Polarised Drell-Yan measurements at COMPASS - II

INFN

Istituto Nazionale

di Fisica Nucleare

M. Chiosso, University of Torino and INFN on behalf of the COMPASS Collaboration

d 🗓

d 🛈

 \sim

MM

DIS2013 - Marseille (France) 22 - 26 April 2013

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SPSC-2010-014 SPSC-P-340 May 17, 2010

Approved December 2010

COMPASS-II Proposal

The COMPASS Collaboration

Generalized Parton Distributions (GPDs)

Measurements of unpolarised PDFs and TMD effects in SIDIS

Pion-induced Drell-Yan muon pair production

Primakoff scattering and pion polarisability

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SPSC-2010-014 SPSC-P-340 May 17, 2010

Approved December 2010

COMPASS-II Proposal

The COMPASS Collaboration

Generalized Parton Distributions (GPDs)

Measurements of unpolarised PDFs and TMD effects in SIDIS

Pion-induced Drell-Yan muon pair production

Primakoff scattering and pion polarisability

COMPASS-II @ CERN

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS Spectrometer

(u

- Muon or hadron secondary beams
- Two stage magnetic spectrometer for large angular & momentum acceptance
- Solid state NH₃ (⁶LiD) target
- Powerful tracking system 350 planes
- Particle identification with:
 - Ring Imaging Cerenkov Counter
 - Electromagnetic calorimeters (ECAL1 and ECAL2)
 - Hadronic calorimeters
 - Hadron absorbers (Muon Walls)

COMPASS-II Schedule

COMPASS-II has been recommended by SPSC and is approved by the Research Board

2012: Primakoff scattering and pion polarisabilities + DVCS test run \times

2013: SPS long shut-down

2014: Unpolarised and Single polarised DY processes

2015/2016: GPDs + in parallel SIDIS

⊁ 2012:

Primakoff run untill 17 September 2012

Changeover to DVCS

DVCS test run: 08 October - 03 December 2012

Single polarized Drell-Yan

- (u) \sim
- Transversity and TMD PDFs
- TMDs universality
- o J/ ψ -Drell-Yan duality

TMD PDFs, like Sivers, can be accessed both from semi-inclusive DIS (SIDIS) and from the Drell-Yan process (DY).

the amplitudes of azimuthal modulations are convolutions of PDFs and FFs

the amplitudes of azimuthal modulations are convolutions of PDFs only

Single polarized Drell-Yan

In a recent paper Arnold, Metz and Schlegel derived the full expression of the Drell-Yan cross-section, including unpolarized, transversely and longitudinally polarized terms [S. Arnold et al, Phys.Rev. D79 (2009)034005].

In single polarized DY, with transversely polarized target nucleons, the general expression of the cross-section (LO) is:

$$\frac{d\sigma}{d^4qd\Omega} = \frac{\alpha_{em}^2}{Fq^2} \hat{\sigma}_U \{ (1 + D_{[\sin^2\theta]} A_U^{\cos 2\phi} \cos 2\phi)
+ |\vec{S}_T| [A_T^{\sin\phi_S} \sin\phi_S + D_{[\sin^2\theta]} (A_T^{\sin(2\phi+\phi_S)} \sin(2\phi+\phi_S)
+ A_T^{\sin(2\phi-\phi_S)} \sin(2\phi-\phi_S))] \}$$

A: azimuthal asymmetries; D: depolarization factor; S: target spin components; F: flux of incoming hadrons; $\sigma_{_U}$: part of the cross-section surviving integration over ϕ and ϕ_s

 ϕ_s : azimuthal angle of transverse target spin S_T in the target rest frame ϕ : azimuthal angle of the lepton momenta in the Collins-Soper frame

Single Polarized Drell-Yan

 $\frac{\gamma^{*}}{\ell^{+}}$

 $A_{U}^{\ cos2\phi}$ gives access to the Boer-Mulders functions of the incoming hadrons

