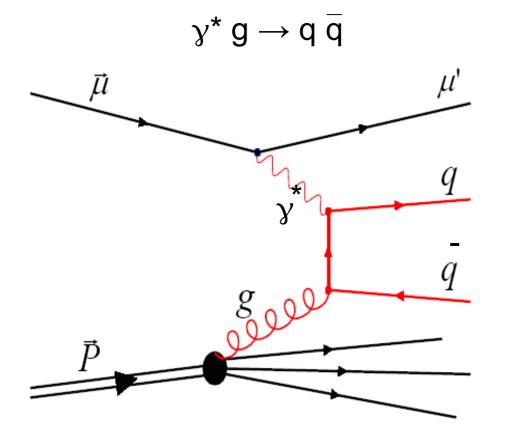
co-financed by

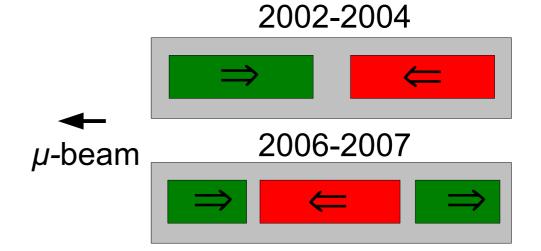


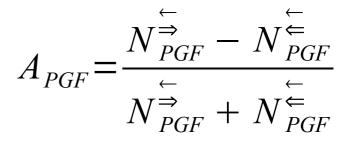
Nucleon structure & hadron spectroscop

Polarised p&d targets, LH targe

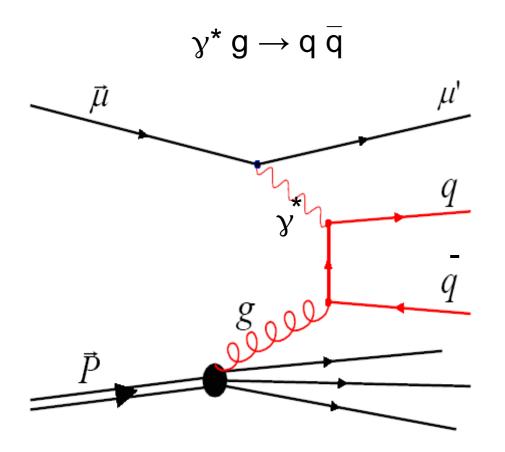
Versatile spectrometer


Running since 2002

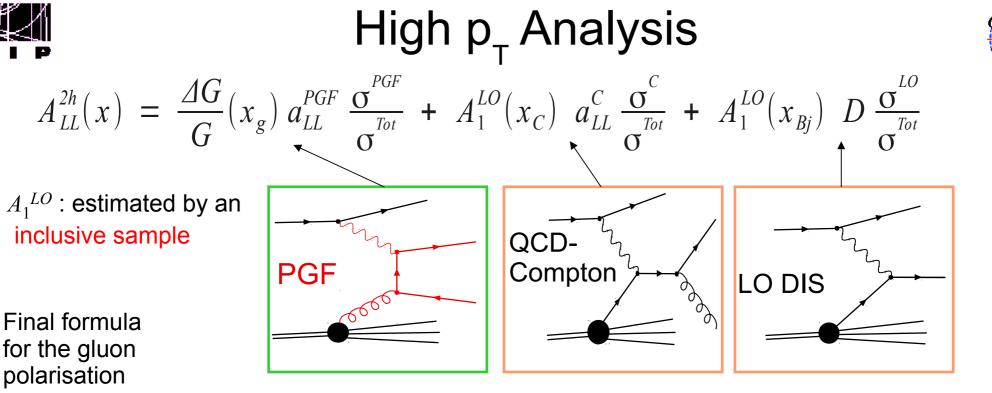



Direct Measurement of $\Delta G/G$

Photon-gluon fusion (PGF) process



Direct Measurement of $\Delta G/G$


Photon-gluon fusion (PGF) process

To select this process there are two methods :

 High transverse momentum hadrons (Q²<1 and Q²>1 (GeV/c)²)

© Much more statistics.

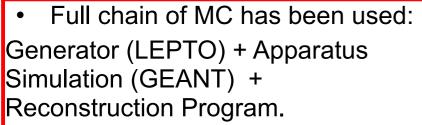
- Physical background: strongly model dependent requires a very good agreement between MC and Data.
- Open-charm meson (D mesons)
 - Provides the purest sample of PGF events, almost free from background contamination. Small dependence on MC.
 - B Low statistics.

$$\frac{\Delta G}{G}(x_g^{av}) = \frac{1}{\beta} \left[A_{LL}^{2h}(x_{Bj}) + A_{corr} \right]$$

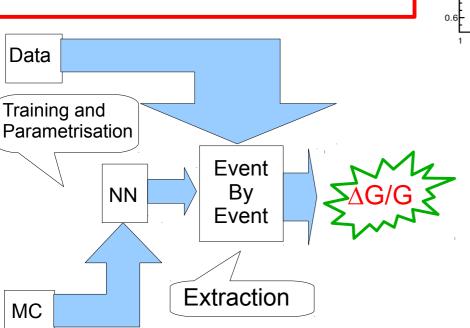
$$\beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF, incl} R_{PGF}^{incl} \frac{R_{LO}}{R_{LO}^{incl}} - a_{LL}^{PGF, incl} \frac{R_C R_{PGF}^{incl}}{R_{LO}^{incl}} \frac{a_{LL}^C}{D}$$

