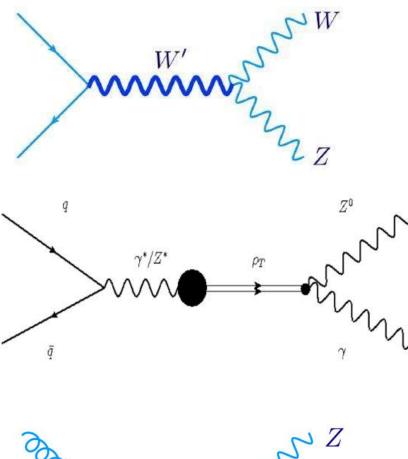
Search for resonant diboson production with the ATLAS detector

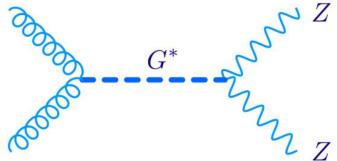
Peter Loscutoff, UC Berkeley/LBNL

On Behalf of the ATLAS Collaboration

at

XXI. International Workshop on Deep-Inelastic Scattering and Related Subjects Marseille, France


April 24, 2013

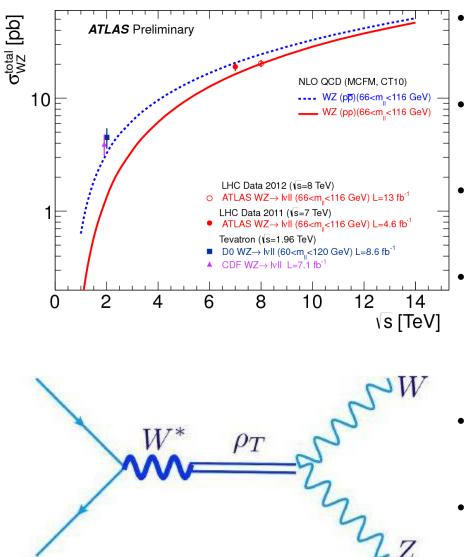


1

Motivation

Diboson production is a key test of electroweak symmetry breaking

A diboson resonance could be produced by a wide range of BSM theories


- **EGM/SSM V**': Which provides a reasonable model independent template for many other theories
- Technicolor: ρ_T, a_T, ω_T: Some Technicolor models, eg: MWTC are consistent with the Higgs observation and would preferentially decay to dibosons
- Extra Dimensions: RS Graviton: Some extra dimensional models of gravity predict heavy resonances decaying to vector bosons.

Summary of Diboson Resonance Analyses

Final State	Channel	Dataset Used	Expected Reach
lvll	WZ	13fb ⁻¹ at 8 TeV	W' ~ 1300 GeV
lljj	WZ, ZZ	7.2fb ⁻¹ at 8 TeV	bulk G* ~ 870 GeV
ΙΙγ, Ινγ	Ζ γ, W γ	4.6fb ⁻¹ at 7 TeV	a _T ~ 620 GeV
IvIv	WW	4.6fb ⁻¹ at 7 TeV	bulk G* ~740 GeV
lvjj	WZ,WW	1fb ⁻¹ at 7 TeV	-
	ZZ	1fb ⁻¹ at 7 TeV	G* ~ 860 GeV

- Neutral channels (WW,ZZ), have significant overlap in interest with Higgs analyses.
- I will focus mainly on the results using the 8 TeV dataset, $\textbf{ZZ}{\rightarrow}\textbf{IIjj}$ and $\textbf{WZ}{\rightarrow}\textbf{IvII}$
- Also, one new 7 TeV result, $Z\gamma \rightarrow Il\gamma$, $W\gamma \rightarrow I\nu g$

- We have an excellent understanding of Standard Model WZ production.
- High mass region can still be sensitive to new physics.
- Three leptons in final selection gives a very clean channel
- As a baseline model, consider EGM W', which provides a good parameterization of any narrow resonance.
- MWTC can also provide resonant production of $\rho_T \rightarrow WZ$
- The use of missing energy makes the WZ mass resolution large compared to the natural width of these signals.

