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Current status of NNPDF determinations

> Most recent update: NNPDF2.3 includes constraints from LHC data
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NNPDF2.3 Family

NNPDF2.3 - global dataset including LHC data.
NNPDF2.3 noLHC - global dataset without LHC data.
NNPDF2.3 Collider - HERA, Tevatron and LHC data only.

Nathan Hartland ( University of Edinburgh ) April 23, 2013 2/18



Constraints from LHC data

Ratio to NNPDF2.3 NNLO, Q? = 10° GeV? Ratio to NNPDF2.3 NNLO, Q? = 10* GeV?
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» LHC data generally demonstrates good consistency with the global dataset.
» Provides particularly large constraint for collider only PDFs.
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The strange content of the proton.

Strange distributions suffer from generally large uncertainties.
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» LHC Electroweak measurements in NNPDF2.3 offers substantial constraint.
Particularly in the collider only determination which previously suffered from
a lack of data targeting strangeness.

> Data in 2.3 Collider only determination prefers larger values for total
strangeness, although uncertainties remain large.
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The strange content of the proton.
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» NNPDF fit to HERA and ATLAS-WZ data finds central value consistent with
ATLAS' determination of rs(x) = (s(x) + 5(x))/2d(x) within a large uncertainty.

> Recent CMS? measurement of W + ¢ consistent with strangeness in global fits.
Slightly disfavours the larger strange sea in NNPDF2.3 Collider only, but consistent
within uncertainties.

LarXiv:1203.4051
2CMS-SMP-12-002
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PDF Benchmarking

[arXiv:1211.5142] - Benchmark study of different PDF determinations.
Detailed comparison at common as of the most up to date NNLO fits from the ABM,
CT, HERAPDF, MSTW and NNPDF collaborations.
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Reasonable agreement was found between CT, MSTW, NNPDF.
ABM softer large-x gluon and harder quarks.

Central values of HERAPDF1.5 NNLO agree with global fits, larger uncertainties due to
reduced dataset.
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LHC 8 TeV - iHixs 1.3 NNLO - = 0.117 - PDF uncertainties LHC 8 TeV - MCFM LO - o = 0.117 - PDF uncertainties
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Theoretical uncertainties in PDF determination.

[arXiv:1303.1189] - NNPDF study of contributions to theoretical uncertainty.

» Dynamical Higher Twist
NNPDF Fit with higher twist corrections (from ABM determination) indicates
modest impact upon PDFs

» Deuterium nuclear corrections
Potentially affects down quark, fitted from deuterium data. Impact is limited to the
d/u ratio in the range 0.1 < x < 0.5
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Impact of Flavour Number Scheme choice.

Ratio to NNPDF2.3 NNLO, o, = 0.119, Q2 = 10° GeV? Ratio to NNPDF2.3 NNLO, o = 0.119, Q° = 10* GeV?
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» GM-VFNS vs FFNS
NNPDF fit with a fixed flavour number scheme treatment for DIS observables.
Substantial impact observed in PDF central values.

The FFN quarks increase at medium to low-x
The FFN gluon becomes softer at high-x.
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Impact of FFN Scheme

250

LHC 8 TeV o(tt) - top++v1.5 NNLO

approx

+NNLL - og = 0.119

NNPDF2.3 ABM11  CT10

MSTW

240

}

230

|

220

a(tt) [pb]

210

200

[——

190

Global

DIs FFN Deut HT(p=1)

7.8

LHC 8 TeV o(W+) - Vrap NNLO - o = 0.119

NNPDF2.3 ABM11 CT10

MSTW

7.4

72

S(W") BR(I"v) [nb]

6.8

6.6

Nathan Hartland ( University of Edinburgh )

i

——

|- Global

Dis FFN Deut HT(p=1)

April 23, 2013

10 /18



Towards NNPDF3.0

Challenges

» Predictions for LHC data are computationally rather expensive.
- A fast fitting framework is required.

> New datasets from the LHC and HERA are becoming available.
- The ability to rapidly implement and assess the impact of new data is vital.

» Fitting methodology should be analysed in the light of new data.
- Is our current methodology doing the best job it can?

A new NNPDF code is under development, built from scratch to support rapid iteration.

> Faster fits means more aggressive minimisation, more scope for Methodological
surveys.

» Code is written in modern C4++ to aid flexibility and maintainability.

» Rewrite provides an in-depth cross check of the implementation.
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Towards NNPDF3.0

NNPDF3.0
(roadmap)
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New data - HERA-II DIS
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Preliminary Fits to HERA-II Inclusive DIS
Datasets.

Large new DIS datasets from the ZEUS and
H1 collaborations.