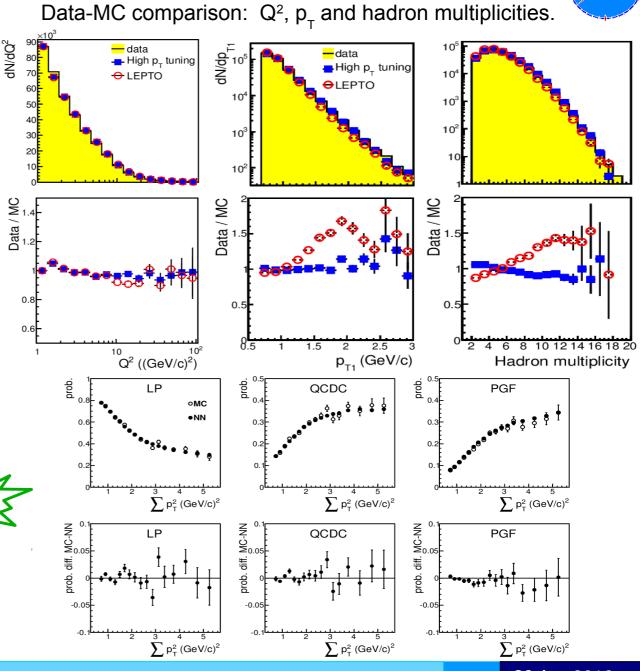
$$A_{corr} = -\left(A_1(x_{Bj})D\frac{R_{LO}}{R_{LO^{incl}}} - A_1(x_C)\beta_1 + A_1(x_C')\beta_2\right)$$

 $R_i = \frac{\sigma^i}{\sigma^{Tot}}$


• A^{2h}_{LL} : measured from the two hadron sample.

• a_{LL}^{i} and R_{i} : estimated from MC and parametrised using a Neural Network.


DIS 2013, Marseille



MC Simulation and Neural Network

- PDF: MSTW2008LO.
- High p_{T} sample:
 - MC with parton shower ON.
 - A new tuning was performed to improve the hadron description.

DIS 2013, Marseille

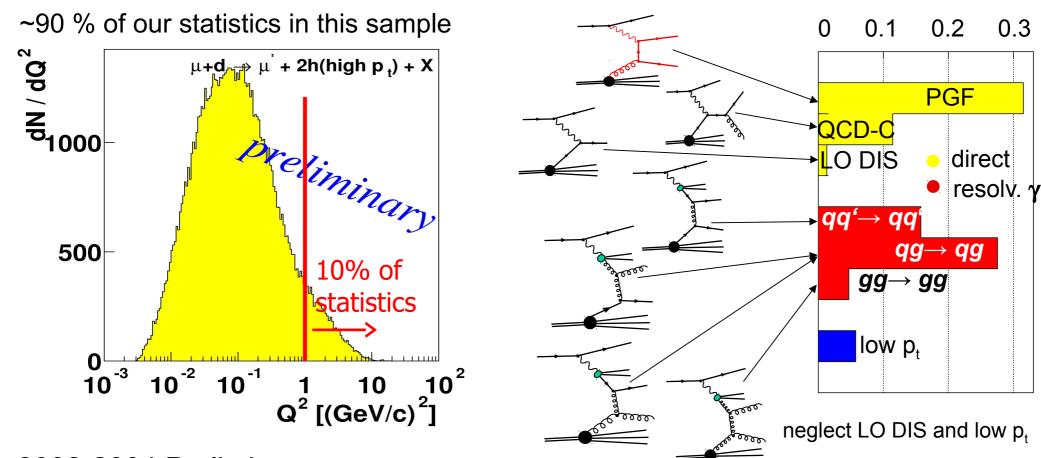
Luís Silva (lsilva@lip.pt)

Results

$$\frac{\Delta G}{G} = 0.125 \pm 0.060 \pm 0.063 \qquad x_{s} = 0.09^{+0.08}_{-0.05} \qquad \mu^{2} = 3 (\text{GeV/c})^{2}$$

The whole statistics was divided, for the first time, in 3 independent samples, having each one its own x_g distribution.

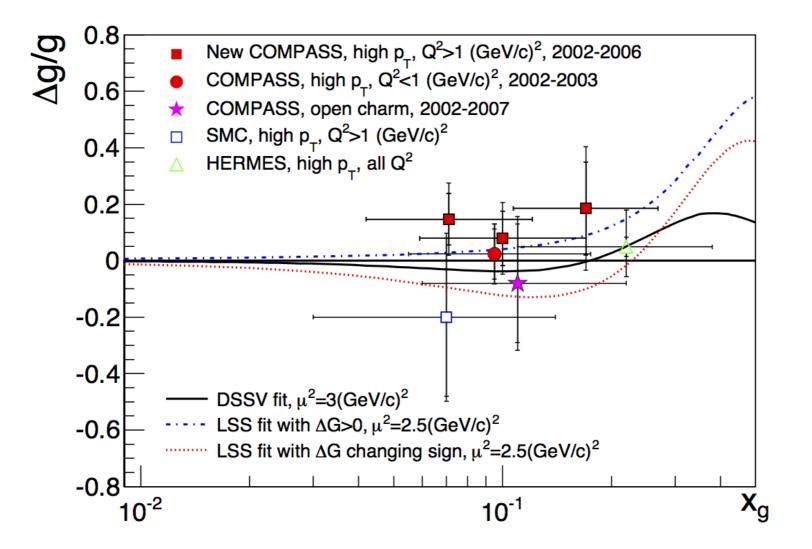
	1 st point	2 nd point	3 rd point
∆G/G	$0.147 \pm 0.091 \pm 0.088$	$0.079 \pm 0.096 \pm 0.082$	$0.185 \pm 0.165 \pm 0.143$
$< x_g >$	0.07 +0.05 -0.03	0.10 +0.07 -0.04	0.17 ^{+0.10} _{-0.06}