$WZ \rightarrow I_VII$

Z+Jets

Control Region:

No angular requirements

 $m_{\tau}(W) < 25 \text{ GeV}$

 $E_{T}^{miss} < 25 \text{ GeV}$

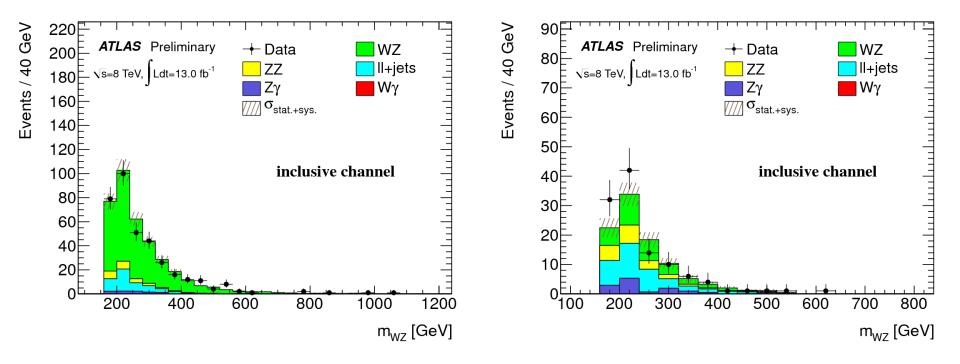
Selection

- Exactly 3, e or μ with $p_T > 25 \text{ GeV}$
- $E_T^{miss} > 25 \text{ GeV}$
- |m(II) -m(Z) | < 20 GeV
- m_T(W) < 100 GeV
- Recover the W p_z by assuming the W boson is on-shell*
- Separate the signal from the Standard Model control region by requiring back-to-back vector bosons: $\Delta \phi > 2.6$ and $\Delta y < 1.8$

Backgrounds

- Events with at least three prompt leptons: WZ, ZZ
- Photons passing lepton selection: Zγ
- Jets faking leptons: top, Z+jets
- A data driven method is used to measure the contribution of jets faking leptons.

*This is actually a quadratic constraint, which gives two possible solutions for p_Z . The smaller solution is used.

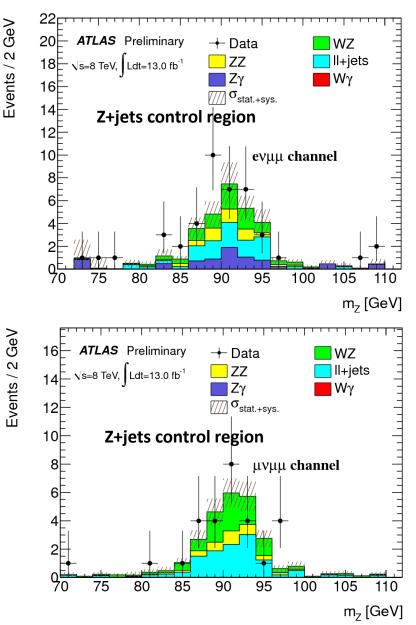

Signal Region: $m_T(W) < 100 \text{ GeV}$ $E_T^{miss} > 25 \text{ GeV}$ $\Delta \phi > 2.6 \text{ and } \Delta y < 1.8$

 WZ Control Region:

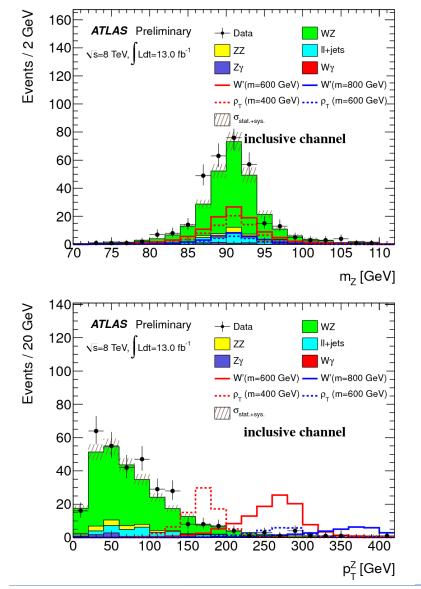
 $m_T(W) < 100 \text{ GeV}$
 $E_T^{miss} > 25 \text{ GeV}$
 $\Delta \phi < 2.6 \text{ or } \Delta y > 1.8$