 $A_{\!\scriptscriptstyle T}^{\,\,sin\phi_S}$ to the Sivers function of the target nucleon

 $A_{\!\scriptscriptstyle T}^{\ sin(2\varphi+\varphi_S)}$ to the Boer-Mulders function of the beam hadron and to the pretzelosity function of the target nucleon

 $A_{T}^{sin(2\varphi - \varphi_{S})}$ to the Boer-Mulders function of the beam hadron and to the transversity function of the target nucleon

DY vs SIDIS

Change of sign of Sivers and Boer-Mulders functions?

$$f_{1T}^{\perp}\Big|_{DY} = -f_{1T}^{\perp}\Big|_{DIS}$$
 and $h_1^{\perp}\Big|_{DY} = -h_1^{\perp}\Big|_{DIS}$

Critical test of universality of TMD factorization approach for the description of SSA.

In COMPASS, we have the opportunity to test this sign change using the same spectrometer and a transversely polarized target.

J/Ψ -DY duality

In spite of the large amount of experimental data on J/ψ production in various reaction, the production mechanism is still unclear.

 $J/\Psi-DY$ duality —> model based on close analogy between Drell-Yan and $J/\Psi\,$ production mechanism: occurs when the gluon-gluon fusion mechanism of the $J/\Psi\,$ production is dominated by the q-q annihilation mechanism

 $\pi^- p^\uparrow \to J/\psi X \to \mu^+ \mu^- X$

 $\pi^- p^\uparrow \to \gamma^* X \to \mu^+ \mu^- X$

From the study of J/ψ production in the dileptons decay channel:

- \bullet Check duality hypothesis polarized J/ ψ production cross-section
- Access PDFs from J/ ψ events larger statistics available

Polarized Drell-Yan experiments

 \sim

What do we need to access spin dependent PDFs through DY?

Polarized Drell-Yan experiments:

• High luminosity (DY Cross Section is a fraction of nanobarns) and large angular acceptance

• Sufficiently high energy to access 'safe' background free M range (4 GeV/c² < $M_{\mu\mu}<$ 9 GeV/c²)

Good acceptance in the valence quark range

• Good figure of merit (FoM), which can be represented as a product of the luminosity, target polarisation (dilution factor f) and beam (target) polarisation

NA50: p @ 400 GeV/c in a Pb target; I about 10⁹ particles/sec

Even if the cross-section is low, M range 4 < $M_{\mu\mu}$ < 9 GeV/c² is the ideal sample to study azimuthal asymmetries in Drell-Yan, due to negligible background contamination.

The combinatorial background is kept under control by the presence of a hadron absorber downstream of the target.

@ COMPASS: π^- @ 190 GeV/c in a NH₃ target; I up to 10⁸ particles/sec: comb. background 100 times lower (50% of total in intermediate M range 2. < M_{µµ} < 2.5 GeV/c²)

open charm contributes only at 15%

Drell-Yan @ COMPASS-II

- Large angular acceptance spectrometer
- π^- beam at 190 GeV/c with the intensity up to 1x10⁸ particles/second
- Large acceptance COMPASS Superconducting Solenoid Magnet
- \bullet Transversely polarized $\rm NH_3$ target working in frozen spin mode with long relaxation time
- Hadron absorber downstream of the target
- A detection system designed to stand relatively high particle fluxes
- A Data Acquisition System (DAQ) that can handle large amounts of data at large trigger rates
- Trigger based on hodoscope signals coincidence, homothetic and pointing to the target

COMPASS-II DY Acceptance

Drell-Yan @ COMPASS-II: Feasibility

In 2007, 2008 and 2009 short Drell-Yan beam tests were performed, to

In 2007, with a π^- beam of 160 GeV/c on a NH₃ target, and without

hadron absorber: \approx 90000 dimuon events (< 12 hours data-taking)

check the feasibility of the measurement

In 2008 a second beam test was performed, also with an open configuration of the spectrometer, a π - beam of 190 GeV/c, and a polyethylene target