 \Rightarrow Within the errors the 3 points show no x_{o} dependence

Physics Letters B 718 (2013) 922–930

High p_{τ} Analysis, $Q^2 < 1 (GeV/c)^2$

2002-2004 Preliminary: $\Delta G/G = 0.016 \pm 0.058(stat) \pm 0.055(syst)$ 2002-2003 Published:

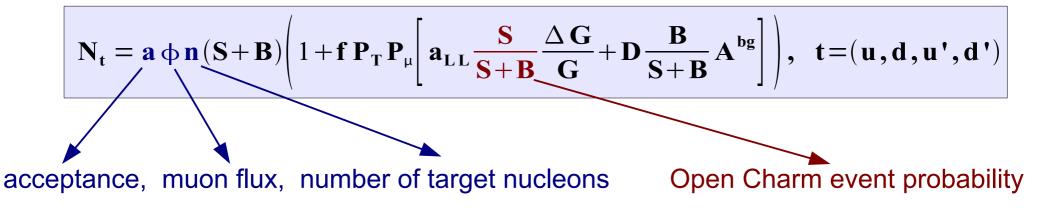

 $\Delta G/G = 0.024 \pm 0.089(stat) \pm 0.057(syst)$

Physics Letters B 633,25 (2006)

New $\Delta G/G$ Result from High p_{τ} Analysis

Physics Letters B 718 (2013) 922–930

DIS 2013, Marseille

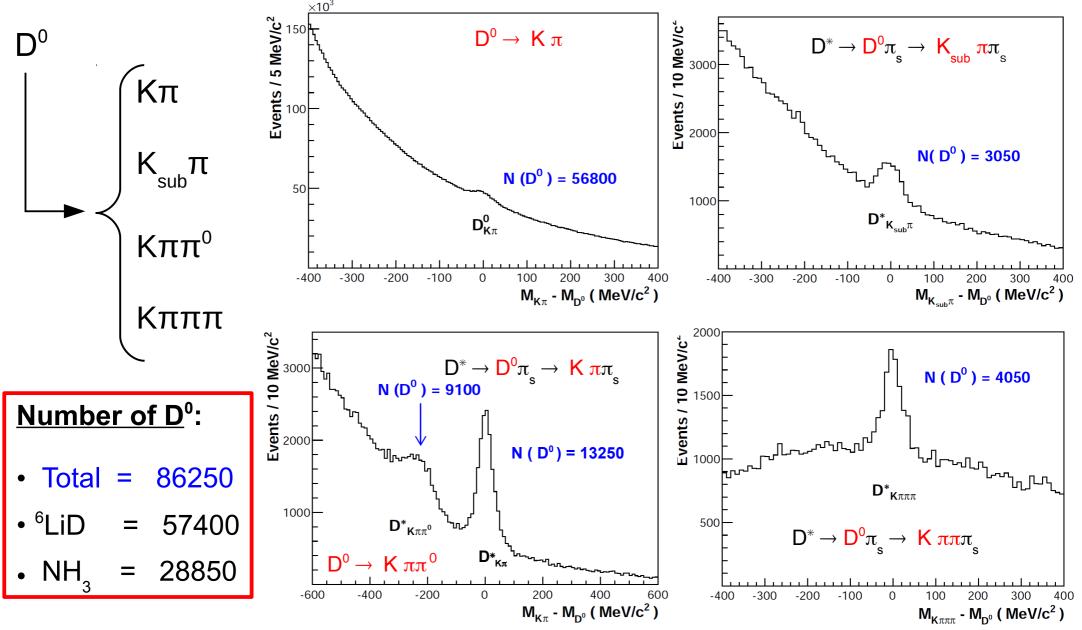

Luís Silva (lsilva@lip.pt)

Open Charm

• The relation between the number of reconstructed D⁰ (for each target cell configuration) and $\Delta G/G$ is given by:

• Each equation is weighted with a signal weight $w_s = f P_m a_{LL} S/(S+B)$ and also with a background weight $w_B = f P_m D B/(S+B)$:

<u>8 equations with 7 unknowns</u>: $\Delta G/G$, $A^{bg} + 5$ independent $\alpha = (a \phi n)$ factors


The system is solved by a χ^2 minimisation

DIS 2013, Marseille

D⁰ Invariant Mass Spectra: 2002-2007 Data

DIS 2013, Marseille

Luís Silva (Isilva@lip.pt)

