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The dynamics of Gluon Density at low x is determined by the 
amplitude for the scattering of a gluon on a gluon, described by 
the BFKL equation

 solved by the Green function method, 
in terms of the eigenfunctions of the 

kernel 
∫

dk′ 2K(k,k′)fω(k′) = ωfω(k)

∂

∂ ln s
A(s,k,k′) = δ(k2 − k′ 2) +

∫
dq2K(k,q)A(s,q,k′)

in LO, with 
fixed αs            ω = αsχ0(ν)

Green f. method - preserves the scaling 
(conformal) invariance of BFKL
⇒ most consistent solution of BFKL 

a possible bridge to Pomeron-Graviton? 

fω(k) = exp(iν ln k2)/k
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Quasi-locality 

K(k,k′) =
1

kk′

∞∑

n=0

cnδ(n)
(
ln(k2/k′ 2)

)

cn =
∫ ∞

0
dk′ 2K(k,k′)

k

k′
1
n!

(
ln(k2/k′ 2)

)n

k

∫
dk′ 2K(k,k′)fω(k′) =

∞∑

n=0

cn

(
d

d ln(k2)

)n

f̄ω(k) = ωf̄ω(k)

k

∫
dk′ 2K(k,k′)fω(k′) = χ

(
−i

d

d ln k2
, αs(k2)

)
f̄ω(k) = ωf̄ω(k)

Similarity to the Schroedinger equation  

Properties of the BFKL Kernel

Characteristic function 
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with running αs, BFKL frequency ν  becomes k-dependent, ν(k)

ν has to become a function of k because ω  is a constant
GS resummation applied
evaluation in diffusion (ν ≈ 0) or semiclassical approximation (ν > 0)

For sufficiently large k,  there is no longer a real solution for ν. 
The transition from real to imaginary ν(k) singles out a special value of    

                      k =kcrit, with ν(kcrit)=0.  
The solutions below and above this critical momentum kcrit have to 
match. This fixes the phase of ef’s.

αs(k2)χ0(ν(k)) + α2
s(k

2)χ1(ν(k)) = ω NLO 
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Near k=kcrit, the BFKL eq. becomes the Airy eq. which is solved 
by the Airy eigenfunctions (to a very good approximation) 

with

for k<<kcrit the Airy function has the asymptotic behaviour 

The two fixed phases at k=kcrit and at k=k0 (near ΛQCD) 
lead to the quantization condition

k fω(k) = f̄ω(k) = Ai
(
−(

3
2
φω(k))

2
3

)

φω(k) = 2
∫ kcrit

k

d k′

k′ |νω(k′)|

k fω(k) ∼ sin
(
φω(k) +

π

4

)

φω(k0) =
(

n− 1
4

)
π + η π

instead of
fω(k) = exp(iν ln k2)/k
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Discrete Pomeron 
Solution of the 

BFKL eq
 

The first eight 
eigenfunctions
determined at  

η=0

kcrit ≃c exp(4n)
c  ≃ ΛQCD

⇓ kcrit

⇓ kcrit

Supersym. threshold

ω1 =0.25, ω2 =0.17

ω3 =0.12

Similarity to 
WKB solutions of 
the Schrödinger 

eq for the 
potential well  
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Similarity with the 
Schroedinder eq.

for the potential well
Feynman Lecture III

BFKL eq is similar to S. eq 
for the potential well with
the dynamically increasing 

width 

ω ≈ 0.5
1 + n

analogy 
worked out 

with 
J.Bartels 

potential 
well V

x=log(k2)

curvature is 
proportional to 

(V-E) 
if V is modified 
at some x then 
the whole wf is 

changed

d2a(x)
dx2

=
2m

h
[V − E]a(x)
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 Sensitivity of the frequencies ν(k) to thresholds

with SuSy
at 10 TeV  

SM  

for gluinos 

for squarks 

 Kotikov, Lipatov 2003 

βSM

βSUSY
=

7
3

 change of β function in αs  (LO)
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Comparison with HERA data

Discreet Pomeron Green function

Integrate with the photon and 
proton impact factors

A(k,k′) =
∑

m,n

fm(k)N−1
mnfn(k′)

( s

kk′

)ωn

.

A(U)
n ≡

∫ 1

x

dξ

ξ

∫
dk

k
ΦDIS(Q2, k, ξ)

(
ξk

x

)ωn

fn(k)

A(D)
m ≡

∫
dk′

k′ Φp(k′)
(

1
k′

)ωm

fm(k′).

F2(x, Q2) =
∑

m,n

A(U)
n N−1

nmA(D)
m
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Proton impact factor

The fit is not sensitive to the particular form of the impact factor. 
The support of the proton impact factor is much smaller than the 
oscillation period of fn  and because the frequencies ν have a limited 
range

➤  many eigenfunctions have to contribute and η has to be a 
function of n.  Phase condition at      (close to ΛQCD) 

Φp(k) = A k2e−bk2

η = η0

(
n− 1

nmax − 1

)κ

the infrared boundary condition

additional parameter     which should be in the perturbative 
region but close to ΛQCD 
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Fits to F2 ,  Q2 > 8 GeV2,   x > 0.01  N =108,   (two loop αs)

Note: we are partially absorbing the SUSY effects into the
 free parameters of the boundary conditions: e.g best SuSy fit with 

 η0, κ of SM gives χ2 ~ 400

 χ2/N= 
110/108=1.02
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The rate of rise λ 
F2 ~ (1/x)λ

The first successful pure BFKL description of the λ plot.