• The target temperature does not seem to increase signifcantly with the hadron beam, long polarization relaxation times measured (2007 beam test)

• Reasonable occupancies in the detectors closer to the target can only be achieved if a hadron absorber and beam plug is used (2008 beam test)

 \circ Physics simulation were validated, within statistical errors (J/ ψ peak and combinatorial background, in 2007 and 2009 beam tests)

M

 $(\overline{\mathbf{u}})$

(u)

Beam test 2009

DY

 84 ± 10

M. GeV

Beam test 2009

The mean value of p_{τ} is about 1 GeV/c. This makes Compass sensitive to TMDs, which are expected to be accessible up to $p_{\tau} = 2 \text{ GeV/c.}$

2.7 GeV < M < 3.5 GeV

Preliminary

0.6

COMPASS DY test run 2009

0.25

0.2

0.15

0.1

0.05

In the high mass range of the dimuon, Mμμ > 4GeV/c, both annihilating quarks belong to the valence quark range

Beam test 2009

• 4. < M $\mu\mu$ < 9. GeV/c² (HMR): clean DY signal • 2. < $M\mu\mu$ < 2.5 GeV/c² (IMR): contaminated with:

-> combinatorial background contribution that can be subtracted by using the like-sign muon pairs samples),

-> physics background mostly from uncorrelated decays of open-charm mesons (in the IMR: $N_{DD} / N_{DY} = 0.14$

20

Expected event rates and statistical precision

With a beam intensity of I_{beam} = 6 \times 10⁷ particles/second, a luminosity of L = 1.2 \times 10³² cm⁻²s⁻¹ can be obtained

In 280 days one can collect: 250.000 DY events with 4 < $M_{\mu\mu}$ < 9 GeV/c². 1.4 × 10⁶ events DY events with 2 < $M_{\mu\mu}$ < 2.5 GeV/c².

The expected statistical error in the asymmetries is:

Asymmetry	Dimuon mass (GeV/c ²)		
	$2 < M_{\mu\mu} < 2.5$	J/ψ region	$4 < M_{\mu\mu} < 9$
$\delta A_U^{\cos 2\phi}$	0.0020	0.0013	0.0045
$\delta A_T^{\sin \phi_S}$	0.0062	0.0040	0.0142
$\delta A_T^{\sin(2\phi+\phi_S)}$	0.0123	0.0080	0.0285
$\delta A_T^{\sin(2\phi-\phi_S)}$	0.0123	0.0080	0.0285

Asymmetries: comparing with theory prediction

Asymmetries: comparing with theory prediction

0.8

x_F=x[⊥]-x[↓]

0.6

0.4

DY setup: new hardware developments

Two target cells (NH3) inside the dipole (55 cm length, 4 cm diameter, spaced by 20 cm)

An absorber 236 cm long, downstream the target

Possibility to place a scintillator fibers detector between target and absorber to improve vertex resolution

DY setup: the absorber

Summary

- Transversity and Sivers PDFs of the nucleon are addressed in COMPASS presently from semi-inclusive DIS.
- The opportunity to study, with the same spectrometer, the TMD PDFs from the Drell-Yan process is unique.
- COMPASS experimental conditions probe the valence quarks region, where TMD effects are expected to be sizable.
- The feasibility of the measurement was proven, after a series of beam tests.
- The COMPASS-II Proposal has been recommended by SPSC and is approved by the Research Board for a first period of 3 years including 1year for Drell-Yan.
 - 2014 Single polarised Drell-Yan with π^- beam --> TMDs (Sivers and Boer-Mulders) sign change
- 2015+16 DVCS with μ^+ and μ^- beams on unpolarised protons

in parallel unpolarised SIDIS --> PDFs, TMDs, FFs (in particular for strange)

Second year of Drell-Yan data taking?

...beyond 2016 --> TMDs (Sivers, Boer-Mulders, and Pretzelosity), transversity PDF