12/16 23 Apr 2013

Neural Network Parametrisation

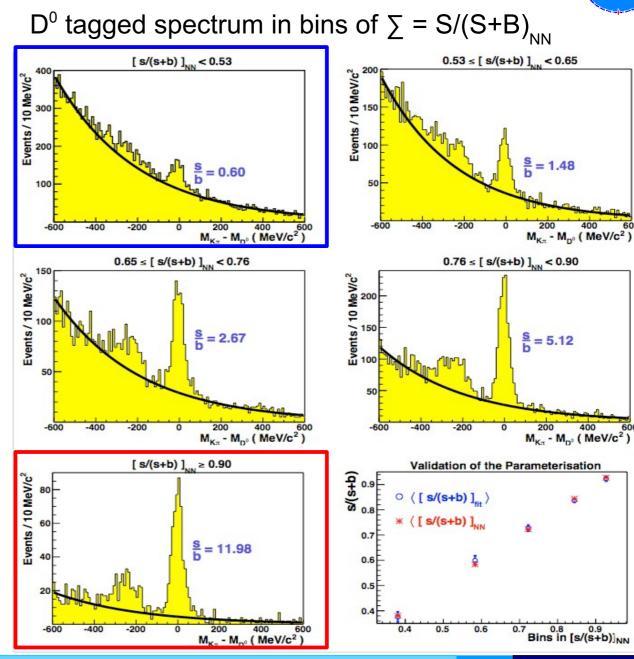
= 1.48

400

200

- Two real data samples (with the same cuts applied) are compared by a Neural Network (using some kinematic variables as a learning vector):
 - Signal model gcc =

 $K^{+}\pi^{-}\pi^{-} + K^{-}\pi^{+}\pi^{+}$


(D^o spectrum: signal + background)

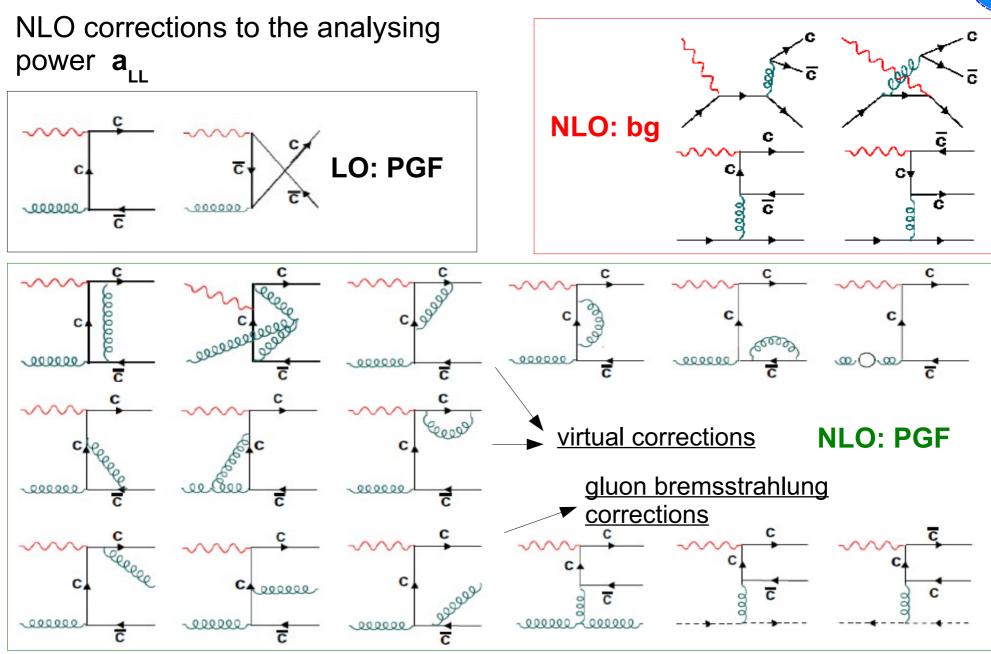
Background model

wcc = $\mathbf{K}^{\dagger}\pi^{\dagger}\pi^{-}$ + $\mathbf{K}^{-}\pi^{-}\pi^{+}$

(no D^0 is allowed)

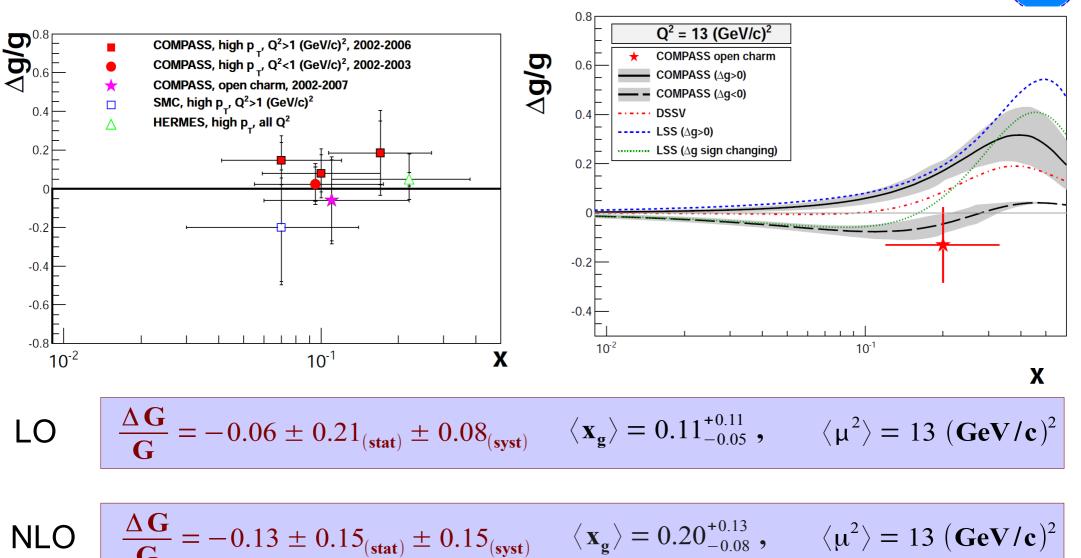
If the background model is good enough, the Neural Network is able to distinguish the signal from the combinatorial background on a event by event basis (inside qcc).