Q2 (GeV2)

For many years it was claimed that BFKL analysis was not applicable to 
HERA data because of the observed substantial variation of λ with Q2
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The qualities of fits for various numbers of 
eigenfunctions, Q2 > 4 GeV2 (one loop αs)

➤ new data are crucial for finding the right solution 
 the differences in the fit qualities would be negligible if the 

errors where more than 2-times larger 
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Discrete BFKL-Pomeron  

Why so many eigenfunctions?
 
the contribution of large n ef’s is only weakly suppressed,
enhancement by (1/x)ω is not very large because 
 ω1 ≈ 0.25,  ω5  ≈ 0.1,   ω10 ≈ 0.05    

suppression of large n contribution only by 
       the normalization condition for eigenfunctions     ~ 1/√n 
            alternating signs of the proton overlap             (-1)n 
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Eigenvalues of the Discrete BFKL-Pomeron  

ωn =
0.96
πβ

· 1
η + n− 1/4LO evaluation  

NLO numerical evaluation  

SM  

SM+SUSY  

lines indicate the uncertainty of the phase
(η can only vary between 0 and π)   

βSM

βSUSY
=

7
3

difference 
between SM 

and SM+SUSY 
is 

substantially
larger than 

the  
uncertainty of 

the phase  
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Eigenvalues of the Discrete BFKL-Pomeron  

Comparison of the LO analytical (lines) and 
the NLO numerical evaluation (symbols)  

SM+SUSY  

SM  

difference 
between SM 

and SM+SUSY 
is 

substantially
larger than 

the difference 
between LO 
and NLO  
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SM                               

HERA 
region

LHC 
region

19



Evolution of the wave packet in DPS  

y=ln(1/x)  
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Evolution of the gluon density in DPS  
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Next steps necessary for description of the
low-x and high Q2 processes (DY at LHC)

perform a full evaluation of the Green function:
    sum over n to infinity (instead to n=O(100)) 
    evaluate a possible contribution of negative ω’s  

the large n and negative ω’s contributions can be    
evaluated in LO only (presumably)
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Drell-Yan processes at LHC  

Additional requirement: add valence quarks contribution,
i.e; gluon and sea-quark contribution like in DPS and valence 
quarks like in DGLAP
       
necessary requirement: obtain DGLAP from DP-BFKL 

Dominant process at LHC
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paper in progress  

H. Kowalski, L.N. Lipatov, D.A. Ross  + ... 

Obtain the BFKL Green Function  

from the generalized Airy operator 
(valid in diffusion and semiclassical approximation) 
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with

Generalized Airy Green Function  

leads to a similar pole term contribution,   Δy = ln(1/x)

+ a possible contribution of the cut at negative ω
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Unintegrated gluon density  

Integration over contour C

ωs  is the saddle point  

ωs ≈

√
αs t

ln(1/x)

Integral can be evaluated
in saddle point approximation

ωs    >   ω1 

it agrees with the DLL limit of DGLAP

in LO, for large  t and ln(1/x)
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Re(ωs )  <   ω1 

for t  <<  ln(1/x)
Re (ωs )  <  ωm
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Conclusions  

The Discrete-Pomeron solution of BFKL provides a very good 
description of HERA data

The DP-BFKL has a genuine sensitivity to BSM effects. The BSM 
effects are affecting the eigenvalues and eigenfunctions at larger 
n which are almost independent on the higher order QCD effects 
and the lack of knowledge of the Infrared Boundary Condition 
(IBC). 

The data evaluation depends on IBC. IBC is a physical quantity, 
its understanding can be substantially improved:
       by analyzing different physics reactions, 
        e.g.: F2 together with LHC Drell-Yan  
              + diffractive processes... 
       by involving more sophisticated theoretical methods
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Back up slides  
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Pomeron - Graviton Correspondence
String theory emerged out of phenomenology 
of hadron-hadron scattering -
Dolan-Horn-Schmid duality

▶ Veneziano amplitude 

 α(t) = α0 + α’t

▶ generalization to dual resonance models,
Veneziano amplitude for the pomeron trajectory
has a pole for s=t=0 with J=2 

▶ starting point for a theory of quantum gravity 

 Maldacena Conjecture: (N=4 SUSY QCD) = (CFT in ADS5×S5)  
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Back up slides  

from a talk by ZVI BERN  

Focus on N=8 supergravity and N=4 SUSY YM  
High degree of symmetry => technical simplicity
new methods developed:
        Modern Unitarity, symbology, BDS ...
focus on order by order finiteness - now up to 6 loops
Infinite loop calculation could be possible in the Multi-Regge limit
                                          31



from a talk by ZVI BERN  
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from the Summary:  
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