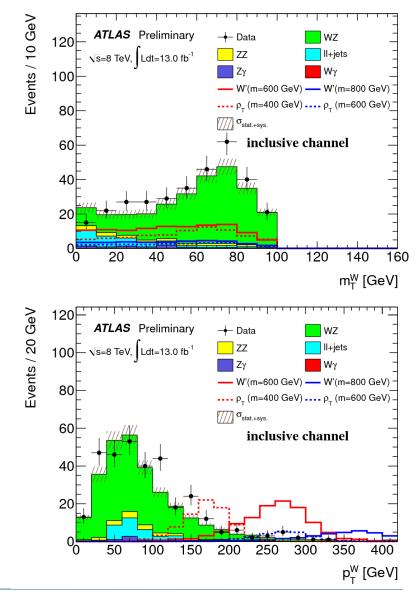
Control Regions

- The Δφ and Δy cuts provide a sample dominated by Standard Model WZ but insensitive to any resonance signal.
- Low E_T^{miss} and m_T(W) provide a sample with a significant contribution from **Z+jets** with a fake third lepton



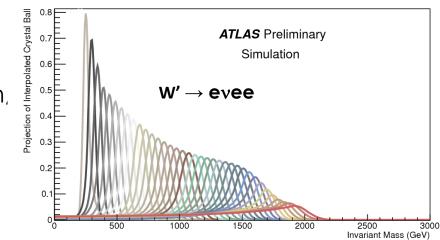
Fakes

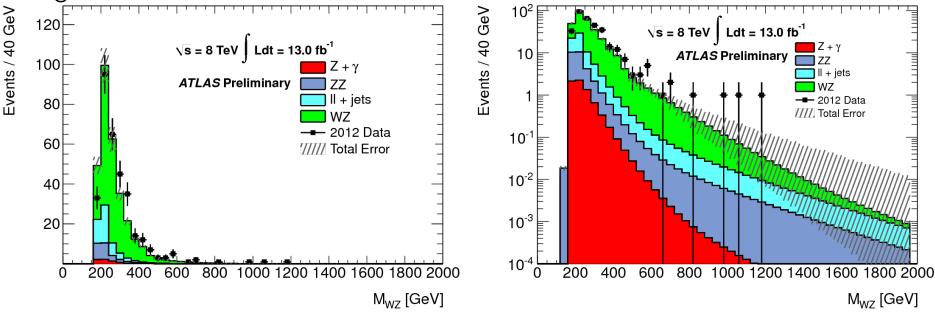

• Derive a fake factor in a region dominated by fake leptons


$$f = \frac{N_{\text{analysis}}^{\text{control}}}{N_{\text{loose}}^{\text{control}}}$$

- Estimate signal region contamination by scaling events with 2 good, 1 loose leptons by fake factor.
- Consistent results between a fake factor measured in Z+jets (statistically dominated) and dijets (systematically dominated)