DIS 2013, Marseille


(Isilva@lip.pt) Luís Silva

23 Apr 2013 13/16

NLO Corrections for Open Charm Analysis

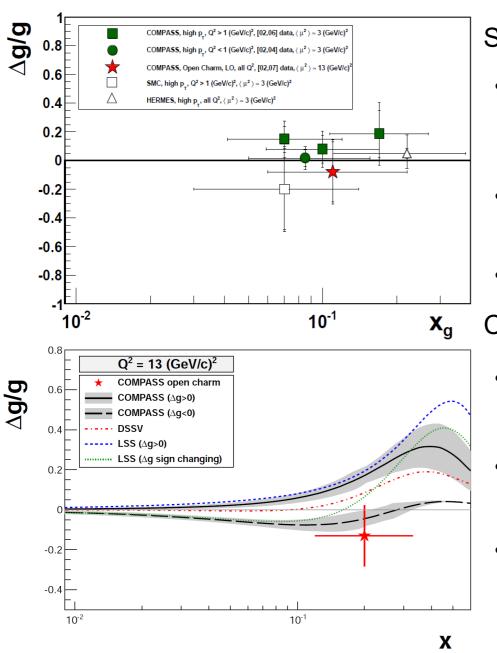


DIS 2013, Marseille

Luís Silva (lsilva@lip.pt)

Open Charm ΔG/G Results: LO and NLO

Physical Review D 87, 052018 (2013)


DIS 2013, Marseille

Luís Silva (lsilva@lip.pt)

Summary and Conclusions

Summary:

- The importance of the gluon polarisation measurement concerning the nucleon spin structure was emphasised.
- The direct measurement methods were explained.
- The gluon polarisations results are presented.
- Conclusions:
 - Around X_g~ 0.1 all measurements of ΔG/G are compatible with zero.
 - Still there is the contribution of L_{partons} to be taken into account.
 - The COMPASS-II program foresees to measure L_{partons} via GPDs.

Spares

DIS 2013, Marseille

Luís Silva (lsilva@lip.pt)

17/16 23 Apr 2013

High p_{T} Asymmetries

5 p_T bins x 5 X_{bi} bins

 A_{LL}^{2h}/D asymmetries as a function of x_{Bj} and $\sum p_T^2$.

x _{Bj}	$p_{T_1}^2 + p_{T_2}^2$ (GeV/c) ²	$\langle x_{Bj} \rangle$	$\langle Q^2 \rangle$	$\langle p_{T_1}^2 + p_{T_2}^2 \rangle$	$A_{\rm LL}^{\rm 2h}/D$
			$(GeV/c)^2$	$(\text{GeV}/c)^2$	
0.004-0.01	0.65-1.0	0.007	1.4	0.86	0.002 ± 0.011
0.004-0.01	1.0-2.0	0.007	1.4	1.35	-0.002 ± 0.009
0.004-0.01	2.0-3.0	0.007	1.4	2.39	-0.019 ± 0.020
0.004-0.01	3.0-4.0	0.007	1.4	3.41	-0.075 ± 0.037
0.004-0.01	4.0-	0.007	1.5	5.45	0.001 ± 0.045
0.01-0.02	0.65-1.0	0.014	2.4	0.86	-0.009 ± 0.012
0.01-0.02	1.0-2.0	0.014	2.4	1.35	-0.016 ± 0.010
0.01-0.02	2.0-3.0	0.014	2.5	2.39	0.007 ± 0.024
0.01-0.02	3.0-4.0	0.014	2.6	3.41	0.054 ± 0.045
0.01-0.02	4.0-	0.014	2.7	5.48	-0.033 ± 0.056
0.02-0.05	0.65-1.0	0.030	4.8	0.85	0.015 ± 0.016
0.02-0.05	1.0-2.0	0.030	5.0	1.35	0.018 ± 0.013
0.02-0.05	2.0-3.0	0.030	5.3	2.39	0.056 ± 0.031
0.02-0.05	3.0-4.0	0.030	5.5	3.41	0.054 ± 0.057
0.02-0.05	4.0-	0.031	5.9	5.52	0.066 ± 0.068
0.05-0.10	0.65-1.0	0.069	10.9	0.85	0.074 ± 0.029
0.05-0.10	1.0-2.0	0.068	11.4	1.35	0.038 ± 0.025
0.05-0.10	2.0-3.0	0.069	12.2	2.39	0.051 ± 0.057
0.05-0.10	3.0-4.0	0.068	12.9	3.40	-0.079 ± 0.105
0.05-0.10	4.0-	0.069	13.6	5.67	-0.087 ± 0.123
0.10-1.00	0.65-1.0	0.170	28.2	0.85	0.100 ± 0.043
0.10-1.00	1.0-2.0	0.172	29.9	1.35	0.143 ± 0.036
0.10-1.00	2.0-3.0	0.172	31.7	2.39	-0.037 ± 0.083
0.10-1.00	3.0-4.0	0.158	29.0	3.41	-0.191 ± 0.156
0.10-1.00	4.0-	0.168	32.8	5.67	0.593 ± 0.180

DIS 2013, Marseille

Luís Silva (lsilva@lip.pt)