Over 600 new data points demonstrate
excellent consistency in global fit, providing
constraint particularly for the singlet PDF.

PDF distances demonstrate this consistency.
A distance of d = 10 implies a shift by 1-0.
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New data - HERA Combined F?

[arXiv:1211.1182] - ZEUS and H1 Combination F? data.

Supersedes separate datasets used in previous NNPDF fits, providing additional
information on data correlations.

P L O LN W s e N
JE T8 TN YR ST FUY FETE1 RTE1 evwn NuvwaRvOY:|

L L L
3 g .
10° , 10% 107

0 1 1 1 1
10° 10 10° , 10? 10"

Introducing the extra correlations has a generally modest impact, restricted to the
singlet and gluon distributions.
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Methodology: Closure tests

How do we ensure that our fit minimises bias?
Related studies by Thorne-Watt [arXiv:1205.4024]

Perform a Closure Test:

» Generate artificial pseudo-data based upon a known PDF distribution.
Pseudodata generated according to NLO pQCD. Dataset is therefore free of
internal inconsistencies.

» Simulate experimental noise in the pseudodata.
Data points perturbed according to multi-gaussian distribution defined by the
experimental covariance matrix.

» Perform a full PDF fit to the pseudo-dataset.

Closure fit should recover generating PDF up to the level of experimental
uncertainty.
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Methodology: Closure tests

Preliminary NNPDF closure test fits.
First closure tests performed with NNPDF C++ code to a NLO fit with a global dataset.
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Early closure test fits demonstrate good reproduction of the generating function,
accurate up to experimental error.

Reproduction of uncertainty is particularly interesting. Lack of data inconsistency does
not appear to lead to significant change in the resulting uncertainties.

The NNPDF methodology can be consistently applied to experimental data and
theoretically perfect pseudodata without the need for tolerance.
Nathan Hartland ( University of Edinburgh ) April 23, 2013 16 / 18



Preliminary closure tests - fit quality

Pseudodata Experimental data

Distribution of 2 for experiments Distribution of %2 for experiments
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» The 2 value for each dataset is assessed both for the artificial pseudodata,
and for the real experimental data.
» Closure test fit demonstrates self consistency of the NNPDF procedure.

Nathan Hartland ( University of Edinburgh )



Summary and Outlook

Current Status

» NNPDF2.3
The NNPDF2.3 family of fits provide a determination of parton distribution
functions with a global dataset, including a sizeable LHC contribution.

Measurements from the LHC and HERA will provide interesting further constraints
upon PDFs, particularly in collider only determinations.

Looking Forward
A great deal of progress in NNPDF determinations across many fronts.

> Progress towards the next global NNPDF set

New fitting framework developed from scratch in C++.
Preliminary methodological studies by Closure Testing.
Impact of new HERA combinations upon NNPDF2.3 studied.
Plenty of new data to come (e.g CMS Inclusive Jets, W + c).

» New Results for PDFs with QED Corrections, and polarised NNPDFs

see talks by S.Carrazza, E.Nocera.
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Including new experimental data - reweighting

How can we add new LHC data to an existing parton set?
> Reweight existing Monte Carlo parton set.

Each replica in the set is assigned a weight based upon it's x? to the new data.

N
<O>ncw = % Z Wko[fk], Wi X (Xi)(nil)/zeiéxi
k=1

> Application: NNPDF2.2 Parton Set [arXiv:1012.0836]
LHC Electroweak data added by Bayesian Reweighting

However, reweighting method is impractical for large/constraining data sets.
Number of effective replicas reduced after reweighting:

Nrep

Nl > Wi In(Neep /wic)

rep k=1

N o = exp
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Including new experimental data - refitting

How can we efficiently include LHC data into a full refit?
Tools: APPLgrid/FastNLO projects

» Precompute and store MC Weights on an interpolation grid
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N, Npar

fi(Xa; Q Z Z Al

Idea: Combine weight grids with evolution grids

N, Npat

Zzaaﬂu (Xa) NO(XB)

a,B iy

» Precomputing all @2 dependence leads to extremely efficient calculations.
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NNPDF2.3 Collider only vs NNPDF2.3
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Impact
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of HT upon NNPDFs

NNPDF2.3 NNLO Global Ref vs. HT with pHT=1, Q%= 2 GeV?
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Impact of deuterium corrections upon NNPDFs
NNPDF2.3 ref vs. CJmax deut corr, G = 2 GeV?
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NNPDF2.3 ref vs. CJmid deut corr, G = 2 GeV?
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Impact of FFN Scheme

NNPDF2.3 NNLO Global VFN vs FFN, Q? = 2 GeV?
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