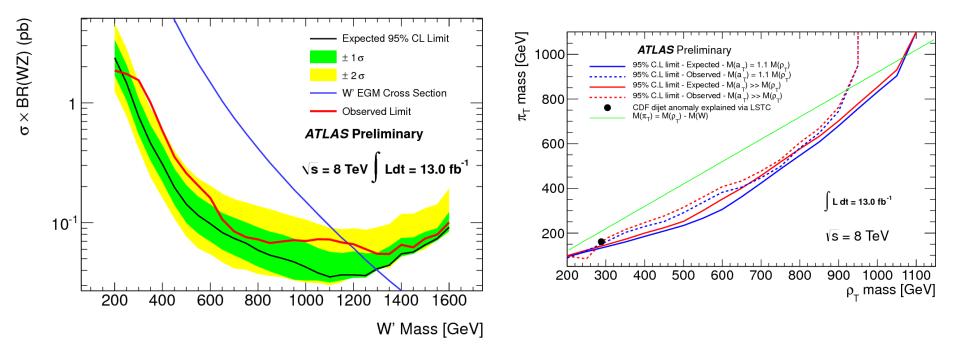
Signal Region Kinematics

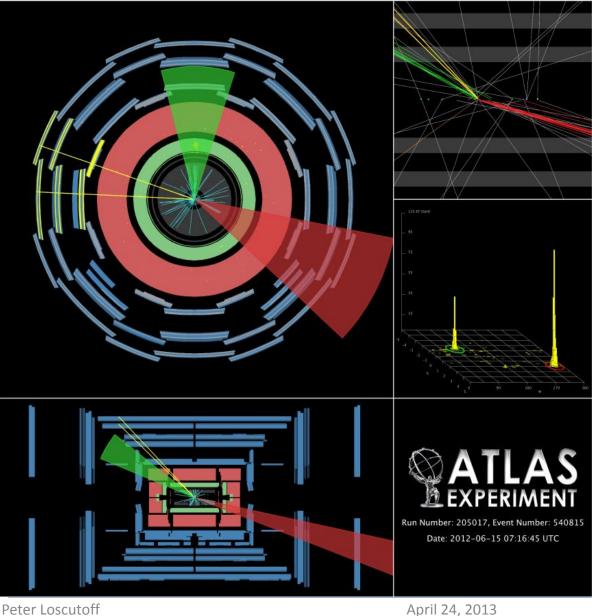



Peter Loscutoff

April 24, 2013

Limit Setting Preparation


- The WZ invariant mass is used to set limits
- To populate the tail of this distribution, a smooth curve is fit to the background distributions
- A dense distribution of potential signals is generated, so that any bump is well explained by some signal



Limits

- No new physics is observed
- Set limits using m(WZ)
- Exclude an EGM W' < 1180 GeV
- Exclude a $\rho_T < 920 \text{ GeV}$ for $m(\rho_T) = m(\pi_T) + m(W)$
- Background extrapolation at high mass comes with large uncertainty

Introduction

- G* -> ZZ is used here as a benchmark model
- Bulk RS-graviton has enhanced BR to Z (also, W, H, t)