18/16 23 Apr 2013

The COMPASS Spectrometer

Common Muon and Proton Apparatus for Structure and Spectroscopy

 Δ G/G for High p₊, Q² >1 GeV²

The final formula for the gluon polarisation:

$$\frac{\Delta G}{G}(x_{g}^{av}) = \frac{A_{LL}^{2h}(x_{Bj})}{\beta} - \frac{A_{1}(x_{Bj})}{\beta} D \frac{R_{LO}}{R_{LO}^{incl}} - \frac{A_{1}(x_{C})}{\beta} \beta_{1} + \frac{A_{1}(x_{C}')}{\beta} \beta_{2}$$

$$\beta = a_{LL}^{PGF} R_{PGF} - a_{LL}^{PGF, incl} R_{PGF}^{incl} \frac{R_{LO}}{R_{LO}^{incl}} - a_{LL}^{PGF, incl} \frac{R_{C} R_{PGF}^{incl}}{R_{LO}^{incl}} \frac{a_{LL}^{C}}{D} \qquad R_{i} = \frac{\sigma^{i}}{\sigma^{7ot}}$$

$$\beta_{1} = \frac{1}{R_{LO}^{incl}} (a_{LL}^{C} R_{C} - a_{LL}^{C, incl} R_{C}^{incl} \frac{R_{LO}}{R_{LO}^{incl}}) \qquad \beta_{2} = a_{LL}^{C, incl} \frac{R_{C} R_{C}^{incl}}{(R_{LO}^{incl})^{2}} \frac{a_{LL}^{C}}{D}$$

- A^{2h}_{LL} is the measured 2-h asymmetry.
- a_{II} and R are estimated using MC.
- The A, are taken using a parametrisation on inclusive data. (EPJ C52 (2007)255)

Monte Carlo Simulation

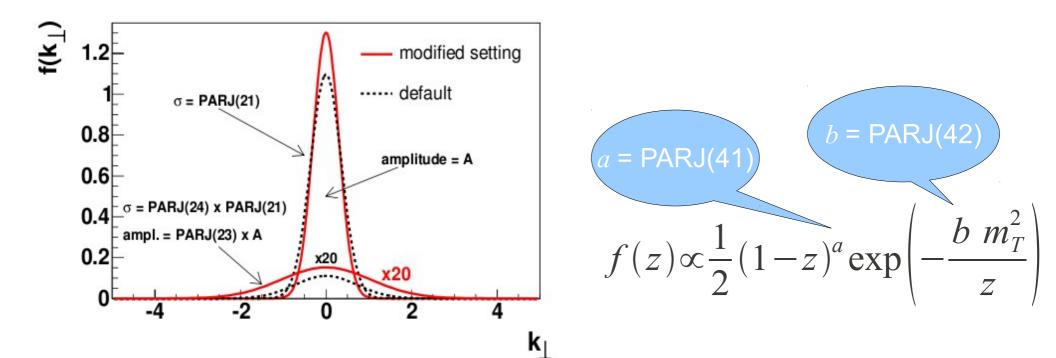
This analysis uses information from the MC, thus a strong effort and care to ensure that the MC simulation describes as good as possible the data was undertaken.

Two MC samples were used in the analysis: high p_T and inclusive samples.

- Full chain of MC has been used:
- Generator (LEPTO) + Apparatus Simulation (GEANT) + Reconstruction Program.
- PDF: MSTW2008LO.
- High p_{τ} sample:
 - MC with parton shower ON has been used in the analysis.
 - A new tuning was performed to improve the hadron description.

MC Tuning

- The purpose of the MC tuning is to correct the shapes of the hadron variables (momenta) and fragmentation (multiplicity).
- In LEPTO this can be achieved by changing JETSET parameters:

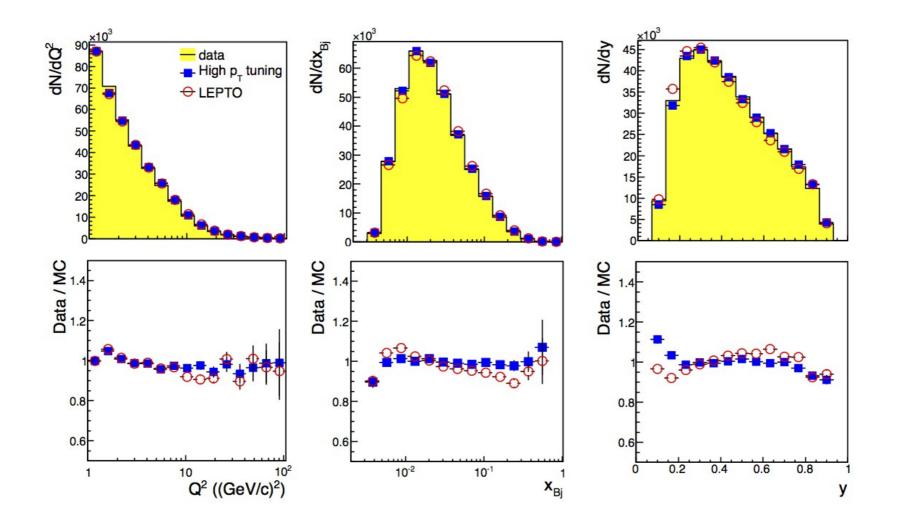

PARJ(21)	PARJ(23)	PARJ(24)	PARJ(41)	PARJ(42)
Transverse momentum of				
the hadron fragmentation			func	ction

- These parameters can be divided into two sets regarding the component of the trajectory of the particles: transverse and longitudinal variable components.
- The sets can be tuned independently.

 \Rightarrow The tuning improves substantially the Data-MC agreement.

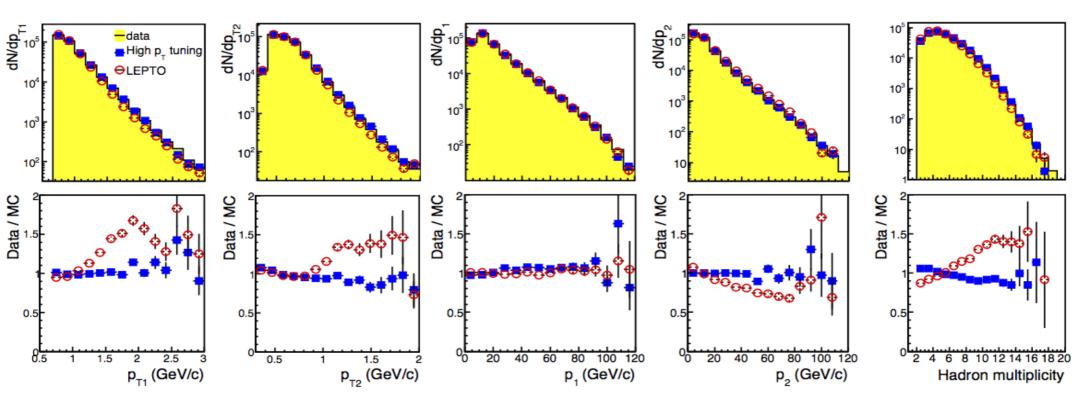
Monte Carlo Simulation

COMPASS new tuning LEPTO default tuning


PARJ(21)	PARJ(23)	PARJ(24)	PARJ(41)	PARJ(42)
0.34	0.04	2.8	0.025	0.075
0.36	0.01	2.0	0.3	0.58
Transverse momentum of the hadron fragmentation			Fragmentation function	

MPA

Data – Monte Carlo comparison



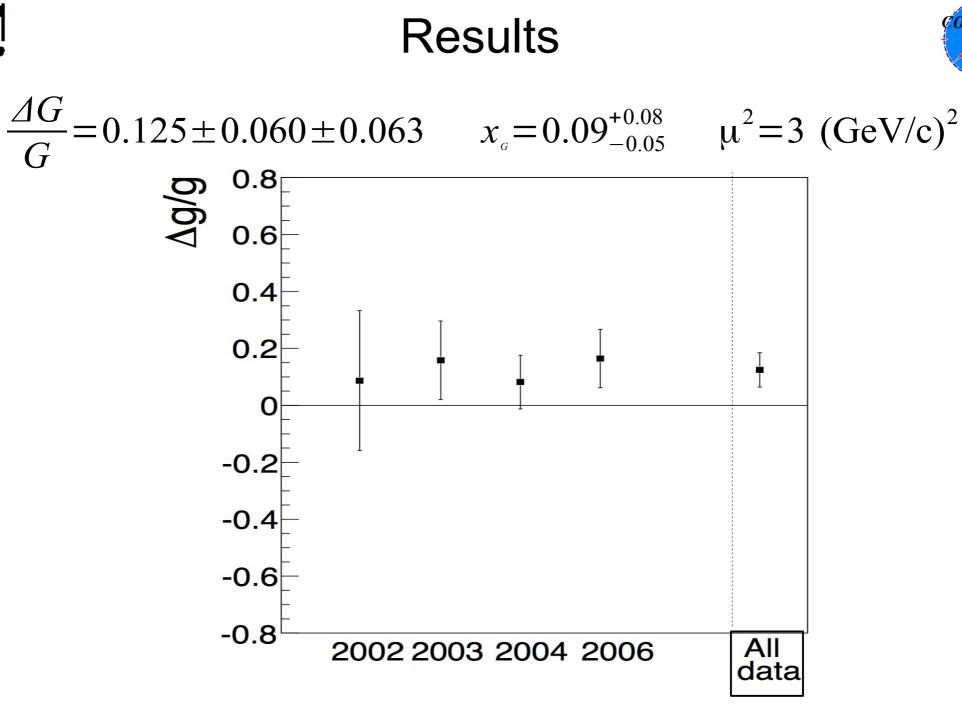
Data – Monte Carlo comparison

high- p_T sample: hadron variables (p_{T1} , p_{T2} , p_1 , p_2 , and hadron multiplicity)

MPAS

Weighted method

• A weight is applied on event-by-event basis:


 $W = fDP_b\beta$, where β is a factor depending on a_{LL}^i and R^i

• Therefore for every event we have to know:

$$\begin{split} R_{PGF}, R_{C}, R_{LO}, R_{PGF}^{incl}, R_{C}^{incl}, R_{LO}^{incl}, \\ a_{LL}^{PGF}, a_{LL}^{C}, a_{LL}^{PGF, incl}, a_{LL}^{C, incl}, \\ x_{C}, x_{G}, \\ f, D, P_{b} \end{split}$$