 G^*

DIS2013

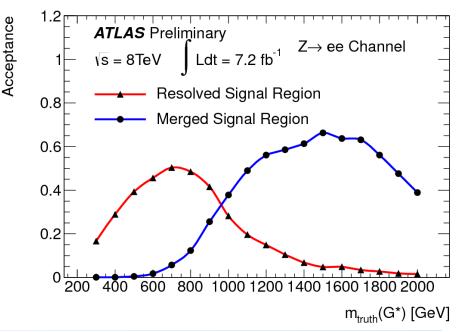
00000

Z

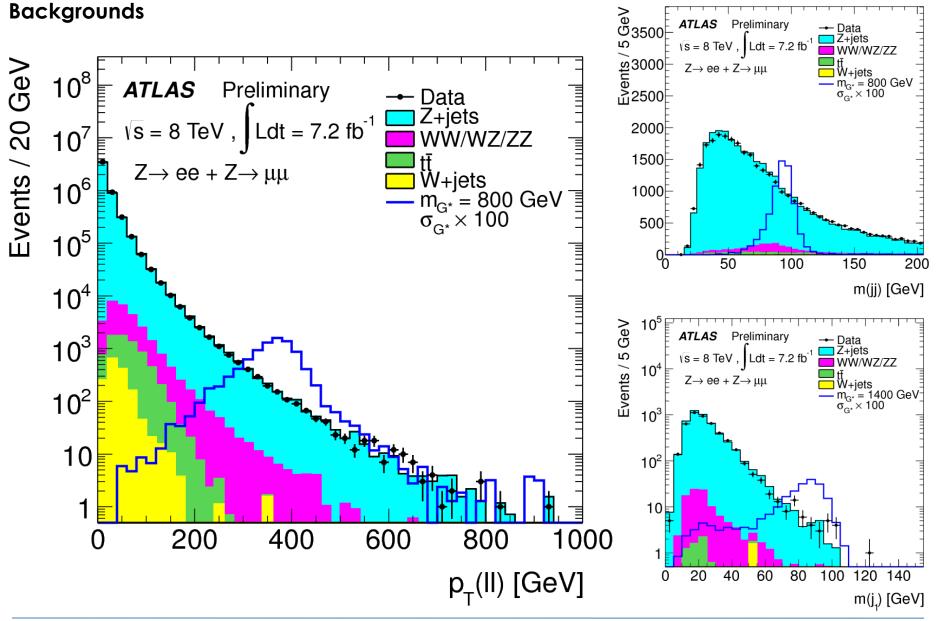
N Z Z

32

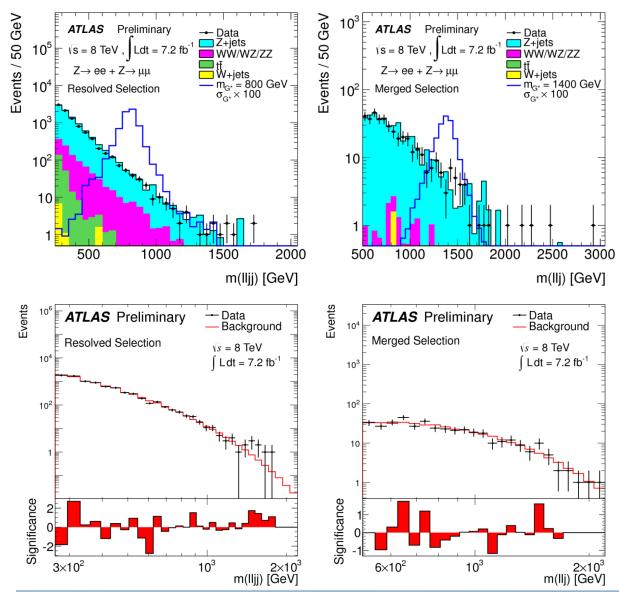
Selection


- Exactly 2, e or μ with $p_T > 25$ GeV
- |m(II) -m(Z) | < 25 GeV
- anti- k_T jets with R = 0.4, $p_T > 30$ GeV

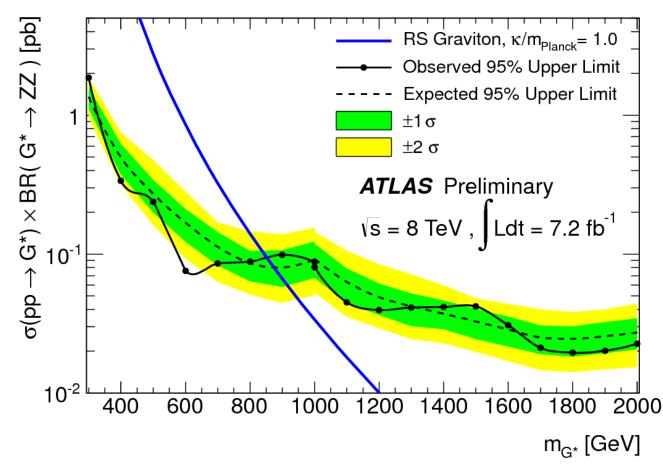
For low resonant masses, the $Z \rightarrow jj$ decay will result in two distinct jets. In this **resolved** region:


- p_T(II) > 50 GeV
- Δ φ(j,j) < 1.6
- m(jj) between 65 and 115 GeV

For high resonant masses, the $Z \rightarrow jj$ decay will merge into a single massive jet. In this **merged** region:


- p_T(II) > 200 GeV
- p_T(j) > 200 GeV
- m(j) > 40 GeV

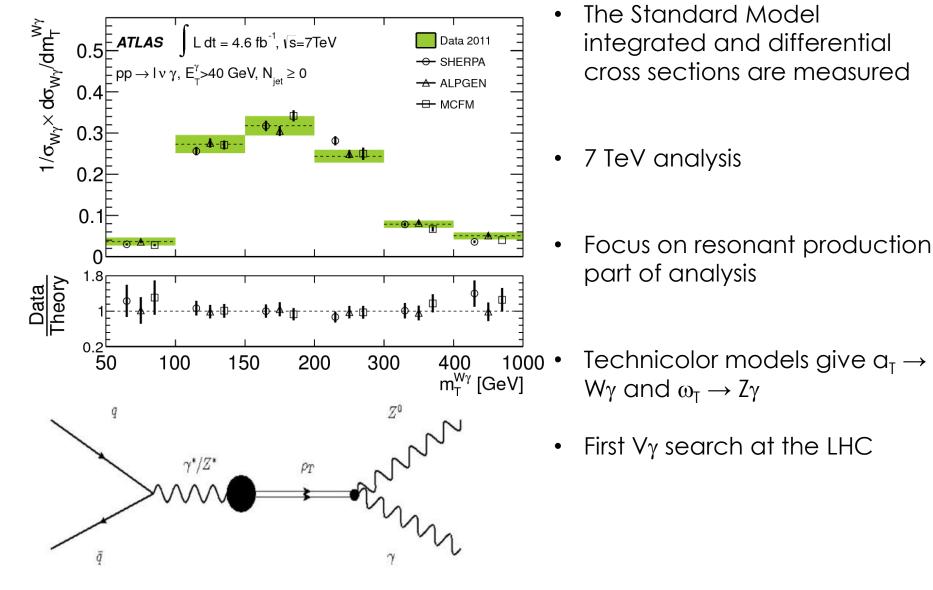
April 24, 2013


Background Fit

 Data driven background from smooth fit to m(llj), m(lljj)