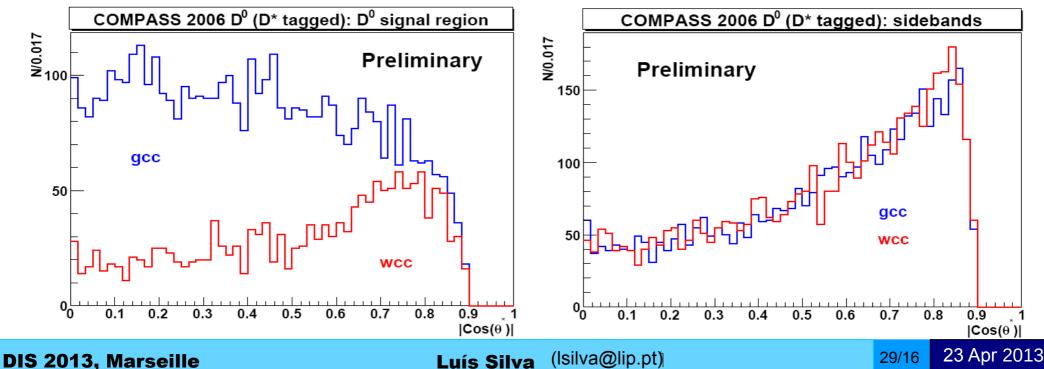
 f,D,P_b are directly obtained from data. The all the others variables have to be estimated/parametrised.

DIS 2013, Marseille

27/16 23 Apr 2013

MPAS

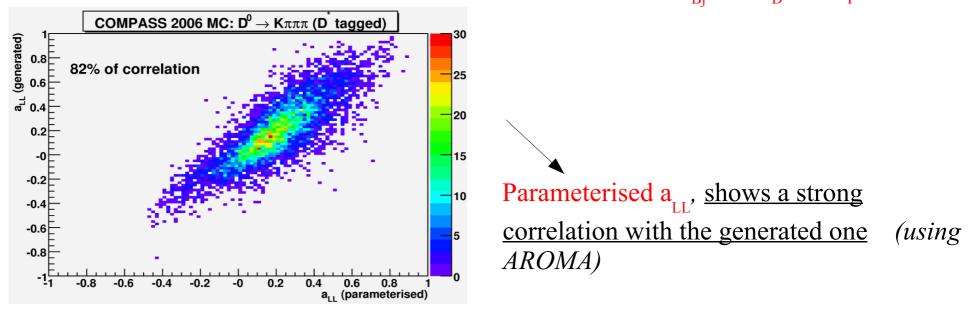
Systematic Uncertainties


	δ(ΔG/G)		
Sources of Systematic Uncertainties	High pT	Open Charm	
MC Simulation	0.045		
Formula Simplification	0.035	0.025	
False Asymmetries	0.019	0.080	
A ₁ Parametrisation	0.015		
NN Parametrisation	0.010		
P _B , P _T , f	0,004	0.009	
a _{LL}		0.119	
s/(s+b)		0.009	
Total	0.063	0.146	

Neural Network qualification of events

- **Two real data samples** (with the same cuts applied) **are compared by a Neural Network** (using some kinematic variables as a learning vector):
 - Signal model \rightarrow gcc = K⁺ $\pi^{-}\pi_{s}^{-}$ + K⁻ $\pi^{+}\pi_{s}^{+}$ (D⁰ spectrum: signal + background)
 - **Background model** \rightarrow wcc = K⁺ $\pi^{+}\pi_{s}^{-}$ + K⁻ $\pi^{-}\pi_{s}^{+}$ (no D⁰ is allowed)
- If the background model is good enough: <u>The Neural Network is able to distinguish the</u> signal from the combinatorial background on a event by event basis (inside gcc)

Example of a good learning variable

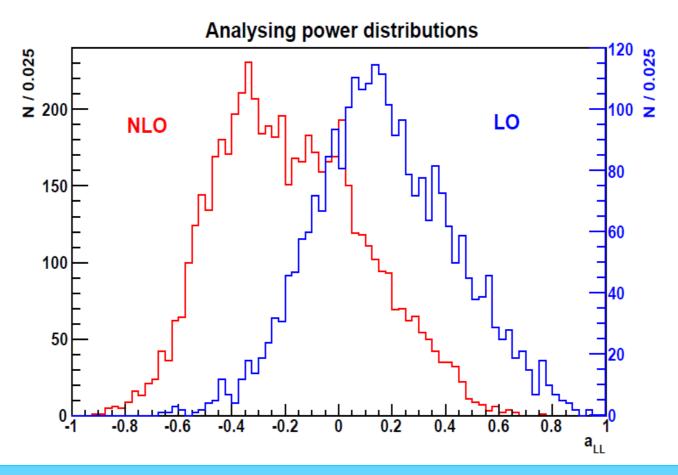

Analysing power (muon-gluon asymmetry a_{II})

• a₁₁ is <u>dependent on the full knowledge of the partonic kinematics</u>:

$$a_{LL} = \frac{\Delta \sigma^{PGF}}{\sigma_{PGF}} (y, Q^{2}, x_g, z_C, \phi)$$

Can't be experimentally obtained: <u>only one charmed meson is reconstructed</u>

 a_{LL} is obtained from Monte-Carlo (<u>in LO</u>), to serve as input for a Neural Network parameterisation on some reconstructed kinematical variables: y, x_{Bi}, Q², z_D and p_T



Comparison of $a_{LL}(LO)$ with $a_{LL}(NLO)$

• The AROMA generator is used to simulate the fase space for the NLO (PS on) / LO (PS off) calculations of a_{LL} . The resulting D⁰ mesons are reconstructed in the COMPASS spectrometer like real events. The respective a_{II} distributions are:

DIS 2013, Marseille

Luís Silva (Isilva@lip.pt)