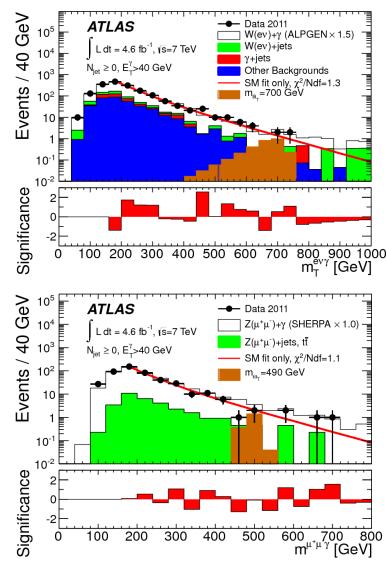
 $f(m; p_{0,1,2,3}) = p_0 \cdot \frac{(1-x)^{p_1}}{x^{p_2 + p_3 \cdot \ln(x)}}$

- Binning consistent with detector resolution
- Look for localized excess over this fit background


- The BumpHunter algorithm is used to look for a resonant signal on the fit background.
- No such bump is found
- Set limits using m(llj), m(lljj)

- For $\kappa/m_{Planck} = 1.0$, exclude $m_{G^*} < 850 \text{ GeV}$
- Resolved region used for limits below 1000 GeV
- Merged region used for limits above 1000 GeV

Limits


Wγ, **Z**γ

Introduction

Wγ, **Z**γ

Events

$W\gamma$ events selected with:

- $p_T(e,\mu) > 25 \text{ GeV}$
- $E_T^{miss} > 35 \text{ GeV}$
- $p_{T}(\gamma) > 40 \text{ GeV}$
- m_T(W) > 40 GeV
- $|m(I_{\gamma}) m(Z)| > 15 \text{ GeV}$
- Ivγ transverse mass is used to set limits
- $\mathbf{Z}\gamma$ events selected with:
- $p_T(e,\mu) > 25 \text{ GeV}$
- Exactly two leptons
- m(II) > 40 GeV
- $p_{T}(\gamma) > 40 \text{ GeV}$
- Ilγ invariant mass is used to set limits

Wγ, **Z**γ

Limits

- The data are well described by the Standard Model backgrounds
- Set limits using m(ll γ), m_T(l $\nu\gamma$)
- Exclude m(ω₁) < 494 GeV
- Exclude m(a_T) < 704 GeV

Conclusions

- Described in detail recent ATLAS searches for diboson resonances.
- Good agreement with Standard Model predictions. Excellent limits have been set on these models.
- Results from the 8 TeV dataset in 2012 are just starting to come, more results will follow in different channels and using the full dataset.
- Diboson channels continue to provide clean searches for new physics.

• Look forward to updates with the full 2012 dataset!

Summary of Diboson Resonance Analyses

Final State	Channel	Dataset Used	Exlclusion Limits	Reference
lvll	WZ	13fb ⁻¹ at 8 TeV	W' < 1180 GeV	ATLAS-CONF-2013-015
lljj	WZ, ZZ	7.2fb ⁻¹ at 8 TeV	bulk G* < 850 GeV	ATLAS-CONF-2012-150
ΙΙγ, Ινγ	Ζγ, Wγ	4.6fb ⁻¹ at 7 TeV	a _T < 700 GeV	CERN-PH-EP-2012-345
ΙνΙν	WW	4.6fb ⁻¹ at 7 TeV	bulk G* < 840 GeV	<u>CERN-PH-EP-2012-197</u>
lvjj	WZ,WW	1fb ⁻¹ at 7 TeV	-	ATLAS-CONF-2011-097
	ZZ	1fb ⁻¹ at 7 TeV	G* < 845 GeV	<u>CERN-PH-EP-2012-026</u>